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Abstract

Given two positive integers m ≤ n, we consider the set of partitions λ =
(λ1, . . . , λ`, 0, . . . ), λ1 ≥ λ2 ≥ . . . , of n such that the sum of its parts over a fixed
increasing subsequence (aj) is m: λa1 + λa2 + · · · = m. We show that the number
of such partitions does not depend on n if m is either constant and small relatively
to n or depend on n but is close to its largest possible value: n − ma1 = k for
fixed k (in the latter case some additional requirements on the sequence (aj) are
needed). This number is equal to the number of so-called colored partitions of m
(respectively k). It is proved by constructing bijections between these objects.

1 Introduction

In a recent paper [2] Canfield and his collaborators considered a set of partitions λ =
(λ1, λ2, . . . ), λ1 ≥ λ2 ≥ . . . , of an integer n with a fixed sum of even parts (i.e. λ2 +
λ4 + · · · = m). They, in particular, proved that the number of such partitions depends
only on m for sufficiently large n (namely, for n ≥ 3m) and equals to the number of
colored partitions of m. These are partitions of m with each part having an additional
attribute, usually referred to as “color”, which can take two values in this particular case.
The number of such partitions f(m) is well known, and the generating function for these
numbers is ∑

m≥0

f(m)xm =
∏

k≥1

1

(1 − xk)2
,
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see, e.g. [1]. In other words, as mentioned in [2], these numbers count ordered pairs of
partitions (λ, µ) such that |λ|+|µ| = m. Their proof is based on construction of a bijection
between the set of partitions of n with the sum of even parts being equal to m and a pairs
of partitions (λ, µ) where |λ| + |µ| = m and µ has at most n − 2m parts.

We generalize this result in the following way. Let (aj)j≥0 be a strictly increasing
sequence of positive integers. Denote by P(aj)(n, m) the set of partitions λ of n such that∑

j≥0 λaj
= m. Then the following statement holds:

Theorem 1. Let (aj)j≥0 be a strictly increasing integer sequence with a0 = 2. Then there
exists a function N(m) such that for all n ≥ N(m) we have #P(aj )(n, m) = q(m) where
the generating function for q(m) is given by

∑

m≥0

q(m)xm =
∏

j≥1

1

(1 − xj)bj
, bj = aj − aj−1.

The number q(m) can be also described as a number of colored partitions of m with bj

possible colors for parts j. We call these partitions (bj)j≥1-colored partitions. The result
of [2] is a particular case of this theorem for the sequence aj = 2j + 2. We shall prove
this statement in Section 2.

Further investigation of sequences #P(aj )(n, m) for regular (aj) shows that they have
another stabilization property. An obvious observation that

#P(2j+2)(n, m) = #P(2j+1)(n, n − m)

suggests an idea that for some sequences (aj) the stabilization should take place from the
end of the sequence. (We use a notation (2j + 2) for a sequence which has a common
term 2j + 2; it is always supposed that j = 0, 1, 2, . . . unless explicitly specified.) Let
(dj)j≥0 be an integer sequence with the following properties: (i) d0 ≥ 1, (ii) d1 > 2d0

and dj − dj−1 ≥ d0 for j > 1, and (iii) dj − jd0 → +∞. Given (dj) and an integer n we
consider a sequence #P(dj )(n, m) and notice that the last nonzero term in it occurs for
m = [n/d0]. Indeed, if λ ∈ P(dj)(n, m) then

n =
∑

j≥1

λj ≥ d0

∑

j≥1

λjd0 ≥ d0

∑

j≥0

λdj
= md0,

because dj ≥ (j+1)d0 by properties (i) and (ii), and for m = [n/d0] there exist at least one
partition (n− (d0 − 1)m, m, . . . , m) ∈ P(dj )(n, m) with exactly d0 nonzero parts. However
it turns out that for d0 > 1 the stabilization takes place periodically in the following sense:
#P(dj )(n, [n/d0]−m) depends only on a residue of n (mod d0) for large n. In other words,
the sequence #P(dj )(nd0 + m, n) does not depend on n for large n.

To make a precise statement let us consider a mapping which sends the sequence
(dj)j≥0 satisfying properties (i)–(iii) to a sequence (bj)j≥1 by the following rule:

bj = sup{i : d′
i ≤ j} + 2 − inf{i ≥ 0 : d′

i > j − d0}, d′
i = di − (i + 1)d0. (1)

First note that the definition is correct because d′
i is a nondecreasing sequence growing

to ∞ by properties (ii) and (iii) and thus bj is finite. Next, note that bj > 0. Indeed,
sup{i : d′

i ≤ j} + 1 ≥ inf{i : d′
i ≥ j} ≥ inf{i : d′

i > j − d0}.
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Theorem 2. Let (dj)j≥0 be an integer sequence satisfying properties (i)–(iii). Then there
exists a function N(m) such that for all n ≥ N(m) we have #P(dj )(nd0 + m, n) = q(m),
and the generating function for sequence q(m) is given by

∑

m≥0

q(m)xm =
∏

j≥1

1

(1 − xj)bj

where bj is defined by (1).

Actually, Theorem 1 is a corollary of Theorem 2. To see this, consider a sequence (aj)
with a0 = 2 and take a sequence dj going through all numbers in N\{aj}j≥0 in increasing
order. Clearly, d0 = 1 and properties (i)–(iii) are satisfied. The sequence d′

j starts with
0 followed by a1 − a0 − 1 terms 1 followed by a2 − a1 − 1 terms 2 etc. It is easy to see
that dj = i when ai−1 − i ≤ j ≤ ai − i − 2. Calculation of bj by formula (1) shows that
bj = aj − aj−1 and thus Theorem 1 holds.

Note that the mapping from a sequence
(
q(m)

)
to the sequence

(
bj

)
is known as the

inverse Euler transform, see [3, p. 20–21]. Some of the sequences q(m) corresponding to
a regular sequences (bj) appear also at the online Encyclopedia of integer sequences, [4].

It is my pleasure to thank the anonymous referee for pointing out some misprints in
the original text.

2 Proof of Theorem 1

It was noted after Theorem 2 that it implies Theorem 1. However we prefer to give a
direct proof of Theorem 1. While proofs of both theorems are bijective and the bijection
is essentially the same, its description is significantly simplified for a special case d0 = 1.

The direct proof of Theorem 1 is very easy and consists of an explicit construction
of a bijection between the P(aj )j≥0

(n, m) with a0 = 2 and (bj)j≥1-colored partitions of m
with bj = aj − aj−1. Let λ ∈ P(aj )j≥0

(n, m) be such partition. Note that we already have
a partition of m, namely µ = λ(aj) = (λa0 , λa1 , λa2 , . . . ). So it seems that all we have to
do is just to specify the color of each part.

But it is not exactly what we are going to do. In fact we are going to color a partition
µ′ conjugate to µ, i.e. the partition 1µ1−µ22µ2−µ3 . . .mµm−µm+1 . Here 1k12k2 . . .mkm , ki ≥ 0,
denotes the partition of m having ki parts equal to i; obviously,

∑
i iki = m. Now we are

ready to color the parts of µ′. Take a part of size j, there are exactly µj−µj+1 = λaj−1
−λaj

such parts which should be colored in bj = aj −aj−1 colors. Let us number these colors by
1, . . . , bj. For each c ∈ {1, . . . , bj} take exactly λaj−1+c−1 − λaj−1+c parts of color c. This
number is non-negative because λ is a partition. At the same time there are

(λaj−1
− λaj−1+1) + (λaj−1+1 − λaj−1+2) + · · ·+ (λaj−1+bj−1 − λaj−1+bj

) = λaj−1
− λaj

parts of size j because aj−1 + bj = aj by definition. Thus it is a correctly defined mapping
from P(aj )j≥0

(n, m) to (bj)-colored partitions.
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It is clear that the constructed mapping is injective. To show that it is a surjection let
us try to find a preimage of a given (bj)-colored partition. It turns out that it is always
possible for large n. Let a sequence (bj) be fixed and let a0 = 2 and aj = 2 + b1 + · · ·+ bj

for j ≥ 1. Take a (bj)-colored partition µ of m; it can be parameterized by numbers kj,c

(j = 1, . . . , m and c = 1, . . . , bj) which denote the number of parts of size j and of color

c in the partition µ. We denote kj =
∑bj

c=1 kj,c; since µ ` m we have
∑m

j=1 jkj = m. The
preimage of the partition µ under the mapping described above can be written as follows:

λi =
∑

j≥j0

kj +

bj0∑

c=i−aj0−1+1

kj0−1,c for i ∈ [aj0−1, aj0), j0 ≥ 1. (2)

(To say it in words, if aj0−1 ≤ i < aj0 then λi is the number of parts of µ of any
color and size not less than j0, plus the number of parts of size j0 − 1 having colors
i− aj0−1 + 1, . . . , bj0.) This way we define all parts of λ but λ1. The latter can be defined
from λ1 = n − (λ2 + λ3 + . . . ) but we need to verify that λ1 ≥ λ2. It is clear from (2)
that for a given partition µ the maximal value of λ2 + λ3 + . . . is achieved if kj,c = 0 for
c < bj and kj,bj

= kj and is equal to k1b1 + k2(b1 + b2) + . . . . Since λ2 = k1 + k2 + . . . we
see that if

n ≥ N(m) = max
µ`m

k1(µ)(1 + b1) + k2(µ)(1 + b1 + b2) + . . .

then λ1 ≥ λ2 for all µ ` m and thus our mapping is a bijection.

Remark. It seems to be difficult to find an explicit formula for N(m) but its value for a
given sequence (bj) can be easily found using linear programming algorithms. For some
degenerate sequences (bj) it can be found explicitly. For instance, if aj = 2 + dj is an
arithmetic progression, it can be easily seen that N(m) = (d + 1)m.

3 Proof of Theorem 2

We again construct a bijection between partitions in P(dj)j≥0
(nk + m, n) and (bj)-colored

partitions with bj defined by (1). In order to do it we introduce the mapping s : N → Z+

by
s(i) = i − jd0, for dj−1 ≤ i < dj , j ≥ 0; (3)

here and below we suppose d−1 = 0. Clearly, the mapping s depends on a sequence (dj).
First we prove the following simple result.

Lemma 1. The only number which is mapped to 0 by s is d0. For j ≥ 1, exactly bj

natural numbers are mapped to j by s, namely

{i : s(i) = j} = {i1, i2, . . . , ibj
}

where dj0−2+c ≤ ic < dj0−1+c and j0 = inf{i > 0 : d′
i > j − d0}.

the electronic journal of combinatorics 12 (2005), #N7 4



Proof. Let us take a look on the sequence (s(i))i≥1. It starts with 1, increases by 1 to
s(d0 − 1) = d0 − 1, then jumps backwards to s(d0) = 0 and increases by 1 to s(d1 − 1) =
d1−1−d0, then jumps backwards to s(d1) = d1−2d0, etc. It is quite clear that property (ii)
of (dj) implies that s(dj) ≥ s(dj−1) and s(dj − 1) ≥ s(dj−1− 1) for j ≥ 2. Thus, while the
sequence (s(i)) is not monotone, it has the following properties: if i ≥ dj for some j ≥ 0
then s(i) ≥ s(dj) and if i ≤ dj − 1 then s(i) ≤ s(dj − 1).

Since by property (ii) s(d1) > s(d0) = 0, s(i) = 0 implies i = d0 and the first assertion
holds. Next, the sequence s(i) either weakly decreases or increases by 1, and goes to ∞;
consequently, the set s−1(k) = {i : s(i) = k} is not empty for all k ≥ 1. Take some k ≥ 1
and consider i1 = min s−1(k). Let j1 be such that dj1−1 ≤ i1 < dj1; if d0 = 1 then j1 ≥ 1
and if d0 > 1 then j1 ≥ 0. Clearly, s(i) < k for all i < i1, and k ≤ s(dj1 − 1). Thus
j1 = inf{j : s(dj − 1) ≥ k} = inf{j : d′

j > k − d0}.
Now let imax = max s−1(k) (it exists since s(i) grows to infinity) and let jmax be such

that djmax−1 ≤ imax < djmax. Then

s(djmax−1) = djmax−1 − jmaxd0 ≤ k < djmax − (jmax + 1)d0 = s(djmax)

and jmax − 1 = max{j : d′
j ≤ k}. For each j satisfying j1 ≤ j ≤ jmax there exists exactly

one i ∈ [dj−1, dj) such that s(i) = k. Indeed, s(dj−1) ≤ k ≤ s(dj−1) and s(i) is increasing
by 1 on this interval.

Now we are ready to construct a required bijection. Let us start with a partition
λ ∈ P(dj )(nd0 + m, n). Consider a conjugate partition λ′ which is 1λ1−λ22λ2−λ3 . . . (nd0 +
m)λnd0+m−λnd0+m+1. We are going to decrease some parts of λ′ in order to get a partition µ
of m. However several parts of µ of the same size can originate from parts of λ′ of different
sizes, and we are coloring them in different colors to keep track of their origin and make
the mapping reversible.

To be more precise, let us transform each part of size i in λ′ into a part of size s(i).
First, we claim that the sum of transformed parts will be exactly m. Indeed, for j ≥ 0
all parts of size i satisfying dj ≤ i < dj+1 are transformed in i − (j + 1)d0, and there are
λdj

− λdj+1
such parts. Thus the total number subtracted from the sum nd0 + m is

d0

∑

j≥0

(j + 1)(λdj
− λdj+1

) = d0

∑

j≥0

λdj
= nd0,

and sum of transformed parts is m.
Second, according to Lemma 1 there are exactly bj different part sizes which are

transformed into j. If we color each part in one of bj colors according to the size of
original part we can restore the original partition λ′ from its image, the colored partition
of m.

So we constructed a mapping from P(dj)j≥0
(nd0 + m, n) to (bj)-colored partitions. It

is injective, since we can easily invert the transformation described above knowing the
correspondence between colors of part j and parts of λ′ in s−1(j). However it is not
surjective for m relatively large compared to n. The reason of this is the existance of
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parts of size d0 in λ′ which were transformed to 0 and then silently neglected. Their
number can be determined from the condition

∑

j≥0

λdj
= n (4)

but it might happen for large m that their quantity should be negative, that certainly
cannot take place.

Let µ be a (bj)-colored partition; we parameterize it by numbers kj,c, j = 1, . . . , m and
c = 1, . . . , bj, each kj,c denoting the number of parts of size j and color c in µ. Let s−1

c (j)
denote ic from Lemma 1, i.e. the number such that s(ic) = j and dj1+c−2 ≤ ic < dj1+c−1

where j1 = inf{i > 0 : d′
i > j − d0}. Then parts of the original partition λ can be

reconstructed from µ as

λi =
∑

(j,c):s−1
c (j)≥i

kj,c + k01(i ≤ d0),

where k0 is the (unknown yet) number of parts d0 in λ′. Thus

n =
∑

i≥0

λdi
= k0 +

∑

(j,c)

(jmax(j) + c − 1)kj,c (5)

since kj,c occurs as a summand in λdi
only for i < jmax(j) + c − 1. On the other hand,∑

(j,c) jkj,c = m, and so the sum in the RHP of (5) is bounded from above (as a function

of kj,c’s) by some function of m, say N(m). If n ≥ N(m) then k0 is not negative for any
choice of a colored partition µ, and thus our mapping is bijection.

An interesting fact is that if dj = h+2jh then the sequence (bj) derived from it by (1)
does not depend on h (namely, all bj = 2). It might be instructive to describe a direct
bijection between P(h+2jh)j≥0

(hn + m, n) and P(p+2jp)j≥0
(pn + m, n) for h 6= p.
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