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Abstract

Applying enumeration of sparse set partitions, we show that the number of set
systems H ⊂ exp({1, 2, . . . , n}) such that ∅ 6∈ H,

∑
E∈H |E| = n and

⋃
E∈H E =

{1, 2, . . . ,m}, m ≤ n, equals (1/ log(2)+ o(1))nbn where bn is the n-th Bell number.
The same asymptotics holds if H may be a multiset. If the vertex degrees in H
are restricted to be at most k, the asymptotics is (1/αk + o(1))nbn where αk is the
unique root of

∑k
i=1 xi/i! − 1 in (0, 1].

1 Introduction

If one wants to count, for a given n ∈ N = {1, 2, . . .}, finite sets H of nonempty finite
subsets of N for which

∑
E∈H |E| = n,

⋃
H = {1, 2, . . . , m} for an m ≤ n, and the sets in

H are mutually disjoint, the answer is well known. Such H ’s are partitions of {1, 2, . . . , n}
(necessarily m = n) and are counted by the n-th Bell number bn. But how many H ’s are
there if the sets in H may intersect? In other words, what is the number of vertex-labeled
simple set systems with n incidences between vertices and edges. In contrast with the
case of partitions and Bell numbers, little attention seems to have been paid so far to this
natural and basic enumerative problem for general set systems.

We investigate these numbers in [8] and denote them h′
n. By h′′

n we denote the num-
bers of vertex-labeled set systems with n incidences in which sets may coincide, that is,
H is a multiset. We keep this notation here. (The symbol without primes, hn, denotes
in [8] the number of simple vertex-labeled set systems with n vertices.) For example,
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H1 = {{1}, {2}, {3}}, H2 = {{1, 2}, {3}}, H3 = {{1, 3}, {2}}, H4 = {{2, 3}, {1}}, H5 =
{{1, 2}, {1}}, H6 = {{1, 2}, {2}}, and H7 = {{1, 2, 3}} show that h′

3 = 7. The three ad-
ditional multisets H8 = {{1}, {1}, {2}}, H9 = {{1}, {2}, {2}}, and H10 = {{1}, {1}, {1}}
show that h′′

3 = 10. See [8] for more values of h′
n and h′′

n. In [8] it is shown, among other
results, that bn ≤ h′

n ≤ h′′
n ≤ 2n−1bn. In this note we shall prove the following stronger

asymptotic bound.

Theorem. If n → ∞, h′
n and h′′

n have the asymptotics

((log 2)−1 + o(1))n · bn = (1.44269 . . . + o(1))n · bn

where bn are Bell numbers (the asymptotics of bn is reviewed in Proposition 2.6).

We prove the theorem in Section 2. In Section 3 we give concluding comments, point
out some analogies and pose some open questions. Now we recall and fix notation. For
n ∈ N, {1, 2, . . . , n} is denoted [n]. For A, B ⊂ N, A < B means that x < y for every
x ∈ A and y ∈ B. We use notation f(n) � g(n) as synonymous to the f(n) = O(g(n))
notation. The coefficient of xn in a power series F (x) is denoted [xn]F . A set system
H is here a finite multisubset of exp(N) whose edges E ∈ H are nonempty and finite.
The vertex set is V (H) =

⋃
E∈H E. The degree deg(x) = degH(x) of a vertex x ∈ V (H)

in H is the number of edges containing x. If there are no multiple edges, we say that
H is simple. H is a partition if its edges are mutually disjoint; in the case of partitions
they are usually called blocks. The number of partitions H with V (H) = [n] is the Bell
number bn. The weight of a set system H is w(H) =

∑
v∈V (H) deg(v) =

∑
E∈H |E|. H is

normalized if V (H) = [m] for some m. In the proof of Proposition 2.3 we work with more
general set systems H with vertex set contained in the dense linear order of fractions Q.
We normalize such set system by replacing it by the set system H ′ = {f(E) : E ∈ H},
V (H ′) = [m], where f : V (H) → [m] is the unique increasing bijection.

2 The proof

To estimate h′
n and h′′

n in terms of bn, we transform a set system H into a set partition with
the same weight by splitting each vertex v ∈ V (H) in degH(v) new vertices which are 1-1
distributed among the edges containing v. The following definitions and Propositions 2.1
and 2.2 make this idea precise.

We call two set partitions P and Q of [n] orthogonal if |A∩B| ≤ 1 for every two blocks
A ∈ P and B ∈ Q. Q is an interval partition of [n] if every block of Q is a subinterval
of [n]. For n ∈ N we define W (n) to be the set of all pairs (Q, P ) such that Q and P
are orthogonal set partitions of [n] and Q is moreover an interval partition. We define
a binary relation ∼ on W (n) by setting (Q1, P1) ∼ (Q2, P2) iff Q1 = Q2 and there is a
bijection f : P1 → P2 such that for every A ∈ P1 the blocks A and f(A) intersect the
same intervals of the partition Q1 = Q2. It is an equivalence relation.
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Proposition 2.1 For every n ∈ N, there is a bijection (Q, P ) 7→ H(Q, P ) between the
set of equivalence classes W (n)/ ∼ and the set L(n) of normalized set systems H with
weight n. In particular, h′′

n = |L(n)| = |W (n)/∼ |.

Proof. We transform every (Q, P ) ∈ W (n), where Q consists of the intervals I1 < I2 <
. . . < Im, into the set system H = H(Q, P ) = (EA : A ∈ P ) where EA = {i ∈ [m] :
A ∩ Ii 6= ∅}. We have w(H) = n and V (H) = [m], so H ∈ L(n). It is easy to see that
equivalent pairs produce the same H and nonequivalent pairs produce distinct elements
of L(n).

Let H ∈ L(n) with V (H) = [a]. We split [n] in a intervals I1 < I2 < . . . < Ia so that
|Ii| = degH(i). For every i ∈ [a] we fix arbitrary bijection fi : {E ∈ H : i ∈ E} → Ii. We
define the partitions Q = (I1, I2, . . . , Ia) and P = (AE : E ∈ H) where AE = {fi(E) :
i ∈ E}. Clearly, (Q, P ) ∈ W (n) and different choices of bijections fi lead to equivalent
pairs. Also, H(Q, P ) = H . Thus (Q, P ) 7→ H(Q, P ) is a bijection between W (n)/∼ and
L(n). 2

The next proposition summarizes useful properties of the equivalence ∼ and the bi-
jection (Q, P ) 7→ H(Q, P ). They follow in a straightforward way from the construction
and we omit the proof.

Proposition 2.2 Let (Q, P ) ∈ W (n), Q = (I1 < I2 < . . . < Im), and H = H(Q, P ) (so
V (H) = [m]). Then degH(i) = |Ii| for every i ∈ [m]. The equivalence class containing
(Q, P ) has at most |I1|! · |I2|! · . . . · |Im|! pairs. It has exactly so many pairs if and only if
H is simple.

Proposition 2.3 For every n ∈ N, h′
n ≤ h′′

n ≤ 2h′
n.

Proof. The first inequality is trivial. To prove the second inequality, we construct an
injection from the set N(n) of normalized non-simple set systems H with weight n in the
set M(n) of normalized simple set system H with weight n. Then h′′

n = |M(n)|+ |N(n)| ≤
2|M(n)| = 2h′

n. We say that a vertex v ∈ V (H) is regular if deg(v) ≥ 2 or if v ∈ E for
some E ∈ H with |E| ≥ 2, else we call v singular. Thus v is singular iff {v} ∈ H and
deg(v) = 1.

Let H ∈ N(n). We distinguish two cases. The first case is when every multiple edge
of H is a singleton. Then let k ≥ 2 be the maximum multiplicity of an edge in H and
v = u − 1 where u ∈ V (H) is the smallest regular vertex in H ; we may have v = 0 and
then v is not a vertex of H . We have v < max V (H) and insert between v and u new
vertices wi, i = 1, 2, . . . , k − 1 and v < w1 < w2 < . . . < wk−1 < u. Then we replace
every singleton multiedge {x} with multiplicity m, 2 ≤ m ≤ k, (we have x ≥ u) with the
new single edge {w1, w2, . . . , wm−1, x}. Normalizing the resulting set system we get the
set system H ′. Clearly, H ′ ∈ M(n).

The second case is when at least one multiple edge in H is not a singleton. We define k,
v, u, and w1, . . . , wk−1 as in the first case and replace every multiedge E with multiplicity
m, 2 ≤ m ≤ k, by the new single edge {w1, w2, . . . , wm−1} ∪ E (we have min E ≥ u). We
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add between wk−1 and u a new vertex s and add a new singleton edge {s}. This singleton
edge is a marker discriminating between both cases and separating the new vertices wi

from those in E. Since m−1+|E| < m|E| if |E| ≥ 2 and m ≥ 2, the weight is still at most
n. We add in the beginning sufficiently many new singleton edges {−r}, . . . , {−1}, {0} so
that the resulting set system has weight exactly n. Normalizing it, we get the set system
H ′. Again, H ′ ∈ M(n). Note that in both cases the least regular vertex in H ′ is w1 and
that in both cases the longest interval in V (H ′) that starts in w1 and is a proper subset
of an edge ends in wk−1.

Given the image H ′ ∈ M(n), in order to reconstruct H we let w ∈ V (H ′) be the least
regular vertex (i.e., w is the first vertex lying in an edge E with |E| ≥ 2) and let I be the
longest interval in V (H ′) that starts in w and is a proper subset of an edge. If max I +1 is
a singular vertex of H ′, it must be s and we are in the second case. Else there is no s and
we are in the first case. Knowing this and knowing (in the second case) which vertices
are the dummy wi, we uniquely reconstruct the multiedges of H . Thus H 7→ H ′ is an
injection from N(n) to M(n). 2

For k, n ∈ N we define h′′
k,n to be the number of normalized set systems with weight n

and maximum vertex degree at most k. The number of such set systems which are simple
is h′

k,n. The next Proposition 2.4 can be proved by an injective argument similar to the
previous one and we leave the proof as an exercise for the interested reader. But note
that one cannot use the previous injection without change because it creates vertices with
high degree.

Proposition 2.4 For every k, n ∈ N we have h′
k,n ≤ h′′

k,n ≤ 2h′
k,n.

For the lower bound on h′′
n we need to count sparse partitions. A partition P of [n]

is m-sparse, where m ∈ N, if for every two elements x < y of the same block we have
y − x ≥ m. Thus every partition is 1-sparse and 2-sparse partitions are those with no
two consecutive numbers in the same block. If m′ < m, every m-sparse partition is
also m′-sparse. The number of m-sparse partitions of [n] is denoted bn,m. The following
enumeration of sparse partitions was obtained by Prodinger [11] and Yang [15], see also
Stanley [14, Problem 1.4.29]. Here we present a simple and nice proof due to Chen, Deng
and Du [5].

Proposition 2.5 Let m, n ∈ N. For m > n there is only one m-sparse partition of [n].
For m ≤ n the number bn,m of m-sparse partitions of [n] equals the Bell number bn−m+1.

Proof. For m > n the only partition in question is that with singleton blocks. Let P
be a partition of [n]. We represent it by the graph G = ([n], E) where for x < y we set
{x, y} ∈ E iff x, y ∈ A for some block A of P and there is no z ∈ A with x < z < y. The
components of G are increasing paths corresponding to the blocks of P . Equivalently, G
has the property that each vertex has degree at most 2 and if it has degree 2, it must
lie between its two neighbors. Now assume that P is 2-sparse. We transform G into the
graph G′ = ([n − 1], E ′) where E ′ = {{x, y − 1} : {x, y} ∈ E, x < y}, i.e., we decrease
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the second vertex of each edge by one. Note that G′ is again a graph (no loops arise).
The property of G is preserved by the transformation and hence the components of G′

are increasing paths and G′ describes a partition P ′ of [n − 1]. Clearly, P is m-sparse iff
P ′ is (m − 1)-sparse. Thus P 7→ P ′ maps m-sparse partitions of [n] to (m − 1)-sparse
partitions of [n − 1]. The inverse mapping is obtained by increasing the second vertex of
each edge by one. Thus P 7→ P ′ is a bijection between the mentioned sets. Iterating it,
we obtain the stated identity. 2

See [5] for other applications of this bijection. We remark that the representing graphs
of partitions (but not the transformation of G into G′) were used before by Biane [1] and
Simion a Ullman [12].

We need to compare, for fixed m, the growth of bn and bn−m. The following asymptotics
of Bell numbers is due to Moser and Wyman [10].

Proposition 2.6 For n → ∞,

bn ∼ λ(n)n+1/2

n1/2en+1−λ(n)

where the function λ(n) is defined by λ(n) log λ(n) = n.

It follows by a simple calculation that bn−1/bn ∼ log n/n. More generally, we have the
following.

Corollary 2.7 If m fixed and n → ∞,

bn−m

bn
∼
(

log n

n

)m

.

In fact, a better approximation is bn−1/bn ∼ (log n − log log n)/n. Knuth [9] gives a nice
account on the asymptotics of bn and shows that bn−1/bn = (ξ/n)(1 + O(1/n)) where
ξ · eξ = n.

We are ready to estimate the numbers of normalized set systems with weight n and
maximum degree at most k.

Proposition 2.8 For fixed k ∈ N and n → ∞,

(
log n

n

)k−1( 1

αk

)n

bn � h′′
k,n �

(
1

αk

)n

bn

where αk is the only root of the polynomial
∑k

i=1 xi/i! − 1 in (0, 1].

Proof. Let in,k be the number of interval partitions Q = (I1 < I2 < . . . < Im) of [n] such
that |Ii| ≤ k for all i and Q is weighted by (|I1|! · |I2|! · . . . · |Im|!)−1. It follows that

in,k = [xn]
1

1 −∑k
i=1 xi/i!

∼ ck

(
1

αk

)n
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with some constant ck > 0 because αk is the only root of the denominator in (0, 1] and it
is simple. Using Propositions 2.1, 2.2, and 2.4, we obtain the inequalities

in,kbn,k ≤ h′′
k,n ≤ 2in,kbn.

In the first inequality we use the fact that if Q is an interval partition of [n] with interval
lengths at most k and P is a k-sparse partition of [n], then Q and P are always orthogonal.
In the second inequality we neglect orthogonality of the pairs (Q, P ) but we count only
the corresponding equivalence classes in W (n) with full cardinalities |I1|! · |I2|! · . . . · |Im|!.
By Proposition 2.2, this gives an upper bound for h′

k,n. Using Proposition 2.4, we get an
upper bound for h′′

k,n. The explicit lower and upper bounds on h′′
k,n now follow from the

above asymptotics of in,k, Proposition 2.5, and Corollary 2.7. 2

Note that 1/α2 = (1+
√

3)/2. Thus we have roughly ((1+
√

3)/2)nbn = (1.36602 . . .)nbn

normalized set systems with weight n, in which each vertex lies in one or two edges.

Proof of the Theorem. We prove that, for n → ∞,

h′′
n =

(
1

log 2
+ o(1)

)n

bn = (1.44269 . . . + o(1))nbn.

Let in be the number of interval partitions Q of [n], weighted as in the previous proof. As
in the case of bounded degree, by Propositions 2.1, 2.2, and 2.3 we have the upper bound

h′′
n ≤ 2inbn ∼ c

(
1

log 2

)n

bn

because

in = [xn]
1

1 −∑∞
i=1 xi/i!

= [xn]
1

2 − ex

and log 2 is a simple zero of 2−ex. As for the lower bound, h′′
n ≥ h′′

k,n for every k, n ∈ N. It
is easy to show that αk ↓ log 2 for k → ∞. Hence, by the lower bound in Proposition 2.8,
for any fixed ε > 0 we have h′′

n > ((log 2)−1 − ε)nbn for n big enough. 2

3 Concluding remarks

P. Cameron investigates in [4] a family of enumerative problems on 0-1 matrices including
h′

n and h′′
n as particular cases. He defines Fijkl(n), i, j, k, l ∈ {0, 1}, to be the number of

rectangular 0-1 matrices with no zero row or column and with n 1’s, where i = 0, resp.
i = 1, means that matrices differing only by a permutation of rows are identified, resp.
are considered as different; j = 0, resp. j = 1, means that matrices with two equal rows
are forbidden, resp. are allowed; and the values of k, l refer to the same (non)restrictions
for columns. Notice that Fijkl(n) is nondecreasing in each of the arguments i, j, k, l.
Representing set systems by incidence matrices, rows standing for edges and columns for
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vertices, we see that h′′
n = F0111(n) and h′

n = F0011(n). In [4] it is shown that F1111(n) ∼
Acn+1n! where A = 1

4
exp(−(log 2)2/2) ≈ 0.19661 and c = (log 2)−2 ≈ 2.08137. F0101(n)

is A049311 of [13], see also Cameron [3]. P. Cameron asks in [2, Problem 3] if there is an
effective algorithm to calculate F0101(n); for h′

n and h′′
n such algorithms are given in [8].

Interestingly, in the so far derived asymptotics of the functions Fijkl(n) the constant
log 2 ≈ 0.69314 appears quite often. Our theorem says that intersections of blocks in
“partitions” of [n] magnify the counting function by the exponential factor (log 2)−n. The
same phenomenon occurs for counting injections and surjections. If in is the number of
injections from [n] to N with images normalized to [n] and sn is the number of all mappings
(“injections with intersections”) from [n] to N, again with images normalized to [m] (i.e.,
sn counts surjections from [n] to [m]), then in = n! (trivial) and sn ∼ c(log 2)−nn! where
c = (2 log 2)−1 (a nice exercise on exponential generating functions, see Flajolet and
Sedgewick [6, Chapter 2.3.1]).

Another parallel can be led between sparse partitions and sparse words. We say that
a word u = a1a2 . . . al over an alphabet A, |A| = r, is k-sparse if ai = aj, j > i, implies
j − i ≥ k. (We remark that k-sparse words are basic objects in the theory of generalized
Davenport–Schinzel sequences, see Klazar [7]. Another term for 2-sparse words is Smirnov
words.) The two notions of sparseness, in fact, coincide: u = a1a2 . . . al defines a partition
P of [l] via the equivalence i ∼ j ⇐⇒ ai = aj and then, obviously, u is k-sparse if and
only if P is k-sparse. A partition of [l] can be defined by many words u (even if A is
fixed). The unique canonical defining words are restricted growth strings, see [9] for their
properties and more references. If vn is the number of all words over A (|A| = r) with
length n and sk,n is the number of those which are k-sparse, then vn = rn (trivial) and

sk,n = r(r − 1) . . . (r − k + 2)(r − k + 1)n−k+1

=
r(r − 1) . . . (r − k + 2)

(r − k + 1)k−1

(
1 − k − 1

r

)n

vn

(simple direct counting, for the generating functions approach see [6, Chapter 3.6.3]). In
the case of words over a fixed alphabet sparseness diminishes the counting function by
an exponential factor. For partitions the decrease is, fortunately, only by a polynomial
factor (Proposition 2.5 and Corollary 2.7).

We conclude with two natural questions. What is the precise asymptotics of h′′
k,n and

h′′
n? By Propositions 2.3 and 2.4, 1/2 ≤ h′

k,n/h
′′
k,n ≤ 1 and 1/2 ≤ h′

n/h′′
n ≤ 1. Do these

ratios go to 1 as n → ∞?
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