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Abstract

For every graph G, let

A, (G) = max {Z d(u) : R is an r-clique of G}

uER

and let A, (n,m) be the minimum of A, (G) taken over all graphs of order n and
size m. Write ¢, (n) for the size of the r-chromatic Turdn graph of order n.

Improving earlier results of Edwards and Faudree, we show that for every r > 2,
if m > t, (n), then

Ar (n,m) > 2rm7 (1)

as conjectured by Bollobas and Erd0s.
It is known that inequality (1) fails for m < ¢, (n). However, we show that for
every € > 0, there is § > 0 such that if m > t,. (n) — dn? then
2rm

Ay (n,m) > (1—¢) —

1 Introduction

Our notation and terminology are standard (see, e.g. [1]): thus G (n,m) stands for a
graph of n vertices and m edges. For a graph G and a vertex u € V (G), we write I' (u)
for the set of vertices adjacent to u and set dg (u) = |I' (u)|; we write d (u) instead of
dg (u) if the graph G is understood. However, somewhat unusually, for U C V (G), we
set T (U) = |NyeuD (v)] and d(U) = )IA‘(U)‘.

We write T, (n) for the r-chromatic Turdn graph on n vertices and ¢, (n) for the number
of its edges.

*Department of Mathematical Sciences, University of Memphis, Memphis TN 38152, USA
TTrinity College, Cambridge CB2 1TQ, UK
fResearch supported in part by DARPA grant F33615-01-C-1900.

THE ELECTRONIC JOURNAL OF COMBINATORICS 12 (2005), #N21 1



For every r > 2 and every graph G, let A, (G) be the maximum of the sum of degrees
of the vertices of an r-clique, as in the abstract. If G has no r-cliques, we set A, (G) = 0.
Furthermore, let

A, (n,m) = in A, (G).
(n,m) L (G)
Since T, (n) is a K, i-free graph, it follows that A, (n,m) = 0 for m < t,_;(n). In
1975 Bollobés and Erdés [2] conjectured that for every r > 2, if m > t, (n), then
2
A, (n,m) > miblly (2)
n

Edwards [3], [4] proved (2) under the weaker condition m > (r —1)n?/2r; he also
proved that the conjecture holds for 2 < r < 8 and n > r?. Later Faudree [7] proved the
conjecture for any r > 2 and n > r? (r — 1) /4.

For t,_1 (n) < m < t, (n) the value of A, (n,m) is essentially unknown even for r = 3
(see [5], [6] and [7] for partial results.) A construction due to Erdés and Faudree (see [7],
Theorem 2) shows that, for every ¢ > 0, there exists 6 > 0 such that if t,_; (n) < m <
t, (n) — dn? then

2
AT (n7m) < (1 - 8) ﬁ
n
The construction is determined by two appropriately chosen parameters a and d and
represents a complete (r — 1)-partite graph with (r — 2) chromatic classes of size a and a
d-regular bipartite graph inserted in the last chromatic class.

In this note we prove a stronger form of (2) for every r and n. Furthermore, we prove
that A, (n,m) is “stable” as m approaches t, (n). More precisely, for every £ > 0, there
is 0 > 0 such that if m > ¢, (n) — dn? then

2
Ar (num) > (1 _g)ﬁ
n

for n sufficiently large.
1.1 Preliminary observations
If My, ..., M are subsets of a (finite) set V' then

k

M| =D M| = (k= 1) V] (3)
i=1

The size t, (n) of the Turdn graph 7, (n) is given by

tr(n):r_1n2—g<1—§>.

2r r

where s is the remainder of n modulo r. Hence,

r—1, r r—1,
— <t (n)< . 4
I (R wal (4)
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2 A greedy algorithm

In what follows we shall identify a clique with its vertex set.

Faudree [7] introduced the following algorithm P to construct a clique {vy,...,vx} in
a graph G:

Step 1: vy is a vertex of maximum degree in G;

Step 2: having selected vy, ..., v;_1, if I" (vy, ..., v;_1) = @ then set k = i —1 and stop P,
otherwise P selects a vertex of maximum degree v; € r (v1,...,v;_1) and step 2 is repeated
again.

Faudree’s main reason to introduce this algorithm was to prove Conjecture (2) for n
sufficiently large, so he did not study P in great detail. In this section we shall establish
some properties of P for their own sake. Later, in Section 3, we shall apply these results
to prove an extension of (2) for every n.

Note that P need not construct a unique sequence. Sequences that can be constructed
by P are called P-sequences; the definition of P implies that ' (vq...vx) = & for every

P-sequence vy, ..., V.

Theorem 1 Let r > 2, n > r and m > t.(n). Then every graph G = G (n,m) is such
that:

(i) every P-sequence has at least r terms;

(ii) for every P-sequence vy, ..., Uy, ...,

Zd(vi) > (r—1)n; (5)

(iii) of equality holds in (5) for some P-sequence vy, ..., vy, ... then m = t, (n).

Proof Without loss of generality we may assume that P constructs exactly the vertices
1,...,k and hence d (1) > ... > d (k).
Proof of (i) and (ii) To prove (i) we have to show that k > r. For every i = 1,..., k,

let M; =T (i) ; clearly,
k

Y d@) <(g—1n,

=1

since, otherwise, (3) implies that f(vl...vk) # @&, and so 1,...,k is not a P-sequence,
contradicting the choice of k. Suppose k < r, and let ¢ be the smallest integer such that

the inequality
h

> d(i)>(h—1)n (6)

i=1
holds for h =1, ...,q — 1, while

q

» d(@) < (g-1)n. (7)

=1
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Clearly, 1 < g < k.
Partition V' = UL, V;, so that
Vi=T(i— D\F(E) for i=2,.q—1,
V, =T (lg—1).

We have
=3 d0) :igdw sgdu)\w
= d(1) <n—d<1>>+j§_;d<z> (A= 1) = d(@) +d(@d(la—1)
1)n+§§([¢])(d(¢+1) —d(i). (8)

For every ¢ € [¢— 1], set k; = n —d (i) and let k, = n — (k1 + ... + k4—1) . Clearly,
k; > 0 for every i € [q]; also, k1 + ... + k, = n.

Furthermore, for every h € [¢ — 2], applying (3) with M; =T (), i € [h], and (6), we
see that,

a () = |7 (n)| 23 (@)~ (h=n=n-"k>0.

Hence, by d (h+ 1) < d (h), it follows that

d([h)) (d(h+1) — _(n—Zk) (h+1)—d(h)). (9)
Since, from (7), we have
1) <@~ )n - Y d() =3 k. (10)

in view of (9) with h = ¢ — 1, it follows that

d(lg—1])(d(q) —d (g~ 1)) <n—zk‘> d(qg—1))
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Recalling (8) and (9), this inequality implies that

2m < nd (1 +Z<n—2k1> —d(h))
+ (n—Zk) (qZki—d(q—n).

Dividing by 2 and rearranging the right-hand side, we obtain
q—1 q—1
i=1 i=1 1<i<j<q-1 1<i<j<q

Note that

> kiky=e(K (ki ... k).

1<i<j<q

Given n and ky + ... + k; = n, the value e (K (kq, ..., k;)) attains its maximum if and only
if all k; differ by at most 1, that is to say, when K (ki, ..., k,) is exactly the Turdn graph
T, (n) . Hence, the inequality m > ¢, (n) and (11) imply

tr(n) <m<e(K(ki..ky)) <t;(n). (12)

Since ¢ < r < n implies ¢, (n) < ¢, (n), contradicting (12), the proof of (i) is complete.
To prove (ii) suppose (5) fails, i.e.,

Zd (r—1)n

Hence, (10) holds with a strict inequality and so, the proof of (12) gives ¢, (n) < t, (n).
This contradiction completes the proof of ().

Proof of (iii) Suppose that for some P-sequence vy, ..., vy, ... equality holds in (5). We
may and shall assume that vy, ...,v, =1,...,r, i.e.,

Zd (r—1)n

Following the arguments in the proof of (i) and (i), from (12) we conclude that
tr(n) <m <t (n).

and this completes the proof. O
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3 Degree sums in cliques

In this section we turn to the problem of finding A, (n,m) for m > t, (n) . We shall apply
Theorem 1 to prove that every graph G = G (n,m) with m > ¢, (n) contains an r-clique
R with

D d(i) = —. (13)
As proved by Faudree [7], the required r-clique R may be constructed by the algorithm P.

Note that the assertion is trivial for regular graphs; as we shall show, if G is not regular,
we may demand strict inequality in (13).

Theorem 2 Letr > 2, n>r, m>t,(n) and let G = G (n,m) be a graph which is not
reqular. Then there exists a P-sequence vy, ..., v,, ... of at least r terms such that

: 2
i=1

n

Proof Part (iii) of Theorem 1 implies that for some P-sequence, say 1, ...,7, ..., we have
> d(@) > (r=1)n.
i=1

Since d (i) < n, we immediately obtain
» d(@) > (s—1)n (14)
i=1

for every s € [r].
The rest of the proof consists of two parts: In part (a) we find an upper bound for m
in terms of >_7_, d (i) and Y_;_, d? (i). Then, in part (b), we prove that

and show that if equality holds then G is regular.
(a) Partition the set V into r sets V =V, U ... UV,, where,

Vi=VAI'(1),
Vi =T ([i — I)\D ([i]) fori=2,...r —1,
V,=T(r-1]).
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We have,

2m=3 d(@) =33 d() < d()Vi

i€V h=1 jeV,,
_Z N Vil 4 nd (r) (15)

Clearly, for every ¢ € [r — 1], from (3), we have

~

@i+ )| = [P @]+ 10 G+ Dl =n = [P@ED| + a6 +1) -

and hence, |V;| < n —d (i) holds for every ¢ € [r — 1]. Estimating |V;| in (15) we obtain

r—1

2m <Y (d(i) —d(r)) (n —d (i) +nd (r)

i=1
—nZd Zd2 (Zd —n r—l))
(b) Let S, =3, d(i). From d (r) < S,/r and Cauchy’s inequality we deduce

Sy

2m<nS—Zd2 +—(S—(7“—1) n)
=1
1 ) ST nSr
< - — (S —(r—1)n) <
_nSr T(Sr) + r (ST (7“ )n) - )
and so,
S dg) > 22 (16)
n

To complete the proof suppose we have an equality in (16). This implies that

S = (de)

and so, d (1) = ... = d (r) . Therefore, the maximum degree d (1) equals the average degree
2m/n, contradicting the assumption that G is not regular. U

Since for every m > t,. (n) there is a graph G = G (n, m) whose degrees differ by at
most 1, we obtain the following bounds on A, (n,m).

Corollary 1 For every m > t,. (n)

2 2
I A (nym) < 7 4
n n
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4 Stability of A, (n,m) as m approaches t, (n)

It is known that inequality (2) is far from being true if m <t, (n) —en for some € > 0
(e.g., see [7]). However, it turns out that, as m approaches t, (n), the function A, (n,m)
approaches 2rm/n. More precisely, the following stability result holds.

Theorem 3 For every € > 0 there exist ng = ng(e) and 6 = §(¢) > 0 such that if

m > t, (n) — on? then
2
A, (n,m) > (1 —5)%

for all n > ny.

Proof Without loss of generality we may assume that

O<€<m.
Set )

_ 2

5—5(5)—325.

If m > t, (n), the assertion follows from Theorem 2, hence we may assume that

2 ot
rm - rt, (n)

< — 1)n.
n n _(T )n

Clearly, our theorem follows if we show that m > t, (n) — dn? implies
A, (n,m)>(1—¢)(r—1)n (17)

for n sufficiently large.
Suppose the graph G = G (n, m) satisfies m > t, (n) —dn®. By (4), if n is large enough,

o9 r—1- 2 T 7“—1_2 9 1
m > t,(n) —on >(27“ 5)n 8_(27“ J ) n-. (18)

Let M. C V be defined as

= fuaw < (1 5)a).

The rest of the proof consists of two parts. In part (a) we shall show that |M,| < en,
and in part (b) we shall show that the subgraph induced by V\ M. contains an r-clique
with large degree sum, proving (17).

(a) Our first goal is to show that |M.| < en. Indeed, assume the opposite and select
an arbitrary M’ C M, satisfying

o en < |M'| < l+L EN. (19)
2 2,2 2 22
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Let G’ be the subgraph of G induced by V\M’. Then

e(G)=e(G)+e(M ,V\M')+e(M) <e(G)+ Zd

ueM’
—1
ge«w+qu(rr ;)n

Observe that second inequality of (19) implies

n—|M|>(1-¢e)n

Hence, if
—1 2
a) >’ — M’
e(G') > = (n— M)
then, applying Theorem 2 to the graph G’, we see that
2re (G")

> N> _——7~
A(G) 2 AE) 2 T >

and (17) follows. Therefore, we may assume
-1
Gy < e (n— |M'])*.
e(G') < = (n— M)

Then, by (18) and (20),

”
Setting x = |M'| /n, this shows that

r —

1 9 r—1 ¢ r—1
1— — o) - — 26
2r (1-2) +x( r 2) ( 2r )>0’

22 —ex 446 > 0.

|Mq>(5_vé_1%)n:(1——i>en

which implies that

Hence, either

2 2 22
or
vez — 166 1 1
’M/’<(€+ - )=<—+—)€n,
2 2 22

contradicting (19). Therefore, |M,| < en, as claimed

>r—1)(n—|M))>@r-1)1-¢)n

—1 —1 —1
r% m—mmf>e@q>—mm(r —é)n+(r —Qan?

(b) Let Gy be the subgraph of G induced by V\M.. By the definition of M., if u €

VA\M,, then

dGW)>(T;1—%)m
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and so .

r— €

- — c >
)0 - o

P22 (- ().

de, (u) > ( .

Hence, by Turén’s theorem, GGy contains an r-clique and, therefore,

r

—1
AT(G’)>7“(T —%)nz(l—e)(r—l)n,
T
proving (17) and completing the proof of our theorem. O

Acknowledgement. The authors are grateful to Prof. D. Todorov for pointing out
a fallacy in an earlier version of the proof of Theorem 2 and to the referee for his valuable
suggestions.

Added on July 1st, 2005. The results of this paper were first presented in a seminar
at Memphis University in February, 2002 and also form part of the second author’s Ph.D.
thesis [10], Ch. 7. The results in Theorems 1 and 2 were reproduced by Khadzhiivanov
and Nenov in [8], [9].

References

[1] B. Bollobds, Modern Graph Theory, Graduate Texts in Mathematics 184, Springer
Verlag, 1998, xiv-394pp.

[2] B. Bollobés and P. Erdés, Unsolved problems, Proc. Fifth Brit. Comb. Conf. (Univ.
Aberdeen, Aberdeen, 1975), Winnipeg, Util. Math. Publ., 678-680.

[3] C. Edwards, The largest vertex degree sum for a triangle in a graph, Bull. Lond.
Math. Soc., 9 (1977), 203—-208.

[4] C. Edwards, Complete subgraphs with largest sum of vertex degrees, Combinatorics
(Proc. Fifth Hungarian Collog., Keszthely, 1976), Vol. I, Collog. Math. Soc. Jdanos
Bolyai, 18, North-Holland, Amsterdam-New York, 1978, pp. 293-306.

[5] P. Erdés and R. Laskar, On maximum chordal subgraph, Proceedings of the four-
teenth Southeastern conference on combinatorics, graph theory and computing (Boca
Raton, Fla., 1983). Congr. Numer. 39 (1983), 367-373.

[6] G. Fan, Degree sum for a triangle in a graph, J. Graph Theory 12 (1988), 249-263.

[7] R. Faudree, Complete subgraphs with large degree sums, J. Graph Theory 16 (1992),
327-334.

[8] N. Khadzhiivanov and N. Nenov, Sequences of maximal degree vertices in graphs,
Serdica Math. J. 30 (2004), 95-102.

[9] N. Khadzhiivanov and N. Nenov, Saturated (-sequences in graphs, C. R. Acad.
Bulgare Sci. 57 (2004), 49-54.

[10] V. Nikiforov, Stability results in extremal graph theory, PhD thesis, Inst. of Math.
and Inform., Bul. Acad. Sci., Sofia.

THE ELECTRONIC JOURNAL OF COMBINATORICS 12 (2005), #N21 10



