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Abstract
This paper deals with the enumeration of k-colored Motzkin paths with a fixed

number of (left and right) peaks and valleys. Further enumeration results are ob-
tained when peaks and valleys are counted at low and high level. Many well-known
results for Dyck paths are obtained as special cases.

1 Introduction

A wide range of articles dealing with Dyck and Motzkin paths and related topics appears
frequently in the literature (e.g., [1, 7, 9, 12, 13, 14, 15, 20]). More generally, k-colored
Motzkin paths [2, 17] which have horizontal steps colored by means of k colors, are of
particular interest and have important applications (e.g., [3, 4, 8, 17] for k = 2 and [11, 17]
for k = 3).

In this paper, several enumeration results for the set M of k-colored Motzkin paths,
according to various parameters are established, with the aid of generating functions.
Most of these results are known for k = 0 (i.e., for Dyck paths), while they are new even
for k = 1 (i.e., for Motzkin paths).

In section 2, some basic definitions and notations referring to the set M and various
parameters of it are given.

In section 3, using some simple bijections, several parameters of M are categorized
into classes, the elements of which are equidistributed. Then, by picking a parameter
from each class (e.g. the number of left peaks, right valleys, double rises and peaks) the
generating function of M is found according to length, number of rises and this parameter,
giving several enumeration results.

In section 4 (resp. section 5), parameters related to peaks and valleys at low (resp.
high) level are considered. Several well-known results on Dyck paths are generalized to
k-colored Motzkin paths. For example, it is shown that the parameters “number of high
peaks” and “number of valleys” are equidistributed in M. This result is also shown by
constructing a bijection on the set M.
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2 Preliminaries

A k-colored Motzkin path of length n is a lattice path of N
2 running from (0, 0) to (n, 0),

that never goes below the x-axis and whose allowed steps are the up diagonal step (1, 1),
the down diagonal step (1,−1) and the colored horizontal step (1, 0) which is labeled by
means of k colors, k ∈ N. These steps are called rise, fall and level step respectively.

In the cases k = 0,1 we obtain the well-known Dyck and Motzkin paths, enumerated by
the Catalan numbers Cn

2
, for n even (A000108) and the Motzkin numbers Mn (A001006)

respectively, [18]. On the other hand the number of 2-colored (resp. 3-colored) Motzkin

paths of length n is equal to Cn+1 (resp.
n∑

m=0

(
n
m

)
Cm+1), [8, 17].

In this work we restrict ourselves to the case where k 6= 0, though all the results of
this paper remain true for k = 0.

It is clear that each k-colored Motzkin path is coded by a word u = u1u2 · · ·un ∈
{a, ā, β1, β2, . . . , βk}∗, called k-colored Motzkin word, so that every rise (resp. fall) corre-
sponds to the letter a (resp. ā) and every colored level step corresponds to a certain βi,
i ∈ [k] = {1, 2, . . . , k}; see Fig. 1.

1 2 3 4 6 75 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1

2

3

0

u = a β1 ā a a ā a β2 β1 ā ā β1 a β2 a a ā ā ā a β1 ā β1

Figure 1: A 2-colored Motzkin path and its corresponding word

Throughout this paper we denote by M the set of all k-colored Motzkin words (or
equivalently k-colored Motzkin paths). Its subset consisting of all the words in {a, ā}∗ is
the set D of Dyck words. Furthermore the subset of M which contains the words u of
length l(u) = n with r(u) = r rises, where 0 ≤ r ≤ [n

2
] is denoted by Mn,r. In particular

we write Dr = M2r,r for the set of Dyck words of length 2r.
It is clear that each non-empty word u = u1u2 · · ·un ∈ M can be uniquely written in

either of the forms u = βνz, or u = awāz, where w, z ∈ M and ν ∈ [k].
It follows that the sets

A = {u ∈ M : u1 = a}
and

B = {u ∈ M : u1 = βν , ν ∈ [k]} ∪ {ε}
where ε is the empty word, form a partition of M.

For a parameter q defined on M we will denote by Fq the generating function of M
according to the parameters l, r and q i.e.,

Fq(x, y, t) =
∑

u∈M
xl(u)yr(u)tq(u).
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Similarly, we denote by Aq, Bq the generating functions of A, B respectively, according
to the parameters l,r and q.

If q(u) = 0 for all u ∈ M, then by F (x, y), A(x, y), and B(x, y) we denote the
generating functions of the sets M, A and B, respectively, according to the parameters l
and r.

Using the partition {A,B} of M, we obtain at once the following equation ([17],
Proposition 3.1).

x2yF 2(x, y) + (kx− 1)F (x, y) + 1 = 0 (1)

and the coefficients of the powers F s(x, y), s ∈ N
∗ are given by the formula:

[xnyr]F s =
s

n+ s

(
n+ s

s+ r, r, n− 2r

)
kn−2r. (2)

Two parameters q1, q2 of M are called equidistributed if

|{u ∈ Mn,r : q1(u) = µ}| = |{u ∈ Mn,r : q2(u) = µ}|

for every n, r, µ ∈ N.
A point of a k-colored Motzkin path is called peak (resp. valley) if it is preceded by

a rise (resp. fall) and followed by a fall (resp. rise). A left peak (resp. left valley) is
preceded by a rise (resp. fall) and followed by either a level step or a fall (resp. rise).
Obviously, a point of a k-colored Motzkin path is a peak (resp. valley) if and only if it is
both left and right peak (resp. valley). The right peak and the right valley are defined in
an analogous way. A peak or a valley is at height k if its y-coordinate is k.

A double rise (resp. double fall) occurs at a point preceded as well as followed by a
rise (resp. fall). A left double rise (resp. left double fall) occurs at a point preceded by a
rise (resp. fall) and followed by either a level step or a rise (resp. fall). The right double
rise and the right double fall are defined in an analogous way; see Fig. 2.

3 Enumeration according to various parameters

In this section we present several enumeration results, using the generating functions of k-
colored Motzkin paths according to length, number of rises and various other parameters.

We will study the parameters of M : lp, rp, p, lv, rv, v, ldr, rdr, dr, ldf , rdf and df
defined by the number of left peaks, right peaks, peaks, left valleys, right valleys, valleys,
left double rises, right double rises, double rises, left double falls, right double falls and
double falls respectively.

It is easy to see by considerations of symmetry that if {q1, q2} is anyone of the pairs
{lp, rp}, {lv, rv}, {ldr, rdf}, {rdr, ldf} and {dr, df}, then the parameters q1, q2 are equidis-
tributed.

Furthermore, we will show that if {q1, q2} is anyone of the pairs {dr, v}, {ldr, lv} and
{rdr, rv} then the parameters q1, q2 are equidistributed.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 240

1

2

3

peaks : 7, 12, 21 valleys : 5, 19
left peaks : 3, 7, 12, 16, 21 right peaks : 4, 7, 9, 12, 18, 21, 23
left valleys : 5, 8, 10, 14, 19, 22 right valleys : 1, 5, 11, 15, 19
double rises : 2, 6, 20 double falls : 13
left double rises : 2, 3, 6, 16, 20 right double rises : 1, 2, 6, 11, 15, 20
left double falls : 8, 10, 13, 14, 22 right double falls : 4, 9, 13, 18, 23

Figure 2: Various kinds of points of a Motzkin path;
(each point is coded by its x-coordinate).

To see this, we consider an involution θ of M which is defined as a natural extension
of the involution of D used in [6] in order to show that the parameters dr and v are
equidistributed in D.

The definition of θ is given recursively: If u = ε we set θ(ε) = ε. Next, for n ∈ N
∗ and

assuming that θ(z) has been defined for each z ∈ M with l(z) < n, we set

θ(u) =

{
βνθ(z), if u = βνz, ν ∈ [k], z ∈ M
aθ(z)āθ(w), if u = awāz, w, z ∈ M.

It is easy to check by induction that θ is an involution of M such that l(θ(u)) = l(u),
r(θ(u)) = r(u) for each u ∈ M and θ(A) = A, θ(B) = B.

Furthermore, we show by induction that dr(θ(u)) = v(u), for each u ∈ M.
Indeed, if u = βνz for some ν ∈ [k] and z ∈ M, then

dr(θ(u)) = dr(θ(z)) = v(z) = v(u).

If on the other hand u = awāz for some w, z ∈ M, then

dr(θ(u)) =

{
dr(θ(z)) + dr(θ(w)) + 1, if θ(z) ∈ A;

dr(θ(z)) + dr(θ(w)), if θ(z) ∈ B

=

{
v(z) + v(w) + 1, if z ∈ A;

v(z) + v(w), if z ∈ B
= v(u).

In the same way it can be shown that ldr(θ(u)) = lv(u) and rdr(θ(u)) = rv(u), for
each u ∈ M. From the previous discussion we deduce the next result.
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Proposition 3.1 The following parameters are equidistributed in M:
i. lp and rp.
ii. dr, df and v.
iii. ldr, rdr, ldf , rdf , lv and rv.

In view of the previous result, it is enough to investigate the parameters lp, dr, rv
and p. For this we use the following result.

Lemma 3.2 The generating function F (x, y, s, t) of M according to the parameters l, r, p
and q, where q(u) is the number of occurences of aβν, ν ∈ [k], in a word u ∈ M, satisfies
the following equation:

F = 1 + kxF + x2y(s+ kxtF + F − 1 − kxF )F.

Proof : Each non-empty word u = u1u2 · · ·un ∈ M can be uniquely written in one of
the forms u = βνw1, u = aāw1, u = aβνw1āw2 or u = aaw1āw2āw3, where ν ∈ [k] and
w1, w2, w3 ∈ M. So, we obtain that

F = 1 + kxF + x2ysF + kx3ytF 2 + x4y2F 3

= 1 + kxF + x2y(s+ kxtF + x2yF 2)F

= 1 + kxF + x2y(s+ kxtF + F − 1 − kxF )F. 2

For the proof of the next result we need the well-known Vandermonde convolution
formula ([10], (3.1))

µ∑
ρ=0

(
r

µ− ρ

)(
ν

ρ

)
=

(
r + ν

µ

)
(3)

as well as the formula

r∑
ν=(−µ)+

(−1)r+ν

(
r

ν

)(
m+ µ+ ν

µ+ ν

)
=

(
m+ µ

r + µ

)
, (4)

(where (−µ)+ = max(−µ, 0) and −µ ≤ r.), for µ ≥ 0 ([10], (3.48)).

Proposition 3.3 The generating function Flp satisfies the following equation:

(kx3y(t− 1) + x2y)F 2
lp(x, y, t) + (x2y(t− 1) + kx− 1)Flp(x, y, t) + 1 = 0. (5)

Furthermore the coefficients of the powers F s
lp(x, y, t), s ∈ N

∗ are given by the formula

[xnyrtγ ]F s
lp =

s

r

(
n− r + s

n− 2r

)(
r

γ

)(
n− r + s− 1

γ − 1

)
kn−2r (6)

for every 1 ≤ γ ≤ r.
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Proof : Clearly, since Flp(x, y, t) = F (x, y, t, t), equation (5) follows at once from Lemma
3.2.

We now come to find the coefficients of the powers F s
lp(x, y, t), for s ≥ 1. For this, we

set φ = x(t − 1) and H(x) = xFlp(x, y, t) where y and t are considered as parameters.
Using the equation obtained above, we have that

x
(
(kyφ+ y)H2(x) + (φy + k)H(x) + 1

)
= H(x).

If we set P (λ) = (kφ + 1)yλ2 + (φy + k)λ + 1 then H(x) = xP (H(x)) and P (0) = 1.
Using the Lagrange inversion formula [19], we obtain that

[xσ]Hs =
1

σ
[λσ−1](sλs−1(P (λ))σ).

Furthermore, we have

s

σ
λs−1(P (λ))σ =

s

σ
λs−1

σ∑
i=0

(
σ

i

)
λi

(
(kφ+ 1)yλ+ (φy + k)

)i

=
s

σ

σ∑
i=0

i∑
ξ=0

(
σ

i

)(
i

ξ

)
(φy + k)i−ξyξ(kφ+ 1)ξλξ+i+s−1

=
s

σ

2σ∑
m=0

[ m
2

]∑
ξ=(m−σ)+

(
σ

m− ξ

)(
m− ξ

ξ

)
(φy + k)m−2ξyξ(kφ+ 1)ξλm+s−1.

If we set m = σ − s we obtain that

[xσ]Hs =
s

σ

[ σ−s
2

]∑
ξ=0

(
σ

σ − s− ξ

)(
σ − s− ξ

ξ

)
(φy + k)σ−s−2ξyξ(kφ+ 1)ξ

for every σ ≥ s.
Applying the previous equality for σ+s instead of σ, after some simple manipulations

we deduce that

F s
lp(x, y, t) =

∞∑
σ=0

s

σ + s

[ σ
2
]∑

ξ=0

(
σ + s

σ − ξ

)(
σ − ξ

ξ

)
(φy + k)σ−2ξyξ(φk + 1)ξxσ

=
∞∑

σ=0

[ σ
2
]∑

ξ=0

σ−2ξ∑
j=0

ξ∑
ρ=0

ρ+j∑
γ=0

(−1)ρ+j−γ s

σ + s

(
ρ+ j

γ

)(
s+ σ

s+ ξ, j, σ − 2ξ − j, ρ, ξ − ρ

)
·

· kσ−2ξ−j+ρyj+ξtγxj+ρ+σ

=
∞∑

n=0

[ n
2
]∑

r=0

r∑
γ=0

r−γ∑
ν=0

min{r−ν,n−2r}∑
ρ=0

(−1)r−γ−ν s

n− r + ν + s

(
r − ν

γ

)
·

·
(

n− r + ν + s

ν + ρ+ s, r − ρ− ν, n− 2r − ρ, ρ, ν

)
kn−2rxnyrtγ.
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It follows that

[xnyrtγ]F s
lp =

skn−2r

(n− 2r)!(r + s)!

r−γ∑
ν=0

(
r − ν

γ

)
(n− r + ν + s− 1)!

ν!

r−ν∑
ρ=0

(
r + s

r − ν − ρ

)(
n− 2r

ρ

)

=
s

r

(
n− r + s

n− 2r

)(
r

γ

)
kn−2r

r−γ∑
ν=0

(−1)r−γ−ν

(
r − γ

ν

)(
n− r + ν + s− 1

r − 1

)

=
s

r

(
n− r + s

n− 2r

)(
r

γ

)(
n− r + s− 1

γ − 1

)
kn−2r

for every 1 ≤ γ ≤ r. 2

Remark Notice that if γ = 0 then r = 0 too. In this case we have [xny0t0]F s
lp =

(
n+s−1

s−1

)
kn.

As we have already pointed out, it is enough to deal now with the parameters rv, dr
and p. Though these parameters can be studied independently using a method analogous
to that of the proof of Proposition 3.3, we will investigate them in relation to the parameter
lp.

We can easily show that rv is expressed in terms of lp as follows:

rv(u) =

{
lp(u) − 1, if u ∈ A;

lp(u), if u ∈ B (7)

Using relation (7) we derive the formula

Frv(x, y, t) = 1 − t−1 + (t−1 + kx(1 − t−1))Flp(x, y, t) (8)

Furthermore we obtain the following result.

Proposition 3.4 The number of all u ∈ Mn,r with γ right valleys is equal to

[xnyrtγ ]Frv =
1

n− r

(
n− r

r

)(
r

γ

)(
n− r

γ + 1

)
kn−2r

where 0 ≤ γ ≤ r.

Proof : Let an,r,γ = 1
r

(
n−r+1
n−2r

)(
r
γ

)(
n−r
γ−1

)
, where 1 ≤ γ ≤ r.

From proposition 3.3 and relation (8) it follows that

Frv(x, y, t) = 1 − t−1+
(
t−1 + kx(1 − t−1)

)( 1

1 − kx
+

∞∑
n=2

[ n
2
]∑

r=1

r∑
γ=1

an,r,γk
n−2rxnyrtγ

)

=
1

1 − kx
+

∞∑
n=2

[ n
2
]∑

r=1

r−1∑
γ=0

an,r,γ+1k
n−2rxnyrtγ+

+

∞∑
n=3

[ n−1
2

]∑
r=1

r∑
γ=1

an−1,r,γk
n−2rxnyrtγ −

∞∑
n=3

[ n−1
2

]∑
r=1

r−1∑
γ=0

an−1,r,γ+1k
n−2rxnyrtγ (9)
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We show the desired formula when 1 ≤ γ ≤ r− 1 and 1 ≤ r ≤ [n−1
2

]. (The other cases
can be easily checked).

From relation (9) we obtain that

[xnyrtγ ]Frv = (an,r,γ+1 + an−1,r,γ − an−1,r,γ+1)k
n−2r

=
1

r

[(
n− r + 1

r + 1

)(
r

γ + 1

)(
n− r

γ

)
+

(
n− r

r + 1

)(
r

γ

)(
n− r − 1

γ − 1

)
−(

n− r

r + 1

)(
r

γ + 1

)(
n− r − 1

γ

)]
kn−2r

giving, after some simple manipulations, that

[xnyrtγ ]Frv =
1

n− r

(
n− r

r

)(
r

γ

)(
n− r

γ + 1

)
kn−2r.

2

We now come to the parameters dr and p. We first need the following result, the proof
of which is straightforward and it is omitted.

Lemma 3.5 If q1, q2 are two parameters of M with

q1(u) + q2(u) = r(u), for each u ∈ M (10)

then Fq2(x, y, t) = Fq1(x, yt, t
−1). Hence, [xnyrtγ ]Fq2 = [xnyrtr−γ]Fq1.

Clearly, each of the pairs {lp, dr} and {ldr, p} satisfies relation (10), so that from
Propositions 3.1, 3.3 and 3.4 we obtain the following result.

Proposition 3.6 The number of all u ∈ Mn,r with γ double rises and the number of all
u ∈ Mn,r with γ peaks are equal respectively to

[xnyrtγ ]Fdr =
1

r

(
n− r + 1

n− 2r

)(
r

γ

)(
n− r

r − γ − 1

)
kn−2r

where 0 ≤ γ ≤ r − 1 and

[xnyrtγ ]Fp =
1

n− r

(
n− r

r

)(
r

γ

)(
n− r

r − γ + 1

)
kn−2r

where 0 ≤ γ ≤ r.

Remark Notice that if we apply the above formulae for n = 2r we obtain that the
number of all Dyck paths with semilength r and γ double rises (resp. peaks) is equal to
the Narayana number 1

r

(
r
γ

)(
r

γ+1

)
(resp. 1

r

(
r

γ−1

)(
r
γ

)
) (see, for example, [5]).
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4 Low peaks and low valleys

A peak (resp. valley) at height 1 (resp. 0) is called low peak (resp. low valley). We
denote by p̌ (resp. v̌) the parameter of M determined by the number of low peaks (resp.
low valleys). Low left and low right peaks and valleys, as well as the parameters induced
by them are defined similarly. Since each of the pairs {ľp, řp} and {ľv, řv} consists of
equidistributed parameters, it is sufficient to consider q̌ when q ∈ {lp, p, v, rv}.

For every such q we consider the set Nq̌ of all q̌-free k-colored Motzkin paths i.e.,

Nq̌ = {u ∈ M : q̌(u) = 0}
and its generating function Gq̌(x, y) according to length and number of rises i.e.,

Gq̌(x, y) =
∑
u∈Nq̌

xl(u)yr(u).

In the sequel we find for each q̌ the formula ofGq̌, which is used to obtain the generating
function Fq̌.

We start with the parameter ľp.
If u ∈ Nľp then u = ε, or u = βνz, or u = awāz where w ∈ A, z ∈ Nľp and ν ∈ [k].
It follows that

Gľp(x, y) = 1 + kxGľp(x, y) + x2yA(x, y)Gľp(x, y)

and since A(x, y) = x2yF 2(x, y), we finally obtain that

Gľp(x, y) =
1

1 − kx− x4y2F 2(x, y)
(11)

For the next result, we use the double sequence bn,m of ballot numbers ([16], p.130),
defined by b0,0 = 1 and bn,m =

(
n+m

m

) − (
n+m
m−1

)
= n+1−m

n+1

(
n+m

m

)
and the following variation

of the Vandermonde convolution formula ([10], (3.2))

n∑
ν=0

(
α + ν

ν

)(
β + n− ν

n− ν

)
=

(
α + β + n+ 1

n

)
(12)

Lemma 4.1 For every n, r, s, ρ ∈ N we have,

[xnyr]Gs+1
ľp

F ρ = kn−2r

[ r
2
]∑

ν=0

(
s+ ν

ν

)(
n+ ρ+ s− ν

n− 2r

)
br+ρ−1,r−2ν .

Proof : For ρ 6= 0, using relation (11), as well as (2) and (12), we have that

Gs+1
ľp

(x, y)F ρ(x, y) =
∞∑

m=0

(−1)m

(−(s+ 1)

m

)
(k + x3y2F 2(x, y))mxmF ρ(x, y)
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=
∞∑

m=0

m∑
ν=0

(
s +m

m

)(
m

ν

)
km−νx3ν+my2νF 2ν+ρ(x, y)

=
∞∑

m=0

m∑
ν=0

∞∑
σ=0

[ σ
2
]∑

λ=0

(
s + ν

ν

)(
m+ s

ν + s

)
2ν + ρ

σ + 2ν + ρ
·

·
(

σ + 2ν + ρ

2ν + ρ+ λ, λ, σ − 2λ

)
km−ν+σ−2λx3ν+m+σy2ν+λ

=

∞∑
n=0

[ n
2
]∑

r=0

[ r
2
]∑

ν=0

n−2r∑
i=0

(
s+ ν

ν

)(
n− 2r + ν + s− i

ν + s

)
·

· 2ν + ρ

i− 2ν + 2r + ρ

(
i− 2ν + 2r + ρ

r + ρ, r − 2ν, i

)
xnyrkn−2r.

It follows that

[xnyr]Gs+1F ρ =

[ r
2
]∑

ν=0

(
s+ ν

ν

)
2ν + ρ

2r − 2ν + ρ

(
2r − 2ν + ρ

r + ρ

)
·

·
n−2r∑
i=0

(
n− 2r + ν + s− i

n− 2r − i

)(
2r − 2ν − 1 + ρ+ i

i

)
kn−2r

=

[ r
2
]∑

ν=0

(
s+ ν

ν

)(
n + s+ ρ− ν

n− 2r

)
br+ρ−1,r−2ν k

n−2r.

The proof for the case ρ = 0 is similar and it is omitted. 2

Remark Notice that for s = ρ = 0 and n = 2r we obtain that the number of all

u ∈ Dr with no low peaks is equal to the Fine number (A000957) fr =
[ r
2
]∑

ν=0

br−1,r−2ν =

[ r
2
]∑

ν=0

ν
r−ν

(
2r−2ν

r

)
([7], (C.6)).

We now proceed to determine Fľp. It is clear that every u ∈ M can be written uniquely
in one of the forms u = w, or u = waāz, or u = waβντ āz where w ∈ Nľp, z, τ ∈ M and

ν ∈ [k]. Clearly, since in the second and third case ľp(u) = ľp(z) + 1, we obtain that

Fľp(x, y, t) = Gľp(x, y) + x2ytGľp(x, y)Fľp(x, y, t) + kx3ytGľp(x, y)F (x, y)Fľp(x, y, t)

and hence

Fľp(x, y, t) =
Gľp(x, y)

1 − x2yt(1 + kxF (x, y))Gľp(x, y)
(13)

We have the following result.
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Proposition 4.2 The number of all u ∈ Mn,r with γ low left peaks is given by the formula

[xnyrtγ ]Fľp = kn−2r

n−2r∑
ρ=0

[ r−γ
2

]∑
ν=0

(
γ

ρ

)(
γ + ν

ν

)(
n− γ − ν

n− 2r − ρ

)
br−γ+ρ−1,r−γ−2ν ,

where 0 ≤ γ ≤ r.

Proof : Using lemma 4.1 and relation (13) we obtain that

Fľp(x, y, t) =

∞∑
γ=0

(1 + kxF (x, y))γGγ+1(x, y)x2γyγtγ

=

∞∑
γ=0

γ∑
ρ=0

(
γ

ρ

)
Gγ+1

ľp
(x, y)F ρ(x, y)kρx2γ+ρyγtγ

=

∞∑
γ=0

γ∑
ρ=0

∞∑
σ=0

[ σ
2
]∑

λ=0

[ λ
2
]∑

ν=0

(
γ

ρ

)(
γ + ν

ν

)(
σ + ρ+ γ − ν

σ − 2λ

)
·

· bλ+ρ−1,λ−2νk
ρ+σ−2λx2γ+ρ+σyγ+λtγ

=
∞∑

n=0

[ n
2
]∑

r=0

r∑
γ=0

n−2r∑
ρ=0

[ r−γ
2

]∑
ν=0

(
γ

ρ

)(
γ + ν

ν

)(
n− γ − ν

n− 2r − ρ

)
·

· br−γ+ρ−1,r−γ−2νk
n−2rxnyrtγ ,

giving the required result. 2

Remark Notice that for n = 2r we obtain formula (6.16) of [7] on Dyck paths with γ low
peaks.

We now come to the parameter p̌.
Clearly if u ∈ Np̌ then u = ε, or u = βνz, or u = awāz where w ∈ M \ {ε}, z ∈ Np̌

and ν ∈ [k].
It follows that

Gp̌(x, y) = 1 + kxGp̌(x, y) + x2y(F (x, y)− 1)Gp̌(x, y)

and using equation (1) we obtain that

Gp̌(x, y) =
F (x, y)

1 + x2yF (x, y)
(14)

We now have the following result.

Proposition 4.3 The number of all u ∈ Mn,r with γ low peaks is given by the formula

[xnyrtγ ]Fp̌ =
γ + 1

r + 1
kn−2r

r−γ∑
λ=0

(−1)r−γ−λ

(
r − λ + 1

γ + 1

)(
n− r + λ

r, λ, n− 2r

)
,

where 0 ≤ γ ≤ r.
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Proof : Every u ∈ M can be uniquely written in either of the forms u = w, or u = waāz
where w ∈ Np̌ and z ∈ M, with p̌(u) = p̌(z) + 1. It follows that

Fp̌(x, y, t) = Gp̌(x, y) + x2ytGp̌(x, y)Fp̌(x, y, t).

Thus, from relation (14) follows that

Fp̌(x, y, t) =
F (x, y)

1 − x2y(t− 1)F (x, y)
.

Furthermore, using relation (2) we obtain that

Fp̌(x, y, t) =

∞∑
m=0

Fm+1(x, y)(t− 1)mx2mym

=
∞∑

m=0

∞∑
σ=0

[ σ
2
]∑

λ=0

m∑
γ=0

(−1)m−γ m+ 1

σ +m+ 1

(
m

γ

)(
σ +m+ 1

λ+m+ 1, λ, σ − 2λ

)
kσ−2λx2m+σym+λtγ

=
∞∑

n=0

[ n
2
]∑

r=0

r∑
γ=0

r−γ∑
λ=0

(−1)r−γ−λ r − λ+ 1

n− r + λ+ 1

(
r − λ

γ

)(
n− r + λ+ 1

r + 1, λ, n− 2r

)
kn−2rxnyrtγ.

giving the required result. 2

Remark Notice that for n = 2r we deduce that the number of all u ∈ Dr with γ low

peaks is equal to γ+1
r+1

r−γ∑
λ=0

(−1)r−γ−λ
(

r−λ+1
γ+1

)(
r+λ

r

)
, thus obtaining a formula equivalent to

(6.16) of [7].
Also notice that if, in addition, γ = 0, then we obtain the Fine numbers, as in relation

(C.5) of [7].

Next we deal with the parameter v̌.
It is clear that every u ∈ Nǔ can be uniquely written in the form u = u′u′′, where

u′ ∈ {ε} ∪ {awā : w ∈ M} and u′′ ∈ {ε} ∪ {βνz : z ∈ Nv̌ and ν ∈ [k]}.
It follows that

Gv̌(x, y) = (1 + x2yF (x, y))(1 + kxGv̌(x, y)),

and hence

Gv̌(x, y) =
1 + x2yF (x, y)

1 − kx− kx3yF (x, y)
(15)

Now, since each u ∈ M can be written uniquely in one of the forms u = τ , or
u = awāz, or u = τβνawāz where τ ∈ Nǔ, w ∈ M, z ∈ A and ν ∈ [k], we can easily
deduce from relation (15) that

Fv̌(x, y, t) = Gv̌(x, y) + x2ytF (x, y)Av̌(x, y, t) + kx3ytGv̌(x, y)F (x, y)Av̌(x, y, t)

= Gv̌(x, y) + x2ytF (x, y)(1 + kxGv̌(x, y))(Fv̌(x, y, t) − 1 − kxFv̌(x, y, t))
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which gives

Fv̌(x, y, t) =
Gv̌(x, y) − x2ytF (x, y)(1 + kxGv̌(x, y))

1 − x2ytF (x, y)(1 + kxGv̌(x, y))(1 − kx)

=
1 + x2yF (x, y)− x2ytF (x, y)

1 − kx− x2ytF (x, y) + kx3ytF (x, y) − kx3yF (x, y)
.

Thus,

Fv̌(x, y, t) =
g(x, y, t)

1 − (kxg(x, y, t) + x2ytF (x, y))
(16)

where g(x, y, t) = 1 + x2y(1 − t)F (x, y).
Using relation (16), as well as (2), (4), a version of (12) ([10], (3.3)) and combinatorial

calculus similar to that of the proofs of propositions 4.2 and 4.3 we obtain the following
result.

Proposition 4.4 The number of all u ∈ Mn,r with γ low valleys is given by the formula

[xnyrtγ ]Fv̌ =
γ + 1

r
kn−2r

min{n−2r,r−γ−1}∑
ρ=0

(
γ + 1 + ρ

ρ

)(
2r − γ − 2 − ρ

r − 1

)(
n− γ − ρ

2r − γ

)

where 0 ≤ γ ≤ r − 1.

Remark Notice that for n = 2r we deduce that the number of all u ∈ Dr with γ low
valleys is equal to γ+1

2r−γ−1

(
2r−γ−1

r

)
, ([7], (6.34)).

Finally, for the parameter řv, it is clear that every u ∈ Nřv can be uniquely written
in the form u = u′u′′, where u′ ∈ {ε} ∪ {awā : w ∈ M} and u′′ ∈ {β1, β2, . . . , βk}∗.

It follows that

Gřv(x, y) =
1 + x2yF (x, y)

1 − kx
(17)

Since each u ∈ M is written uniquely in either of the forms u = τ or u = wz, where
τ ∈ Nřv, w ∈ Nřv \ {ε} and z ∈ A it follows that

Fřv(x, y, t) = Gřv(x, y) + t(Gřv(x, y) − 1)Ařv(x, y, t) (18)

Furthermore, we can easily check that

Břv(x, y, t) = 1 + kxBřv(x, y, t) + kxtAřv(x, y, t)

so that
(1 − kx)(Fřv(x, y, t) − Ařv(x, y, t)) = 1 + kxtAřv(x, y, t)

and

Ařv(x, y, t) =
(1 − kx)Fřv(x, y, t) − 1

1 − kx+ kxt
(19)
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By relations (17), (18) and (19), it follows easily that

Fřv(x, y, t) =
1 + x2y(1 − t)F (x, y)

1 − (kx+ x2ytF (x, y))
(20)

Furthermore, using relations (20) and (12) and proceeding in a way similar to that of
the proofs of Propositions 4.2 and 4.3 we obtain the following result.

Proposition 4.5 The number of all u ∈ Mn,r with γ low right valleys is equal to

[xnyrtγ]Fřv =

[
γ

2r − γ

(
2r − γ

r

)(
n− 1

2r

)
+

γ + 1

2r − γ − 1

(
2r − γ − 1

r

)(
n− 1

2r − 1

)]
kn−2r

where 0 ≤ γ ≤ r − 1.

Remark We note that for n = 2r we deduce that the number of all u ∈ Dr with γ low
(right) valleys is equal to γ+1

2r−γ−1

(
2r−γ−1

r

)
[7].

5 High peaks and high valleys

A peak (resp. valley) that is not low is called high peak (resp. high valley). The parameters
p̂ = p− p̌ and v̂ = v− v̌ determine the number of high peaks and high valleys, respectively.
High left and high right peaks and valleys, as well as the corresponding parameters are
defined similarly. As in the case of low peaks and low valleys, it is sufficient to restrict
ourselves to the parameters {l̂p, p̂, v̂, r̂v}. For any such parameter q we have:

Bq̂(x, y, t) = 1 + kxFq̂(x, y, t)

and
Aq̂(x, y, t) = x2yFq(x, y, t)Fq̂(x, y, t).

It follows that

Fq̂(x, y, t) = 1 + kxFq̂(x, y, t) + x2yFq(x, y, t)Fq̂(x, y, t)

and hence

Fq̂(x, y, t) =
1

1 − (kx+ x2yFq(x, y, t))
(21)

Using a similar technique to that of the proof of relation (6), we can find formulae for
the powers F s

q , s ∈ N
∗, where q ∈ {rv, v, p}:

[xnyrtγ]F s
rv =

s

n− r

(
n− r

r

)(
r

γ

)(
n− r + s− 1

γ + s

)
kn−2r (22)

where 0 ≤ γ ≤ r.
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[xnyrtγ]F s
v =

s

r

(
n− r + s

n− 2r

)(
r

γ

)(
n− r + s− 1

r − γ − 1

)
kn−2r (23)

where 0 ≤ γ ≤ r − 1.

[xnyrtγ]F s
p =

s

n− r

(
n− r

r

)(
r

γ

)(
n− r + s− 1

r − γ + s

)
kn−2r (24)

where 0 ≤ γ ≤ r.
After expanding Fq̂(x, y, t) into a geometric series and using the previous relations we

will obtain the corresponding enumeration results for p̂, l̂p, v̂ and r̂v.
More precisely, for the parameter p̂ we have the following result.

Proposition 5.1 The number of all u ∈ Mn,r with γ high peaks is equal to

[xnyrtγ]Fp̂ =
1

r

(
n− r + 1

n− 2r

)(
r

γ

)(
n− r

r − γ − 1

)
kn−2r (25)

where 0 ≤ γ ≤ r − 1.

Proof : Using relations (21) and (24) we obtain that

Fp̂(x, y, t) =
∞∑

m=0

(k + xyFp(x, y, t))
mxm

=
∞∑

m=0

∞∑
ν=0

(
m

ν

)
F ν

p (x, y, t)km−νxm+νyν

=
∞∑

m=0

kmxm +
∞∑

m=1

∞∑
ν=1

∞∑
σ=0

[ σ
2
]∑

λ=0

λ∑
γ=0

(
m

ν

)
ν

σ − λ

(
σ − λ

λ

)(
λ

γ

)
·

·
(
σ − λ+ ν − 1

λ− γ + ν

)
km−ν+σ−2λxm+ν+σyν+λtγ

=

∞∑
n=0

knxn +

∞∑
n=0

[ n
2
]∑

r=0

r−1∑
γ=0

n−2r∑
ρ=0

r−γ∑
ν=1

ν

ρ+ r − ν

(
n− 2r + ν − ρ

ν

)
·

·
(
ρ+ r − ν

ρ

)(
r − ν

γ

)(
ρ+ r − 1

r − γ

)
kn−2rxnyrtγ

Thus, for 0 ≤ γ ≤ r − 1 and using relation (12) we have that

[xnyrtγ]Fp̂ =
n−2r∑
ρ=0

(n− 2r − ρ+ 1)
(

ρ+r−1
r−γ

)
(ρ+ γ − 1)!

ρ!γ!
·

·
r−γ∑
ν=1

(
n− 2r + ν − ρ

ν − 1

)(
ρ+ r − ν − 1

r − ν − γ

)
kn−2r
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=
1

r

(
r

γ

) n−2r∑
ρ=0

(n− 2r − ρ+ 1)

(
ρ+ r − 1

ρ

)
·

·
r−γ−1∑

ν=0

(
n− 2r − ρ+ 1 + ν

ν

)(
ρ+ r − 2 − ν

r − γ − 1 − ν

)
kn−2r

=
1

r

(
r

γ

) n−2r∑
ρ=0

(
1 + n− 2r − ρ

n− 2r − ρ

)(
ρ+ r − 1

ρ

)(
n− r

r − γ − 1

)
kn−2r

=
1

r

(
r

γ

)(
n− r + 1

n− 2r

)(
n− r

r − γ − 1

)
kn−2r. 2

In the following result we consider the remaining three cases. Though the produced
formulae are more complicated, their proofs are similar to the proof of relation (25) and
are omitted.

Proposition 5.2 The number of all u ∈ Mn,r with γ high left peaks, high valleys and
high right valleys is given respectively by the formulae

[xnyrtγ]Fl̂p =
1

r
kn−2r

n−2r∑
ρ=0

(n− 2r − ρ+ 1)

(
n− r − ρ

r − γ − 1

)(
ρ+ r

γ

)(
ρ+ r − 1

ρ

)
(26)

where 0 ≤ γ ≤ r − 1,

[xnyrtγ]Fv̂ =

[
δγ0

(
n

2r

)
+

n−2r∑
ρ=0

r−γ−1∑
ν=1

ν

r − ν

(
n− 2r − ρ+ ν

ν

)(
r − ν

γ

)
·

·
(
ρ+ r

ρ

)(
ρ+ r − 1

ρ+ γ + ν

)]
kn−2r (27)

where 0 ≤ γ ≤ r − 2,

[xnyrtγ]Fr̂v =

[
δγ0

(
n

2r

)
+

n−2r∑
ρ=0

min{r−γ,r−1}∑
ν=1

ν

r − ν

(
n− 2r − ρ+ ν

ν

)(
r − ν

γ

)
·

·
(
ρ+ r − ν − 1

ρ

)(
ρ+ r − 1

γ + ν

)]
kn−2r (28)

where 0 ≤ γ ≤ r − 1. (Here δ is the Kronecker symbol).

Notice that for n = 2r, we obtain from (26), or (27) (resp. (28), or (29)) the corre-
sponding result for high peaks (resp. high valleys) in Dyck paths [7].

We note that from Propositions 3.1 (ii), 3.6 and 5.1 we obtain the following result,
which is well-known in the case of Dyck paths [6].
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Proposition 5.3 The parameters p̂ and v of M are equidistributed.

We close by presenting a combinatorial proof of the above result. For this we need the
following lemma which extends a result for Dyck paths [12] to k-colored Motzkin paths.

Lemma 5.4 For each i ∈ N there exists an involution ψi of M such that

pi+2(u) = vi(ψi(u))

where pi(u), vi(u) denote respectively the number of peaks and valleys of u at height i.

Proof : For each path u ∈ M we define the path ψi(u), by turning each peak (j, i+ 2) of
u into a valley (j, i) and each valley (j, i) of u into a peak (j, i+2). The remaining points
of u are fixed; see Fig. 3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 230

1

2

3

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 230

1

2

3

4

5

Figure 3: The paths u and ψ2(u)

Proof of Proposition 5.3: It is sufficient to find a bijection
ψ : Mn,r → Mn,r

such that
p̂(u) = v(ψ(u)), for each u ∈ Mn,r.

We assume that r ≥ 1; (in the trivial case r = 0, ψ is the identity mapping).
We define

ψ(u) = (ψl ◦ ψl−1 ◦ · · · ◦ ψ0 ◦ ψ−1)(u),
where the number l (which depends on u) is given by the formula

l = h− 2 +m
where h is the height of u and m is the maximum number of consecutive valleys of
(ψh−2 ◦ ψh−3 ◦ · · · ◦ ψ0 ◦ ψ−1)(u) at height h− 1 and ψ−1 denotes the identity mapping.

Since each ψi is an involution, we can easily check that ψ is a bijection with
ψ−1(u) = (ψ−1 ◦ ψ0 ◦ ψ1 ◦ · · · ◦ ψl′)(u)
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where

l′ =

{
h− 1, if u contains at least one valley at height h− 1;

h− 2, otherwise.

Finally, since by Lemma 5.4 ψ(u), ψi(u) contain the same number of valleys at height
i and ψ(u) does not contain valleys at any height greater than h− 2, for h ≥ 2 we have

p̂(u) =

h−2∑
i=0

pi+2(u) =

h−2∑
i=0

vi(ψi(u)) = v(ψ(u)),

whereas for h = 1 we have p̂(u) = 0 = v(ψ(u)). 2

In Fig. 4 the main steps of the generation of ψ(u) are exhibited for a particular u.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 280

1

2

3

4

5

6

u ∈ M28,13 (with h = 6, p̂(u) = 2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 280

1

2

3

4

5

6

(ψ4 ◦ ψ3 ◦ ψ2 ◦ ψ1 ◦ ψ0 ◦ ψ−1)(u) (with m = 3)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 280

1

2

3

4

5

6

7

8

9

ψ(u) = (ψ7 ◦ ψ6 ◦ ψ5 ◦ ψ4 ◦ ψ3 ◦ ψ2 ◦ ψ1 ◦ ψ0 ◦ ψ−1)(u) (with h = 9, l′ = 7, v(ψ(u)) = 2)

Figure 4: The generation of ψ(u)
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