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Abstract

If k is a positive integer, we say that a set A of positive integers is k-sum-free if
there do not exist a,b,c in A such that a + b = ke. In particular we give a precise
characterization of the structure of maximum sized k-sum-free sets in {1,...,n} for
k > 4 and n large.

1 Introduction

A set of positive integers is called k-sum-free if it does not contain elements a, b, ¢ such

that
a+b=ke,
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where k is a positive integer. Denote by f(n, k) the maximum cardinality of a k-sum-free
set in {1,...,n}. For k = 1 these extremal sets are well-known: Deshoulliers, Freiman,
S6s, and Temkin [1] proved in particular that the maximum 1-sum-free sets in {1,...,n}
are precisely the set of odd numbers and the “top half” {(HTHW ,...,n}. For n > 8 even

%,...,n — 1} forms the only additional extremal set. The famous theorem of Roth [4]
gives f(n,2) = o(n). Chung and Goldwasser [2] solved the case k = 3 by showing that the
set of odd integers is the unique extremal set for n > 22. For k > 4 they gave an example
of a k-sum-free set [3] of cardinality £&=2) S(k2) 77 + O(1), which implies

e i s
lim,,_ ! (Z’k) > k,g’;:? + k(kgff)((ii)%gf ik and they conjectured that this lower bound is

the actual value. Moreover they conjectured that extremal k-sum-free sets consist of three
intervals of consecutive integers with slight modifications at the end-points if n is large.

In this paper we prove that the first conjecture is true, and we expose a structural result
which is very close to the second. Our proof is elementary. In fact it is based on two
simple observations:

Suppose we are given a k-sum-free set A. Then

o kx —y¢ Aforallz,ye A
(Otherwise we could satisfy the equation kx = (kx —y) +y in A.)

e for all y € A any interval centered around % cannot share more than half of its
elements with A.
(Otherwise we would find a pair kaj —d, [%W +d in A, giving

(13 = d) + (%] +d) = ky)
2 Preparations

Let n € N be large and let £ € N>,. We start by agreeing on some notations.

Notations
Let A C{1,...,n} be a set of positive integers. Denote by
s4:=min A and m4 := max A

the smallest and the largest elements of A respectively.

For [,r € R let

(l,r] = {zeN|l<z<r}
l,r) = {zeN|l<z<r}
(I,r) == {reN|l<z<r}

L,r] = {xeN|l<z<r}
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abbreviate intervals of integers. Continuous intervals will be indicated by the subscript R.

Furthermore for any y € N and d € No(:= NU{0}) put

ky—1  ky+1
A ) y;

b= +d| .

Note that if ky is even then Ij = % —d, % —d+1,..., % +d} and \[j] = 2d+1, while

if ky is odd we have ¢ = {81 —q, . 2 4 d} and |[J] = 2d + 2.

The first Lemma restates our introductory observations.

Lemma 1 Let A C [1,n] be a k-sum-free set. If x,y € A thenkx —y ¢ A. Ify € A and
d € No then |[I§\ Al > d+ 1.

Suppose A’ is a k-sum-free set consisting of intervals (I;,7;]. The interval (I;,r;] is k-
sum-free if [; > 2% Moreover we observe that reasonably large consecutive intervals
(lix1,7iv1], (i, ;] (where we assume 1,41 < ;) should satisfy kr; ;1 < l;+s4. This leads to
the following definition, describing a successive transformation of an arbitrary k-sum-free
set A into a k-sum-free set of intervals.

Definition 1 Let n € N and let A C [1,n] be k-sum-free with smallest element s := s4.
Define sequences (r;), (1;), (A;) by:

Ay = A, r:=n,

2r; li +s
i = 7| Tit1 = 2 )

Ai = (Ai—l \ (Ti+17 lz]) U (li,Ti] N [s,n] fOT’i Z 1.

The letter t = ta will be reserved to denote the least integer such that ry11 < s. Observe

that, for all i > t,
t—1
A=A = [O‘?Tt] U (U(ba”]) ) (1)

j=1

where a = aq := max{l; + 1, s}.

3 The structure of maximum k-sum-free sets

To obtain the structural result we consider the successive transformation of an arbitrary
k-sum-free set A into a set A; of intervals as in (1). Our plan is to show that each member
of the transformation sequence (A4;) is k-sum-free and has size greater than or equal to
|A|. For n sufficiently large, depending on k, and a maximum sized k-sum-free subset A
of [1,n], it will turn out that A; consists of three intervals only, i.e.: that ¢ = 3. This
observation will do to determine f(n, k), and we conclude our proof by showing that A

THE ELECTRONIC JOURNAL OF COMBINATORICS 12 (2005), #R19 3



could be enlarged if it did not contain (nearly) the whole interval (I3, r3] and consequently
almost all elements from (I3, 73] and (I1, 7], so that in fact almost nothing happens during
the transformation of an extremal set.

Lemma 2 Let A C [1,n] be k-sum-free. Leti € N.
a) A; is k-sum-free.
b) [Ail = [Aial.

Proof. a) Clearly, it is enough to prove the claim for i < ¢, so we may assume that s < r;.
Suppose there are a,b,c € A; with a + b = ke. A; is of the form

Ai = Ai,1 N [S,T’Z’Jrl] U (li,ri] N [s,n] U (li,l,ri,l] Uu...u (ll,Tl].

If ¢ € (I1,r1], then k¢ > 2n, which is impossible. If ¢ > 2 and ¢ € (;,r;] for some

J € [2,i], then kc € (2r;,1;_1 + s] and the larger one of a,b must be in (r;,l;_4]. But
(r;,1;21] N A; = 0 by construction. Hence ¢ € A;_y N [s,r;11]. Now, ke < kriyy <1 + s.
Since (riy1,0;] N A; = 0, both a and b have to be in A; 1 N [s,7301] = AN[s,r;q]. But A
is k-sum-free, a contradiction.

b) The inequality is trivial for ¢ > ¢. For 1 <14 < ¢t we have that [; > s and hence
i—1
Ai= (AN [Lrin]) U (i, U (U(b’:ﬁ]) :
j=1
Thus it suffices to prove that

—
[Aima VL ]| < A O [1 ]| + [u-‘ :

k

Clearly, then, it suffices to prove the inequality for ¢ = 1, i.e.: to prove that, for any n > 0,
and any k-sum-free subset A of [1,n] with smallest element s,4, we have

A< 1An L reall + | S22 )

where

The proof is by induction on n. The result is trivial for n = 1. So suppose it holds for all
1 <m < nandlet A be a k-sum-free subset of [1,n]. Note that the result is again trivial if
sa > 2n/k, so we may assume that s4 < 2n/k, which implies that 7, 4 < n/k, since k > 4.
First suppose that there exists z € AN (n/k,2n/k]. Then 1 < kx —n < n and the
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map f:y— kx —y is a 1-1 mapping from the interval [kx — n, n] to itself. For each y in
this interval, at most one of the numbers y and f(y) can lie in A, since A is k-sum-free.
To simplify notation, put w := kx — n — 1. Then our conclusion is that

AN (w,n]] < = (n — w). (3)
If w=0orif AN[l,w] =0, then we are done (since k > 4). Put B := AN [1,w]. Then
we may assume B # (), hence sp = s4. Applying the induction hypothesis to B, we find
that

—~ N |

k—2)w
Bl = lAn [l < B Ll + | S22 (@)
But sp = s4 implies that ro 5 < r9 4, hence that BN [1,795] € AN[1,ry4]. Thus (3)
and (4) yield the inequality

AN el + | S22 | 4 S )

which in turn implies (2), since |A| is an integer. Thus we are reduced to completing the
induction under the assumption that A N (n/k,2n/k] = (. Suppose x € AN (rga,n/k|.
Then [2n/k] + sa < kx < n and kx — sa ¢ A. In other words, we can pair off elements
in AN (r2.4,2n/k] with elements in (2n/k,n|\A. This immediately implies (2), and the
proof of Lemma 2 is complete. O

We have seen so far that any k-sum-free set A can be turned into a k-sum-free set A,
having overall size at least |A|. The set A, is a union of intervals, as given by (1), though
note that the final interval [«, ] may consist of a single point, since r; = s is possible.
The proof of the following Lemma uses a fact shown in [3] by Chung and Goldwasser, to
prove that ¢ must be equal to three if |A| is maximum.

Lemma 3 Let A be a mazimum k-sum-free subset of [1,n], where n > ny(k) is sufficiently
large. Let s := ss and let t := max{i € N | r; > s}. Thent = 3.

Proof. Let A; be the set of positive integers given by (1). In a similar manner we now
define a k-sum-free subset A; of (0, 1]g.
Put ¢ := s/n and, for i = 1,...,t define real numbers R;, L; as follows :

_2Ri Li—i-c

R1 = 1, Lz : 2 s RiJrl = 2

Then we put

Jj=1

A; = [@/,Rt)R U (U[Lj,Rj)R> )
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where o := max{L;, c}. That A} is k-sum-free is shown in [3]. One sees easily that
[Add < - p(A)) + 2, ()

where 11 denotes the Lebesgue-measure. Now suppose that ¢ # 3. It is shown in [3] that
there exists a constant ¢, > 0, depending only on k, such that in this case

k(k —2) 8(k — 2)

o2 k(-2 2k —4) " (6)

(A <

In fact, in the notation of page 8 of [3], an explicit value for ¢; (which we will use later)
is given by

which by definition of R amounts to

B 8(k* — k2 — 4)(k — 2) .
T RS — 2kt — 42 — 8) (k' — 2k2 — )k (7)

Now (5) and (6) would imply that

k(k —2) 8(k — 2)
2 TR o) — 2k —4)

|A| < n —cgn +t.

But we have seen in the introduction that |A| > klglj:;)n + k(kQ_;((]Zi)2k2_4)n + O(1) and,
since t = O(log, n), we thus have a contradiction for sufficiently large n. Hence ¢ must

equal three, for large enough n, as required. U

Now we are nearly in a position to determine f(n,k). We want to calculate the car-
dinality of an extremal k-sum-free set A via computing |Asz|. Since |As| depends on sg4,
the following lemma will be helpful :

Lemma 4 Let n > ng(k) be sufficiently large. If A is a mazimal k-sum-free subset of

[1,n], then S — 2k < s4 < S+ 3, where S := | =t%—|.

Proof. Set s := s4. By Lemma 3, for n > ng(k) we have r, < s. Since A is maximal we
have |A| = |As|. Now, for a fixed n, the cardinality of A3 is a function of s € [1,n] only. So
we need to show that | A3(s)| attains its maximum value only for some s € [S — 2k, S + 3].
Define

/

s’ :=min{s € [1,n] : l3(s) < s}.

A tedious computation (see the Appendix below) yields that s’ = S + 1 if k is even and
s =S5 or S+ 1if kis odd. Hence

s €[S, S+ 1. 8)
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Clearly,

(k=2)n

s)| = [E=2] 4 ra(s) — Ia(s) +73(s) — s+ 1, if s>,
[As(s)] { (TQW +7a(s) — la(s) +13(s) — I3(s), ifs<s. (9)

How does |A3(s)| change (ignoring its maximality for a while) if we alter s?

First suppose s > §'. If s increases by one, then |As| will decrease by one unless either
r9 or 13 increases. Now 75 can only increase (by one) once in k(> 4) times. Almost the
same is true of r3, though its dependence on /5 makes things a little more complicated.
However, it is not hard to see that we encounter an irreversible decrease in the cardinality
of |As| after at most 3 steps of increment of s. Hence |A3(s)| < |A3(s")] if s > &' + 3.
Next suppose s < s'. If we decrease s, then |As| cannot increase at all, since [; will not
decrease unless r; does. Moreover, | A3| will become smaller if the size of any interval is di-
minished. So we can focus our attention on (lg, r2]. While ro decreases once in k times, Iy
does so no more than once in k| 4| > 2k times. Thus |A;(s)| < |A3(s'—1)|if s < §'—1—2k.

We have now shown that, as a function of s € [1,n], the cardinality of Az attains its
maximum only for some s € [s' — 2k, s’ + 2|. This, together with (8), completes the proof
of the lemma. O

Now we can prove the first conjecture of Chung and Goldwasser.

Theorem 1

o SR k=) s(-2)
n—oo M k% —2 k(k? —2)(k* — 2k — 4)
Proof. Let A be a maximum k-sum-free set in [1,n], with n sufficiently large. From
Lemma 4 we have 24 = 2= 4 o(1), where 5* = 2% Thus we can estimate
k A —1 —1 —S*+1
f(n, k) _ ’ 3’:71 1+ 72— lp+ 73 + +o(1)
n n n
1 _2_71_1_271—1—165*_4n—i—2k5*_i_471—1—2/@5“‘—l—k?’S*_S>k (1)
- a\"T 2 K it 0
KU 2k3 4+ 2k2 —dk+4  S* ,
= i +nk3(2k —2k+2—k) +o(1)
_ k4—2k3+2k2—4k+4+ 8(2k%* — 2k + 2 — k) (D)
B k4 (k5 — 2k3 — 4k)k3
K =2k — 4k +8 +o(1)
(K- 2k2 -4k
k(k — 2) 8(k — 2)
pu— 1
2 Tz oW
and the claim follows by taking the limit. 0

We can now show the main result.
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Theorem 2 Let k € N5y and n > ny(k). Let S and s’ be as in Lemma 4. Let A C
{1,...,n} be a k-sum-free set of maximum cardinality, with smallest element s = sa.
Then s € [S,S + 3] and A = I3 UZy ULy, where

{ls, 73], [s,r3 + 1]}, if s>
L€ {{[S,T) (s, 7] \ {rs — 11}, if s < o,
7, € {{U2+2 1o, [l + 2,0 + 1]}, ifrs+1e A
{(o,ra], (b2 + 1], [l m2), [lo, o] \ {r2 = 1}}, if s +1 ¢ A,
T, ¢ {{[l1+2n]} ifro+1€A
{lli,n), (L, n], (Lo \{n = 1}}, ifra+1¢ A,

If k is even, then Z; # [l;,r;] \ {ri — 1} for 1 <i <3.

Remark. Note that Theorem 2 does not precisely determine the k-sum-free subsets of
{1,...,n} of maximum size, for every n > ni(k). With n and k fixed, one first needs
to determine for which value(s) of s € [S,S + 3] the quantity |A3(s)|, as given by (9),
is maximized. The result will depend on n and k. Even then, for a fixed s, not all the
possibilities for Z3UZs, UZ; need be k-sum-free. See Section 4 below for further discussion.

Proof. We have already seen that |As] = |A]. Our first aim is to show by compar-
ing A3 with Ay that almost the whole interval (I3, 73] must be in A. Having achieved
this, we infer by Lemma 1 that (rs,l3] N A is nearly empty. Comparing Ay with A; will
then reveal that most of (I, 7] is contained in A. Again Lemma 1 will help us to see
that A cannot share many elements with (ry, [;] and a final comparison of A; with A will
conclude the proof.

(I) The first aim is easily reached if s := s4 > I3 + 1. Simply note that

A2 = (A N [8,7“3]) U (lg,?"g] U (11,7"1] - [8,7’3] U (12,7“2] U (ll,Tl] = Ag.
The maximality of |As| gives A2 = A3 and hence [s, 73] C A. Observe that s > I3 together
with Lemma 4 and (8) give S < s <S5+ 3.

Assume now that s < I3. We want to show that in this case s = 3. Suppose s < I3
and let B =[S — 2k, 3] N A. Define
=,u |J 1

beB\{sp}

Clearly C' C (I3,73] for all n > 0. Then since C' is the union of disjoint intervals, Lemma,
1 gives that |C'\ A| > |B|. Hence we get the contradiction |As| = [(A2 \ B) U (I3, 7r3]| >
|(A2\ B)U(C'\ A)| > |A2| — |B| + | B| = | A2|. Therefore we are left with s = I3, and this
implies

|[As| = [As] <= AN [s,75]| = |(Is, 5] O [, 73] | = [ (s, 73] (10)
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If r3 ¢ A we can infer from (10) that
AN (s 3] = [s,r3 — 1] = [l3, 73 — 1].
If r3 € A, Lemma 1 gives ki —r3 ¢ A, s0 —k+1 < klyg—2r3 < —1. If kI3 —2r; < —2 we

get I} C (I3,73] and |1}, \ A| > 2, which is impossible since this would imply |A;] > |A,|.
Hence kl3 — 2r3 = —1 and k is odd. Using (10) one obtains

Aﬂ[s,rg] = [lg,Tg]\{T’g—l}.
Suppose now that s = I3 and r3 + 1 € A. Then kl3 — (r3+ 1) ¢ A and
Tg-kﬁklg-(?“g-'-l) §7’3—1.

This contradicts that [s,r3 — 2] C A unless ki3 — (r3 + 1) = r3 — 1, but then r3 ¢ A and
|ANs,r3]| =|AN][s,r3 — 2]| which contradicts (10). Hence r3 +1 ¢ A if s = I3.

Finally note that, if s = I3 and kl3 > 2r; — 1, the latter being a requirement for ei-
ther of the two possibilities for Z3 to be k-sum-free, then another computation similar to
the one in the Appendix yields that s > S. Again, using Lemma 4 we obtain

S <s<S+3, (11)
as claimed in the statement of the theorem. This completes the first part of our proof.

(IT) For the second part note that we have just shown

Plugging (11) into the definition of I3 yields (after a further tedious computation similar
to that in the Appendix)
S—1<I3<S+1, (13)

which implies in view of (12) and (11)
l3§8§l3+4. (14)

Moreover we have observed that [s,73—2] C A. Let &,...,& € {0,...,k—1} be constants
such that

kll == 27”1 — 51 15
lf?“g = ll + s — 52 16
klg = 27”2 — £3

krs = ly+s—§&
klg = 27“3—55.

e N N N
—_
— — — ~— —
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We suppose that n is sufficiently large, so we can be sure that
(ks — (13 — 2), k(rs —2) —s]N A= 0.
By (14) we can infer that
0 = [k(ls+4)—(r3—2),k(rs—2)—s|NA
= [r3— &+ 4k +2,1— & — 2k N A.

Let J=[rs+2,13 =& +4k+1]NAand K =, {kx — (s +2),kx — (s + 1), kz — s}.
Then K N A=, |K|=3|J| and by (18) and (19) we have

KClla—&+2k—2ly— & — k& + 4" + k] C (o + k — 2,10 + 4k* + k] C (I + 2,72],

ifn>0 Let B=[la —& —2k+1,1t]NA. If BUJ C{ly} then AN[rs+2,l,—1] =10
Otherwise, with C' as in part (I) if |[B| > 1 we can verify that C' C [ry — ?”“2_%,7“2] C
(Ig + 1,7r9], for n > 0, and |C'\ A| > |B|. Put C := 0 if |B| < 1. For large n, K and C
are disjoint. Hence |BU J| < [(C'\ A) U K| and we get

|Ao| = [[AL\ (JUBU{rs + 1})] U (Ig, mo]| > [A1 \ {75+ 1}].

Thus if r3 + 1 & A we get |Ay| > |A;| so suppose r3 + 1 € A. Then neither Iy nor Iy + 1
can be in A;. Otherwise, since (s — &4+ k), s —&+k—1€ [s,s+k] Cls,r3—2] C A we
get

k(rs+1)=l+(s—&+k)=U+1)+(s—&+k—1),

which is impossible. But ls + 1 € A, so also in this case it follows that |As| > |A;], since
lo+1¢ KUC for large n. Again we conclude that AN [r3+ 2,1, — 1] = (). Consequently,

| Ao = |Ai] & [AN([lg, o] U{rs + 1})| = [(l2, 2]l

which gives AN[lg, o] = [lo+2,1m) if r3+1 € A If r3+1 ¢ A and either Iy ¢ Aorry ¢ A,
we get AN |[ly,ro] = (Io, 9] or AN [la, 73] = [la, r2), respectively. In case r3 + 1 ¢ A and
both Iy, 79 € A, we see that kly —re =19 — & ¢ A. If & > 2 then 1112 C (I3, 72] and Iy
could be profitably replaced. Hence {3 = 1, AN [lg, ro] = [la, 7] \ {r2 — 1} and k is odd.

(III) For the final interval (Iy,71] we use Lemma 1 to conclude from
[s,r3—2] CAand [l +2,r,—2]C A

in view of (16) and (17) that, for n > 0,

0 = ANn[k(la4+2) = (re —2),k(ra —2) — (la + 2)]

= AN[ro—&+2k+2,11 +s— & — 2k — 1y — 2], and
0 = Ank(ly+2) — (r3 —2),k(re — 2) — 5]

— AN [2r — &+ 2k — 7+ 2,1 — & — 2K]
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Let J=[ro+ 2,10 — &+ 2k +1]NAand K = Upej{kx — s, kx — (s+ 1), kz — (s + 2)}.
From (14) we have

KClly—&+2k—2,0; —& — k& + 2K + k) C (I + k— 2,1, ifn>0.

Let B=1[ly —& —2k+ 1, 4] N A If sp < l; with C' as in (I) we can verify that, for

sufficiently large n,

2T1—£1—k€2—2]€2+k—5
2

C g y 1 g (lh Tl]y
|C'\ A| > |B| and max K < s¢. By analogy with part (II) we get AN [ro 4+ 2,0 — 1] =0
and the rest of the claim follows as before. O

4 Estimates and Periodicity

We first want to estimate values of n;(k), ¢ = 0, 1, for which Lemmas 3 and 4, and Theorem

2 respectively are valid. The estimates we shall arrive at can probably be improved upon.

The example of a k-sum-free set A in [3], referred to in the proof of Lemma 3, satisfies
k(k —2) 8(k —2)

A 3.
A e " sy e —

Hence the proof of Lemma 3 goes through provided n is sufficiently large so that
cgn —tg > 3, (20)

where tg = to(n, k) is the largest possible value for ¢ in Definition 1. Now from Definition
1 we easily deduce that, if ¢ < ¢, then r;1; < (l;%) r;, and hence that r, < (k%)t*l n. Since
r; > 1 a priori, we can thus estimate

1

Since, by (7), cx = O(35), we thus deduce from (18) and (19) that one can take ng(k) =
O(k®). Tt is then an easy and tedious exercise to go through the proof of Theorem 2 and
check that one can also take n(k) = O(k").

Next, we explain what we mean by the word ‘periodicity’ in the title of this section.
If k > 4 is even then, for n > 0, we have s’ = S+ 1 = | z—%— | + 1. Hence for a fixed
k, if we regard s as a function of n, then s'(n) + 1 = s'(n + py), where py := %.
For odd k, we define p;, := k® — 2k3 — 4k and in this case, a little more care is required to

check that s'(n) + 8 = s'(n + py).
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Now for any k and n, let F(k,n) denote the family of maximal k-sum-free subsets of
{1,...,n}. Then for n sufficiently large, as estimated above, and k even (resp. k odd), the
map s — s+ 1 (resp. s+ s+ 8) clearly induces a 1-1 correspondence between the sets in
F(k,n) and F(k,n+ px). This is what we mean by ‘periodicity’. This observation clearly
reduces, for any fixed k, the full classification of all k-sum-free subsets of {1, ...,n}, for all
n, to a finite computation.

47

18990 Then Lemma

As an example, we now look at k = 4. By (7) we compute ¢, =
3 is valid at least for all n satisfying

1
c4n—§log2n—123,

which reduces to n > 11008. One can then check that the proof of Theorem 2 also goes
through for all such n. We have py = 110. We now present the full classification of all
4-sum-free subsets of {1, ...,n}, valid (at least) for all n > 11008. This was obtained with
the help of a computer.

For each s,n € N we define the sets J,(s), 1 < o < 13, as follows (the /; and r; are
functions of s and n as in Definition 1) :

Ji = [S,r3 =1 U][lg,rs — 1] U [l;,n — 1],

Jo = [S,r3 =1 U[lg, o — 1 U[l; + 1,n],

J3 = [S,r3 =1 U[la+ 1,r] U[l;,n — 1],

Jy = [S;r3—=1U[la+ 1,r] U[l; + 1,n],

Js = [S;r3—=1U[lo+1,re + 1] U [l1 + 2,n],
Jo(s) = [s,r3]Ulla, o — 1] U [l1,n — 1],
J7(s) = [s,r3]Ulla, o — 1] U [l1 + 1,1,
Js(s) = [s,r3|Ulla+ 1,10 U[ly,n — 1],
Jo(s) = [s,m3]U[la+1,m]Uly +1,n],
Jio(s) = [s,r3|Ulla+1,ro+ 1] U1 + 2,n],
Jii(s) = [s,r3+ 1 U[ls + 2,7 U[ly,n — 1],
Jio(s) = [s,r3+ 1 U[la + 2,1 U1 + 1, n],
Jis(s) = [s,r3+ 1 U[la + 2,70+ 1 U[l; + 2,n].

Note that, by Theorem 2, for a given n > 11008, every maximal 4-sum-free subset of
{1,...,n} is one of the sets J,(s), for some s € [5,5 +3] = [ — 1,5 + 2]. By the
remarks above, for each i € {0,...,109}, there are natural 1-1 correspondences between
the sets in the families F(4,n) for all n = ¢ (mod 110). By slight abuse of notation, we
denote any such family simply by F;. Our computer program yielded the following result :

If | 73| = 1, then i = 6,7,22,23,46,47,49, 51,54, 55,57, 59, 61,70, 71,73, 75, 77, 86, 87, 89
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or 91 and
{Jo(s")},
or i = 36,37,100 or 101 and
Fi = {Jo(s+1)}.
If |F;| = 2, then F; is
{Jo(s"), Jo(s" + 1)} if ¢ =93,103,105, 107,

{Js, Jo(s)} if i=09,11,13,25,27,
{Js(s), Jo(s')} if i=48,50,56,58,60,72,74,76,88,90

{J:(s), Jo(s)} if i=63,65,67,79,8l.

If |F| =3:
Fs=Fou = {Ju, Js(s), Jo(s")},
Fis = {Ja, J1(s)), Jo(s))},
Fag = {Ju, Jo(s), Jo(s" + 1)},
Fzg = {Jo(s), J12(s'), Jo(s" + 1)},
Foo=Frs = {Js(s), J2(s), Jo(s')},
Fsz = {Jo(s), Jio(s"), Jo(s" + 1)},
Fss = {J:(s), Jo(s'), Jo(s" +2)}
Foo = {Js(s), Jo(s'), Jo(s" + 1)}
Fos = For = {J7(8), Jo(s'), Jo(s' + 1)},
Froe = {Jo(s), Js(s' + 1), Jo(s" + 1)}
Froo = {Jo(s"), J7(s"+ 1), Jo(s" + 1)}
If | F| = 4:

fl :fg :.FN = {JQ,J4,J7(S/),J9(S/)},
Fro=Fi2=1Fp = {JS: Ja, JS(S/), J9(5/)},
Fss = {Jo(s'), Jia(s'), Js(s' + 1), Jo(s' + 1)},
Fu=Fuz = {Ju, Jo(s'), Jia(s), Jo(s' + 1)},
Fso= = {Js(8), Jo(5"), J1o("), Jo(s" + 1)},
Foa=Foo = Fso = {Js(s), J2(5"), Js(5'), Jo(s') },
Froa =Fos = {Js(8), Jo(s'), Js(s" + 1), Jo(s" + 1)},
Foo = {J2(s"), Jo(s"), Juo(8), Jo(s" + 1)}

/
S
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If |F|=5:

Fruu = {J3,J4, Je(s), J7(s), Jo
Fro = {Jo, Ju, J2(s), Jo(s), Jy
Fog = {J3,J4:J8( ,) ( )
Fa1 = {Ju, J7(8), Jy

Fao = {Jols)), Jo(s), s ’>~]9 9), Jo(s' +2)},

Foo = {Js(s), Jo(s'), Jo(s'), Ja(s' + 1), Jo(s" + 1)},
Fog = {Ja(8), Jo(s'), Jo(s' + 1), Jio(s" + 1), Jo(s" +2)},
Fros = {Js(s), Jo(s"), Jo(s" + 1), Jo(s" + 1), Jo(s' + 1)}.

If | F;| = 6:

Fs = {Jo, Ju, Jo(s'), Jo(s), Jio(s"), 9(3’ + 1)},

Faz = {Jo, Ju, J2(8'), Jo )}

Fis = {Ja, Jo(s), Jia(s’ ,J13(S/),J7(S +1), Jo(s" + 1)},

Fos = {Js(s), Ja(s), Js s Jio(s), Jo(s" + 1)},

Fss = {J2(8"), Jo(s'), Jio s 1), Jia(s' + 1), Jo(s' +2)},
Fos = {Js(5"), Jo(s"), Js(s"), Jo(s'), Ja(s' 4+ 1), Jo(s" + 1)}

If |F|l="T:
Fo=Fie = {J1,Jo, Ju, J6(5/): J7(5/): JS(SI): J9(5/)}a
Fro = {Ju, Js(s), Jo(s"), Ji1(s"), Ji2(s'), Js(s" + 1), Jo(s" + 1)}.
If |F| =8:

Fo = AJ1, Jo, I3, Iy, Jg(s'

Fau = {Jo, Ju, Jo(8'), Jo(

Fso = {J3,Ja, Js(5'), Jo(s'
(s
(

~—

,J2(s), Js(s7), Jo(s) ),

,Jl()(S,) Jg(S —f-]_) J12(8/+1),J9(S,+2)},

,Jg(sl) Jlg( ) JS(S/+1),J9(S/+ 1)},

,Jlg(S) JQ(S +1),J10(S/+1),J9(8,+2)},

,J1(s'), Jia(s'), Js(s" + 1), Jo(s" + 1)},

,Jo(s)), Js(s + 1), Jo(s" + 1), Jio(s' + 1), Jo(s' +2)}.

/
S

(s')

Fzs = {Ja, Ju, J2(5') '
f42 = {Jg,J4,J8(S/),J9 S/
Fog = {Js(s), J2(5)

If | 7| =09:

flS = {J17J27<]37J47‘]6(8, 7‘]7(8, ( ) ( ) J9(S +2)}

Faa = {Js(s), J7(8"), Js(s'), Jo(s"), Jio(s'), Jo(s' + 1), Jia(s" + 1), Js(s' + 2), Jo(s' + 2)}.

If | 7| = 10:

Fo = {1, o, I3, Ju, Js(8'), Jo(s'), Js(s), Jo(8'), Juo(s'), Jo(s" + 1)},
f44 = {Jg, J4, JS(S/), JQ(S/), Jll(S/), Jlg(S/), Jlg(S/), Jﬁ(S/ + 1), J7(S/ + 1), JQ(S/ + 1)}

~ — o

THE ELECTRONIC JOURNAL OF COMBINATORICS 12 (2005), #R19 14



If |F;| = 11,13 or 14, we get precisely one family for each size:

Fzo = {1, Jo, Ju, Jo(s), J7(s'), Js(s'), Jo(s"), J11(8"), Jia(s'), Js(s' + 1), Jo(s' + 1)},
Foo = {J1, o, I3, Ja, J6(8), J7(s"), Js(s'), Jo(s), Jio(s),

Jo(s"+ 1), Jia(s' + 1), Js(s" + 2), Jo(s' + 2)},
Fag = {1, Jo, I3, Ju, J(8), J2 ("), Je ('), Jo(s'), Ji1(s'), Ji2(s),

Js(s'+ 1), Jo(s" + 1), Jio(s" + 1), Jo(s" + 2)}.

Note, in particular, that |F(4,n)| < 14 for all sufficiently large n. Computer simulations
suggest the same may be true for any even k, with a similar result for odd k, but we leave
the investigation of this possibility to a subsequent paper.

Appendix

As a prototype for a type of calculation which appears in several places in the paper, we
now show, in the notation of Lemma 4, that s = S + 1 when k is even.

We must investigate the condition I3(s) < s. By definition of I3 this is just

k k 2 27 TE T2
<:>l2<(k—Q—l)sﬁ@<(k—2—1)s<:>r2<(k—?)—ﬁ)s
2 k 2 4 2
& l1+8<(k—3—§)s©ll<(k—4—k—2—1)s
k 4 2 4 2

o Mo k—4—k—2—1 sen< Pk _k soss o
k 4 2 8 4 2 kS — 2k3 — 4k

&S s> 8.

LQT;;J 2rs ks V2+SJ ks la+s ks
Tl <s e T <sen<oe | - -

Thus s’ = S + 1, as required.
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