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Abstract

We prove

Pf
(

xi − xj

(xi + xj)2

)
1≤i,j≤2n

=
∏

1≤i<j≤2n

xi − xj

xi + xj
· Hf

(
1

xi + xj

)
1≤i,j≤2n

(and its variants) by using complex analysis. This identity can be regarded as
a Pfaffian–Hafnian analogue of Borchardt’s identity and as a generalization
of Schur’s identity.

1 Introduction

Determinant and Pfaffian identities play a key role in combinatorics and the repre-
sentation theory (see, for example, [4], [5], [6], [8], [10], [11]). Among such determi-
nant identities, the central ones are Cauchy’s determinant identities ([2])

det

(
1

xi + yj

)
1≤i,j≤n

=

∏
1≤i<j≤n(xj − xi)(yj − yi)∏n

i,j=1(xi + yj)
, (1)

det

(
1

1 − xiyj

)
1≤i,j≤n

=

∏
1≤i<j≤n(xj − xi)(yj − yi)∏n

i,j=1(1 − xiyj)
. (2)
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C. W. Borchardt [1] gave a generalization of Cauchy’s identities:

det

(
1

(xi + yj)2

)
1≤i,j≤n

=

∏
1≤i<j≤n(xj − xi)(yj − yi)∏n

i,j=1(xi + yj)
· perm

(
1

xi + yj

)
1≤i,j≤n

,

(3)

det

(
1

(1 − xiyj)2

)
1≤i,j≤n

=

∏
1≤i<j≤n(xj − xi)(yj − yi)∏n

i,j=1(1 − xiyj)
· perm

(
1

1 − xiyj

)
1≤i,j≤n

.

(4)

Here permA is the permanent of a square matrix A defined by

perm A =
∑
σ∈Sn

a1σ(1)a2σ(2) · · ·anσ(n).

This identity (3) is used when we evaluate the determinants appearing in the 0-
enumeration of alternating sign matrices (see [11]).

I. Schur [12] gave a Pfaffian analogue of Cauchy’s identity (1) in his study of
projective representations of the symmetric groups. Schur’s Pfaffian identity and its
variant ([9], [14]) are

Pf

(
xj − xi

xj + xi

)
1≤i,j≤2n

=
∏

1≤i<j≤2n

xj − xi

xj + xi
, (5)

Pf

(
xj − xi

1 − xixj

)
1≤i,j≤2n

=
∏

1≤i<j≤2n

xj − xi

1 − xixj
. (6)

In this note, we give identities which can be regarded as Pfaffian analogues of
Borchardt’s identities (3), (4) and as generalizations of Schur’s identities (5), (6).

Theorem 1.1. Let n be a positive integer. Then we have

Pf

(
xi − xj

(xi + xj)2

)
1≤i,j≤2n

=
∏

1≤i<j≤2n

xi − xj

xi + xj
· Hf

(
1

xi + xj

)
1≤i,j≤2n

, (7)

Pf

(
xi − xj

(1 − xixj)2

)
1≤i,j≤2n

=
∏

1≤i<j≤2n

xi − xj

1 − xixj
· Hf

(
1

1 − xixj

)
1≤i,j≤2n

. (8)

Here Hf A denotes the Hafnian of a symmetric matrix A defined by

Hf A =
∑

σ∈F2n

aσ(1)σ(2)aσ(3)σ(4) · · ·aσ(2n−1)σ(2n),

where F2n is the set of all permutations σ satisfying σ(1) < σ(3) < · · · < σ(2n − 1)
and σ(2i − 1) < σ(2i) for 1 ≤ i ≤ n.

2 Proof

In this section, we prove the identity (7) in Theorem 1.1 by using complex analysis.
The other identity (8) is shown by the same method, and also derived from more
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general identity (18) in Theorem 3.2, which follows from (7). So we omit the proof
of (8) here.

Hereafter we put

A =

(
xi − xj

(xi + xj)2

)
1≤i,j≤2n

, B =

(
1

xi + xj

)
1≤i,j≤2n

.

For an 2n × 2n symmetric (or skew-symmetric) matrix M = (mij) and distinct
indices i1, · · · , ir, we denote by M i1,··· ,ir the (2n− r)× (2n− r) matrix obtained by
removing the rows and columns indexed by i1, · · · , ir.

First we show two lemmas by using complex analysis. These lemmas hold in the
rational function field Q(x1, . . . , x2n, z) and they may be shown in a purely algebraic
way, but we found that complex analysis is very efficient for a compact proof.

Lemma 2.1.

∑
1≤k,l≤2n

k 6=l

1

(xk − z)(xl + z)
Hf(Bk,l) = Hf(B) ·

2n∑
k=1

2xk

x2
k − z2

. (9)

Proof. Let us denote by F (z) (resp. G(z)) the left (resp. right) hand side of
(9), and regard F (z) and G(z) as rational functions in the complex variable z,
where x1, · · · , x2n are distinct complex numbers. Then F (z) and G(z) have poles at
z = ±x1, · · · ,±x2n of order 1. The residues of F (z) at z = ±xm are given by

Resz=xm F (z) = −
∑

1≤l≤2n
l 6=m

1

xl + xm
Hf(Bm,l),

Resz=−xm F (z) =
∑

1≤k≤2n
k 6=m

1

xk + xm

Hf(Bk,m).

By considering the expansion of Hf(B) along the mth row/column, we have

Resz=xm F (z) = −Hf(B), Resz=−xm F (z) = Hf(B).

On the other hand, the residues of G(z) at z = ±xm are given by

Resz=xm G(z) = −Hf(B) · 2xm

2xm

= −Hf(B),

Resz=−xm G(z) = Hf(B) · 2xm

2xm

= Hf(B).

Since limz→∞ F (z) = limz→∞ G(z) = 0, we conclude that F (z) = G(z).

Lemma 2.2. If n is a positive integer, then

2n−1∑
k=1

xk − z

(xk + z)2

∏
1≤i≤2n−1

i6=k

xk + xi

xk − xi
·Hf(Bk,2n) =

2n−1∏
i=1

xi − z

xi + z

2n−1∑
k=1

1

xk + z
Hf(Bk,2n). (10)
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Proof. Let P (z) (resp. Q(z)) be the left (resp. right) hand side of (10), and regard
P (z) and Q(z) as rational functions in z, where x1, · · · , x2n−1 are distinct complex
numbers. Then P (z) and Q(z) have poles at z = −x1, · · · ,−x2n−1 of order 2. Thus,
for a fixed m such that 1 ≤ m ≤ 2n − 1, we can write

P (z) =
p2

(z + xm)2
+

p1

z + xm
+ O(z + xm),

Q(z) =
q2

(z + xm)2
+

q1

z + xm

+ O(z + xm),

in a neighborhood of z = −xm. Now we compute the coefficients p2, p1, q2 and q1,
and prove p2 = q2, p1 = q1.

By using the relation

xm − z

(xm + z)2
=

2xm

(xm + z)2
− 1

xm + z
,

we see that

p2 = 2xm

∏
1≤i≤2n−1

i6=m

xm + xi

xm − xi

· Hf(Bm,2n), (11)

p1 = −
∏

1≤i≤2n−1
i6=m

xm + xi

xm − xi

· Hf(Bm,2n). (12)

Next we deal with

Q(z) =
xm − z

xm + z
×

∏
1≤i≤2n−1

i6=m

xi − z

xi + z
×

2n−1∑
k=1

1

xk + z
Hf(Bk,2n).

The first factor can be written in the form

xm − z

xm + z
=

2xm

xm + z
− 1.

By using the Taylor expansion log(1 − t) = −t + O(t2), we have

log
xi − z

xm + xi

= − z + xm

xi + xm

+ O
(
(z + xm)2

)
,

log
xi + z

xm − xi
=

z + xm

xi − xm
+ O

(
(z + xm)2

)
.

Hence we see that

log

(
xi − z

xi + z

/ xi + xm

xi − xm

)
= − 2xi

x2
i − x2

m

(z + xm) + O
(
(z + xm)2

)
.

Therefore the second factor of Q(z) has the form∏
1≤i≤2n−1

i6=m

xi − z

xi + z

=
∏

1≤i≤2n−1
i6=m

xi + xm

xi − xm

·
{

1 −
∑

1≤k≤2n−1
k 6=m

2xk

x2
k − x2

m

· (z + xm) + O
(
(z + xm)2

)}
.
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Since we have
1

xk + z
=

1

xk − xm

+ O (z + xm) ,

the last factor of Q(z) has the following expansion:

2n−1∑
k=1

1

xk + z
Hf(Bk,2n) =

1

xm + z
Hf(Bm,2n)+

∑
1≤k≤2n−1

k 6=m

1

xk − xm

Hf(Bk,2n)+O(z+xm).

Combining these expansions, we have

q2 = 2xm

∏
1≤i≤2n−1

i6=m

xi + xm

xi − xm
· Hf(Bm,2n), (13)

and

q1 =
∏

1≤i≤2n−1
i6=m

xi + xm

xi − xm

×
{

2xm

∑
1≤k≤2n−1

k 6=m

Hf(Bk,2n)

xk − xm
− 2xm Hf(Bm,2n)

∑
1≤k≤2n−1

k 6=m

2xk

x2
k − x2

m

− Hf(Bm,2n)

}
.

(14)

It follows from (11) and (13) that p2 = q2. From (12) and (14), in order to prove
the equality p1 = q1, it is enough to show that∑

1≤k≤2n−1
k 6=m

1

xk − xm
Hf(Bk,2n) = Hf(Bm,2n)

∑
1≤k≤2n−1

k 6=m

2xk

x2
k − x2

m

.

By permuting the variables x1, · · · , x2n−1, we may assume that m = 2n − 1. Then,
by expanding the Hafnian on the left hand side along the last row/column, it is
enough to show that

2n−2∑
k=1

1

xk − x2n−1

∑
1≤l≤2n−2

l 6=k

1

xl + x2n−1
Hf(Bk,l,2n−1,2n) = Hf(B2n−1,2n)

2n−2∑
k=1

2xk

x2
k − x2

2n−1

.

This follows from Lemma 2.1 (with 2n replaced by 2n− 2 and z replaced by x2n−1),
and we complete the proof of Lemma 2.2.

Now we are in the position to prove the identity (7) in Theorem 1.1.

Proof of (7). We proceed by induction on n.
Expanding the Pfaffian along the last row/column and using the induction hy-

pothesis, we see

Pf(A) =
2n−1∑
k=1

(−1)k−1 xk − x2n

(xk + x2n)2
Pf(Ak,2n)

=
2n−1∑
k=1

(−1)k−1 xk − x2n

(xk + x2n)2

∏
1≤i<j≤2n−1

i,j 6=k

xi − xj

xi + xj

Hf(Bk,2n).
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By using the relation∏
1≤i<j≤2n−1

i,j 6=k

xi − xj

xi + xj

= (−1)k−1
∏

1≤i<j≤2n−1

xi − xj

xi + xj

·
∏

1≤i≤2n−1
i6=k

xk + xi

xk − xi

,

we have

Pf(A) =
∏

1≤i<j≤2n−1

xi − xj

xi + xj

2n−1∑
k=1

xk − x2n

(xk + x2n)2

∏
1≤i≤2n−1

i6=k

xk + xi

xk − xi
· Hf(Bk,2n).

On the other hand, by expanding the Hafnian along the last row/column, we have

∏
1≤i<j≤2n

xi − xj

xi + xj

· Hf(B) =
∏

1≤i<j≤2n

xi − xj

xi + xj

2n−1∑
k=1

1

xk + x2n

· Hf(Bk,2n).

So it is enough to show the following identity:
2n−1∑
k=1

xk − x2n

(xk + x2n)2

∏
1≤i≤2n−1

i6=k

xk + xi

xk − xi
·Hf(Bk,2n) =

2n−1∏
i=1

xi − x2n

xi + x2n

2n−1∑
k=1

1

xk + x2n
·Hf(Bk,2n).

This identity follows from Lemma 2.2 and the proof completes.

3 Generalization

The Cauchy’s identities (1) and (2), and the Borchardt’s identities (3) and (4) are
respectively unified in the following form. (D. Knuth [7] considered this type of
generalization.)

Theorem 3.1. Let f(x, y) = axy + bx + cy + d be a nonzero polynomial. Then we
have

det

(
1

f(xi, yj)

)
1≤i,j≤n

= (−1)n(n−1)(ad − bc)n(n−1)/2

∏
1≤i<j≤n(xj − xi)(yj − yi)∏

1≤i,j≤n f(xi, yj)
,

(15)

det

(
1

f(xi, yj)2

)
1≤i,j≤n

= (−1)n(n−1)(ad − bc)n(n−1)/2

∏
1≤i<j≤n(xj − xi)(yj − yi)∏

1≤i,j≤n f(xi, yj)

× perm

(
1

f(xi, yj)

)
1≤i,j≤n

. (16)

Similarly we can generalize the Schur’s identities (5) and (6), and our identities
(7) and (8).

Theorem 3.2. Let g(x, y) = axy + b(x + y) + c be a nonzero polynomial. Then we
have

Pf

(
xj − xi

g(xi, xj)

)
1≤i,j≤2n

= (b2 − ac)n(n−1)
∏

1≤i<j≤2n

xj − xi

g(xi, xj)
, (17)

Pf

(
xj − xi

g(xi, xj)2

)
1≤i,j≤2n

= (b2 − ac)n(n−1)
∏

1≤i<j≤2n

xj − xi

g(xi, xj)
· Hf

(
1

g(xi, xj)

)
1≤i,j≤2n

.

(18)
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This generalization (17) is given in [7].

Proof. We derive (17) and (18) from (5) and (7) respectively.
First we consider the case where b2 − ac 6= 0. Suppose that a 6= 0. Then, by

putting

A =
1

2
, B =

1

2a
(b +

√
b2 − ac), C = a, D = b −

√
b2 − ac,

and substituting

xi → Axi + B

Cxi + D
(1 ≤ i ≤ 2n)

in (5) and (7), we obtain (17) and (18). Similarly we can show the case where c 6= 0.
If b2 − ac = 0 and a 6= 0, then we have

g(xi, xj) = a−1(axi + b)(axj + b).

Hence we can evaluate the left hand sides of (17) and (18) by using

Pf (xj − xi)1≤i,j≤2n =

{
x2 − x1 if n = 1,

0 if n ≥ 2,

and obtain the equalities in (17) and (18). Similarly we can show the case where
b2 − ac = 0 and c 6= 0.

From (15) and (16), we have

det

(
1

f(xi, yj)2

)
1≤i,j≤n

= det

(
1

f(xi, yj)

)
1≤i,j≤n

· perm

(
1

f(xi, yj)

)
1≤i,j≤n

.

Since the matrix (f(xi, yj))1≤i,j≤n has rank at most 2, this identity is the special
case of the following theorem.

Theorem 3.3. (Carlitz and Levine [3]) Let A = (aij) be a matrix of rank at most
2. If aij 6= 0 for all i and j, we have

det

(
1

a2
ij

)
1≤i,j≤n

= det

(
1

aij

)
1≤i,j≤n

· perm

(
1

aij

)
1≤i,j≤n

.

From (17) and (18), we have

Pf

(
xj − xi

g(xi, xj)2

)
1≤i,j≤2n

= Pf

(
xj − xi

g(xi, xj)

)
1≤i,j≤2n

· Hf

(
1

g(xi, xj)

)
1≤i,j≤2n

.

It is a natural problem to find a Pfaffian–Hafnian analogue of Theorem 3.3. Also it
is interesting to find more examples of a skew-symmetric matrix X and a symmetric
matrix Y satisfying

Pf (xijyij)1≤i,j≤2n = Pf (xij)1≤i,j≤2n · Hf (yij)1≤i,j≤2n .

Recently there appeared a bijective proof of Borchardt’s identity (see [13]). It will
be an interesting problem to give a bijective proof of (7) and (8).
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