
The Structure of Maximum Subsets of {1, . . . , n} with
No Solutions to a + b = kc

Andreas Baltz∗

Mathematisches Seminar
University of Kiel, D-24098 Kiel, Germany

aba@numerik.uni-kiel.de

Peter Hegarty, Jonas Knape, Urban Larsson
Department of Mathematics

Chalmers University of Technology
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Abstract

If k is a positive integer, we say that a set A of positive integers is k-sum-free if
there do not exist a, b, c in A such that a + b = kc. In particular we give a precise
characterization of the structure of maximum sized k-sum-free sets in {1, . . . , n} for
k ≥ 4 and n large.

1 Introduction

A set of positive integers is called k-sum-free if it does not contain elements a, b, c such
that

a + b = kc,
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where k is a positive integer. Denote by f(n, k) the maximum cardinality of a k-sum-free
set in {1, . . . , n}. For k = 1 these extremal sets are well-known: Deshoulliers, Freiman,
Sós, and Temkin [1] proved in particular that the maximum 1–sum-free sets in {1, . . . , n}
are precisely the set of odd numbers and the “top half” {⌈n+1

2

⌉
, . . . , n}. For n > 8 even

{n
2
, . . . , n − 1} forms the only additional extremal set. The famous theorem of Roth [4]

gives f(n, 2) = o(n). Chung and Goldwasser [2] solved the case k = 3 by showing that the
set of odd integers is the unique extremal set for n > 22. For k ≥ 4 they gave an example
of a k-sum-free set [3] of cardinality k(k−2)

k2−2
n + 8(k−2)

k(k2−2)(k4−2k2−4)
n + O(1), which implies

limn→∞
f(n,k)

n
≥ k(k−2)

k2−2
+ 8(k−2)

k(k2−2)(k4−2k2−4)
, and they conjectured that this lower bound is

the actual value. Moreover they conjectured that extremal k-sum-free sets consist of three
intervals of consecutive integers with slight modifications at the end-points if n is large.

In this paper we prove that the first conjecture is true, and we expose a structural result
which is very close to the second. Our proof is elementary. In fact it is based on two
simple observations:

Suppose we are given a k-sum-free set A. Then

• kx − y /∈ A for all x, y ∈ A
(Otherwise we could satisfy the equation kx = (kx − y) + y in A.)

• for all y ∈ A any interval centered around ky
2

cannot share more than half of its
elements with A.
(Otherwise we would find a pair

⌊
ky
2

⌋− d,
⌈

ky
2

⌉
+ d in A, giving(⌊

ky
2

⌋− d
)

+
(⌈

ky
2

⌉
+ d
)

= ky.)

2 Preparations

Let n ∈ N be large and let k ∈ N≥4. We start by agreeing on some notations.

Notations

Let A ⊆ {1, . . . , n} be a set of positive integers. Denote by

sA := min A and mA := max A

the smallest and the largest elements of A respectively.

For l, r ∈ R let

(l, r] := {x ∈ N | l < x ≤ r}
[l, r) := {x ∈ N | l ≤ x < r}
(l, r) := {x ∈ N | l < x < r}
[l, r] := {x ∈ N | l ≤ x ≤ r}
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abbreviate intervals of integers. Continuous intervals will be indicated by the subscript R.

Furthermore for any y ∈ N and d ∈ N0(:= N ∪ {0}) put

Id
y :=

[
ky − 1

2
− d,

ky + 1

2
+ d

]
.

Note that if ky is even then Id
y =

{
ky
2
− d, ky

2
− d + 1, . . . , ky

2
+ d
}

and |Id
y | = 2d+1, while

if ky is odd we have Id
y =

{
ky−1

2
− d, . . . , ky+1

2
+ d
}

and |Id
y | = 2d + 2.

The first Lemma restates our introductory observations.

Lemma 1 Let A ⊆ [1, n] be a k-sum-free set. If x, y ∈ A then kx − y /∈ A. If y ∈ A and
d ∈ N0 then |Id

y \ A| ≥ d + 1.

Suppose A′ is a k-sum-free set consisting of intervals (li, ri]. The interval (li, ri] is k-
sum-free if li ≥ 2ri

k
. Moreover we observe that reasonably large consecutive intervals

(li+1, ri+1], (li, ri] (where we assume ri+1 < li) should satisfy kri+1 ≤ li +sA′ . This leads to
the following definition, describing a successive transformation of an arbitrary k-sum-free
set A into a k-sum-free set of intervals.

Definition 1 Let n ∈ N and let A ⊆ [1, n] be k-sum-free with smallest element s := sA.
Define sequences (ri), (li), (Ai) by:

A0 := A, r1 := n,

li :=

⌊
2ri

k

⌋
, ri+1 :=

⌊
li + s

k

⌋
,

Ai := (Ai−1 \ (ri+1, li]) ∪ (li, ri] ∩ [s, n] for i ≥ 1.

The letter t = tA will be reserved to denote the least integer such that rt+1 < s. Observe
that, for all i ≥ t,

Ai = At = [α, rt] ∪
(

t−1⋃
j=1

(lj, rj]

)
, (1)

where α = αA := max{lt + 1, s}.

3 The structure of maximum k-sum-free sets

To obtain the structural result we consider the successive transformation of an arbitrary
k-sum-free set A into a set At of intervals as in (1). Our plan is to show that each member
of the transformation sequence (Ai) is k-sum-free and has size greater than or equal to
|A|. For n sufficiently large, depending on k, and a maximum sized k-sum-free subset A
of [1, n], it will turn out that At consists of three intervals only, i.e.: that t = 3. This
observation will do to determine f(n, k), and we conclude our proof by showing that A
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could be enlarged if it did not contain (nearly) the whole interval (l3, r3] and consequently
almost all elements from (l2, r2] and (l1, r1], so that in fact almost nothing happens during
the transformation of an extremal set.

Lemma 2 Let A ⊆ [1, n] be k-sum-free. Let i ∈ N.

a) Ai is k-sum-free.

b) |Ai| ≥ |Ai−1|.
Proof. a) Clearly, it is enough to prove the claim for i ≤ t, so we may assume that s ≤ ri.
Suppose there are a, b, c ∈ Ai with a + b = kc. Ai is of the form

Ai = Ai−1 ∩ [s, ri+1] ∪ (li, ri] ∩ [s, n] ∪ (li−1, ri−1] ∪ . . . ∪ (l1, r1].

If c ∈ (l1, r1], then kc > 2n, which is impossible. If i ≥ 2 and c ∈ (lj , rj] for some
j ∈ [2, i], then kc ∈ (2rj, lj−1 + s] and the larger one of a, b must be in (rj, lj−1]. But
(rj, lj−1] ∩ Ai = ∅ by construction. Hence c ∈ Ai−1 ∩ [s, ri+1]. Now, kc ≤ kri+1 ≤ li + s.
Since (ri+1, li] ∩ Ai = ∅, both a and b have to be in Ai−1 ∩ [s, ri+1] = A ∩ [s, ri+1]. But A
is k-sum-free, a contradiction.

b) The inequality is trivial for i ≥ t. For 1 ≤ i < t we have that li ≥ s and hence

Ai = (Ai−1 ∩ [1, ri+1]) ∪ (li, ri] ∪
(

i−1⋃
j=1

(lj, rj]

)
.

Thus it suffices to prove that

|Ai−1 ∩ [1, ri]| ≤ |Ai−1 ∩ [1, ri+1]| +
⌈

(k − 2)ri

k

⌉
.

Clearly, then, it suffices to prove the inequality for i = 1, i.e.: to prove that, for any n > 0,
and any k-sum-free subset A of [1, n] with smallest element sA, we have

|A| ≤ |A ∩ [1, r2,A]| +
⌈

(k − 2)n

k

⌉
, (2)

where

r2,A :=

⌊b2n/kc + sA

k

⌋
.

The proof is by induction on n. The result is trivial for n = 1. So suppose it holds for all
1 ≤ m < n and let A be a k-sum-free subset of [1, n]. Note that the result is again trivial if
sA > 2n/k, so we may assume that sA ≤ 2n/k, which implies that r2,A ≤ n/k, since k ≥ 4.

First suppose that there exists x ∈ A ∩ (n/k, 2n/k]. Then 1 ≤ kx − n ≤ n and the
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map f : y 7→ kx− y is a 1-1 mapping from the interval [kx− n, n] to itself. For each y in
this interval, at most one of the numbers y and f(y) can lie in A, since A is k-sum-free.
To simplify notation, put w := kx − n − 1. Then our conclusion is that

|A ∩ (w, n]| ≤ 1

2
(n − w). (3)

If w = 0 or if A ∩ [1, w] = ∅, then we are done (since k ≥ 4). Put B := A ∩ [1, w]. Then
we may assume B 6= ∅, hence sB = sA. Applying the induction hypothesis to B, we find
that

|B| = |A ∩ [1, w]| ≤ |B ∩ [1, r2,B]| +
⌈

(k − 2)w

k

⌉
. (4)

But sB = sA implies that r2,B ≤ r2,A, hence that B ∩ [1, r2,B] ⊆ A ∩ [1, r2,A]. Thus (3)
and (4) yield the inequality

|A| ≤ |A ∩ [1, r2,A]| +
⌈

(k − 2)w

k

⌉
+

1

2
(n − w),

which in turn implies (2), since |A| is an integer. Thus we are reduced to completing the
induction under the assumption that A ∩ (n/k, 2n/k] = ∅. Suppose x ∈ A ∩ (r2,A, n/k].
Then b2n/kc + sA < kx ≤ n and kx − sA 6∈ A. In other words, we can pair off elements
in A ∩ (r2,A, 2n/k] with elements in (2n/k, n]\A. This immediately implies (2), and the
proof of Lemma 2 is complete. �

We have seen so far that any k-sum-free set A can be turned into a k-sum-free set At

having overall size at least |A|. The set At is a union of intervals, as given by (1), though
note that the final interval [α, rt] may consist of a single point, since rt = s is possible.
The proof of the following Lemma uses a fact shown in [3] by Chung and Goldwasser, to
prove that t must be equal to three if |A| is maximum.

Lemma 3 Let A be a maximum k-sum-free subset of [1, n], where n > n0(k) is sufficiently
large. Let s := sA and let t := max{i ∈ N | ri ≥ s}. Then t = 3.

Proof. Let At be the set of positive integers given by (1). In a similar manner we now
define a k-sum-free subset A′

t of (0, 1]R.
Put c := s/n and, for i = 1, ..., t define real numbers Ri, Li as follows :

R1 := 1, Li :=
2Ri

k
, Ri+1 :=

Li + c

k
.

Then we put

A′
t := [α′, Rt)R ∪

(
t−1⋃
j=1

[Lj , Rj)R

)
,
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where α′ := max{Lt, c}. That A′
t is k-sum-free is shown in [3]. One sees easily that

|At| ≤ n · µ(A′
t) + t, (5)

where µ denotes the Lebesgue-measure. Now suppose that t 6= 3. It is shown in [3] that
there exists a constant ck > 0, depending only on k, such that in this case

|µ(A′
t)| ≤

k(k − 2)

k2 − 2
+

8(k − 2)

k(k2 − 2)(k4 − 2k2 − 4)
− ck. (6)

In fact, in the notation of page 8 of [3], an explicit value for ck (which we will use later)
is given by

ck =
2

k
(R(3) − R(4)),

which by definition of R amounts to

ck =
8(k4 − 4k2 − 4)(k − 2)

(k6 − 2k4 − 4k2 − 8)(k4 − 2k2 − 4)k
. (7)

Now (5) and (6) would imply that

|A| ≤ k(k − 2)

k2 − 2
n +

8(k − 2)

k(k2 − 2)(k4 − 2k2 − 4)
n − ckn + t.

But we have seen in the introduction that |A| ≥ k(k−2)
k2−2

n + 8(k−2)
k(k2−2)(k4−2k2−4)

n + O(1) and,

since t = O(logk n), we thus have a contradiction for sufficiently large n. Hence t must
equal three, for large enough n, as required. �

Now we are nearly in a position to determine f(n, k). We want to calculate the car-
dinality of an extremal k-sum-free set A via computing |A3|. Since |A3| depends on sA,
the following lemma will be helpful :

Lemma 4 Let n > n0(k) be sufficiently large. If A is a maximal k-sum-free subset of
[1, n], then S − 2k ≤ sA ≤ S + 3, where S := b 8n

k5−2k3−4k
c.

Proof. Set s := sA. By Lemma 3, for n > n0(k) we have r4 < s. Since A is maximal we
have |A| = |A3|. Now, for a fixed n, the cardinality of A3 is a function of s ∈ [1, n] only. So
we need to show that |A3(s)| attains its maximum value only for some s ∈ [S−2k, S +3].
Define

s′ := min{s ∈ [1, n] : l3(s) < s}.
A tedious computation (see the Appendix below) yields that s′ = S + 1 if k is even and
s′ = S or S + 1 if k is odd. Hence

s′ ∈ [S, S + 1]. (8)
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Clearly,

|A3(s)| =

{
d (k−2)n

k
e + r2(s) − l2(s) + r3(s) − s + 1, if s ≥ s′,

d (k−2)n
k

e + r2(s) − l2(s) + r3(s) − l3(s), if s < s′.
(9)

How does |A3(s)| change (ignoring its maximality for a while) if we alter s?
First suppose s ≥ s′. If s increases by one, then |A3| will decrease by one unless either
r2 or r3 increases. Now r2 can only increase (by one) once in k(≥ 4) times. Almost the
same is true of r3, though its dependence on l2 makes things a little more complicated.
However, it is not hard to see that we encounter an irreversible decrease in the cardinality
of |A3| after at most 3 steps of increment of s. Hence |A3(s)| < |A3(s

′)| if s ≥ s′ + 3.
Next suppose s < s′. If we decrease s, then |A3| cannot increase at all, since li will not
decrease unless ri does. Moreover, |A3| will become smaller if the size of any interval is di-
minished. So we can focus our attention on (l2, r2]. While r2 decreases once in k times, l2
does so no more than once in kbk

2
c ≥ 2k times. Thus |A3(s)| < |A3(s

′−1)| if s ≤ s′−1−2k.

We have now shown that, as a function of s ∈ [1, n], the cardinality of A3 attains its
maximum only for some s ∈ [s′ − 2k, s′ + 2]. This, together with (8), completes the proof
of the lemma. �

Now we can prove the first conjecture of Chung and Goldwasser.

Theorem 1

lim
n→∞

f(n, k)

n
=

k(k − 2)

k2 − 2
+

8(k − 2)

k(k2 − 2)(k4 − 2k2 − 4)
.

Proof. Let A be a maximum k-sum-free set in [1, n], with n sufficiently large. From
Lemma 4 we have sA

n
= S∗

n
+ o(1), where S∗ = 8n

k5−2k3−4k
. Thus we can estimate

f(n, k)

n
=

|A3|
n

=
r1 − l1 + r2 − l2 + r3 − S∗ + 1

n
+ o(1)

=
1

n

(
n − 2n

k
+

2n + kS∗

k2
− 4n + 2kS∗

k3
+

4n + 2kS∗ + k3S∗

k4
− S∗

)
+ o(1)

=
k4 − 2k3 + 2k2 − 4k + 4

k4
+

S∗

nk3
(2k2 − 2k + 2 − k3) + o(1)

=
k4 − 2k3 + 2k2 − 4k + 4

k4
+

8(2k2 − 2k + 2 − k3)

(k5 − 2k3 − 4k)k3
+ o(1)

=
k5 − 2k4 − 4k + 8

(k4 − 2k2 − 4)k
+ o(1)

=
k(k − 2)

k2 − 2
+

8(k − 2)

k(k2 − 2)(k4 − 2k2 − 4)
+ o(1),

and the claim follows by taking the limit. �

We can now show the main result.
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Theorem 2 Let k ∈ N≥4 and n > n1(k). Let S and s′ be as in Lemma 4. Let A ⊆
{1, . . . , n} be a k-sum-free set of maximum cardinality, with smallest element s = sA.
Then s ∈ [S, S + 3] and A = I3 ∪ I2 ∪ I1, where

I3 ∈
{
{[s, r3], [s, r3 + 1]} , if s ≥ s′

{[s, r3), [s, r3] \ {r3 − 1}}, if s < s′,

I2 ∈
{
{[l2 + 2, r2], [l2 + 2, r2 + 1]} , if r3 + 1 ∈ A

{(l2, r2], (l2, r2 + 1], [l2, r2), [l2, r2] \ {r2 − 1}}, if r3 + 1 /∈ A,

I1 ∈
{
{[l1 + 2, n]}, if r2 + 1 ∈ A

{[l1, n), (l1, n], [l1, n] \ {n − 1}}, if r2 + 1 /∈ A,

If k is even, then Ii 6= [li, ri] \ {ri − 1} for 1 ≤ i ≤ 3.

Remark. Note that Theorem 2 does not precisely determine the k-sum-free subsets of
{1, ..., n} of maximum size, for every n > n1(k). With n and k fixed, one first needs
to determine for which value(s) of s ∈ [S, S + 3] the quantity |A3(s)|, as given by (9),
is maximized. The result will depend on n and k. Even then, for a fixed s, not all the
possibilities for I3∪I2∪I1 need be k-sum-free. See Section 4 below for further discussion.

Proof. We have already seen that |A3| = |A|. Our first aim is to show by compar-
ing A3 with A2 that almost the whole interval (l3, r3] must be in A. Having achieved
this, we infer by Lemma 1 that (r3, l2] ∩ A is nearly empty. Comparing A2 with A1 will
then reveal that most of (l2, r2] is contained in A. Again Lemma 1 will help us to see
that A cannot share many elements with (r2, l1] and a final comparison of A1 with A will
conclude the proof.

(I) The first aim is easily reached if s := sA ≥ l3 + 1. Simply note that

A2 = (A ∩ [s, r3]) ∪ (l2, r2] ∪ (l1, r1] ⊆ [s, r3] ∪ (l2, r2] ∪ (l1, r1] = A3.

The maximality of |A2| gives A2 = A3 and hence [s, r3] ⊆ A. Observe that s > l3 together
with Lemma 4 and (8) give S ≤ s ≤ S + 3.

Assume now that s ≤ l3. We want to show that in this case s = l3. Suppose s < l3
and let B = [S − 2k, l3] ∩ A. Define

C := I1
sB

∪
⋃

b∈B\{sB}
I0
b .

Clearly C ⊆ (l3, r3] for all n � 0. Then since C is the union of disjoint intervals, Lemma
1 gives that |C \ A| > |B|. Hence we get the contradiction |A3| = |(A2 \ B) ∪ (l3, r3]| ≥
|(A2 \B)∪ (C \A)| > |A2| − |B|+ |B| = |A2|. Therefore we are left with s = l3, and this
implies

|A2| = |A3| ⇐⇒ |A ∩ [s, r3]| = |(l3, r3] ∩ [s, r3]| = |(s, r3]|. (10)
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If r3 /∈ A we can infer from (10) that

A ∩ [s, r3] = [s, r3 − 1] = [l3, r3 − 1].

If r3 ∈ A, Lemma 1 gives kl3 − r3 /∈ A, so −k + 1 ≤ kl3 − 2r3 ≤ −1. If kl3 − 2r3 ≤ −2 we
get I1

l3
⊆ (l3, r3] and |I1

l3
\ A| ≥ 2, which is impossible since this would imply |A3| > |A2|.

Hence kl3 − 2r3 = −1 and k is odd. Using (10) one obtains

A ∩ [s, r3] = [l3, r3] \ {r3 − 1}.

Suppose now that s = l3 and r3 + 1 ∈ A. Then kl3 − (r3 + 1) 6∈ A and

r3 − k ≤ kl3 − (r3 + 1) ≤ r3 − 1.

This contradicts that [s, r3 − 2] ⊆ A unless kl3 − (r3 + 1) = r3 − 1, but then r3 6∈ A and
|A ∩ [s, r3]| = |A ∩ [s, r3 − 2]| which contradicts (10). Hence r3 + 1 /∈ A if s = l3.

Finally note that, if s = l3 and kl3 ≥ 2r3 − 1, the latter being a requirement for ei-
ther of the two possibilities for I3 to be k-sum-free, then another computation similar to
the one in the Appendix yields that s ≥ S. Again, using Lemma 4 we obtain

S ≤ s ≤ S + 3, (11)

as claimed in the statement of the theorem. This completes the first part of our proof.

(II) For the second part note that we have just shown

s ≥ l3. (12)

Plugging (11) into the definition of l3 yields (after a further tedious computation similar
to that in the Appendix)

S − 1 ≤ l3 ≤ S + 1, (13)

which implies in view of (12) and (11)

l3 ≤ s ≤ l3 + 4. (14)

Moreover we have observed that [s, r3−2] ⊆ A. Let ξ1, . . . , ξ5 ∈ {0, . . . , k−1} be constants
such that

kl1 = 2r1 − ξ1 (15)

kr2 = l1 + s − ξ2 (16)

kl2 = 2r2 − ξ3 (17)

kr3 = l2 + s − ξ4 (18)

kl3 = 2r3 − ξ5. (19)
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We suppose that n is sufficiently large, so we can be sure that

[ks − (r3 − 2), k(r3 − 2) − s] ∩ A = ∅.
By (14) we can infer that

∅ = [k(l3 + 4) − (r3 − 2), k(r3 − 2) − s] ∩ A

= [r3 − ξ5 + 4k + 2, l2 − ξ4 − 2k] ∩ A.

Let J = [r3 + 2, r3 − ξ5 + 4k + 1] ∩ A and K =
⋃

x∈J{kx − (s + 2), kx − (s + 1), kx − s}.
Then K ∩ A = ∅, |K| = 3|J | and by (18) and (19) we have

K ⊆ [l2 − ξ4 + 2k − 2, l2 − ξ4 − kξ5 + 4k2 + k] ⊆ (l2 + k − 2, l2 + 4k2 + k] ⊆ (l2 + 2, r2],

if n � 0. Let B = [l2 − ξ4 − 2k + 1, l2] ∩ A. If B ∪ J ⊆ {l2} then A ∩ [r3 + 2, l2 − 1] = ∅.
Otherwise, with C as in part (I) if |B| > 1 we can verify that C ⊆ [r2 − 3k2−k+2

2
, r2] ⊆

(l2 + 1, r2], for n � 0, and |C \ A| > |B|. Put C := ∅ if |B| ≤ 1. For large n, K and C
are disjoint. Hence |B ∪ J | < |(C \ A) ∪ K| and we get

|A2| = | [A1 \ (J ∪ B ∪ {r3 + 1})] ∪ (l2, r2]| > |A1 \ {r3 + 1}|.
Thus if r3 + 1 6∈ A we get |A2| > |A1| so suppose r3 + 1 ∈ A. Then neither l2 nor l2 + 1
can be in A1. Otherwise, since (s− ξ4 + k), s− ξ4 + k − 1 ∈ [s, s + k] ⊆ [s, r3 − 2] ⊆ A we
get

k(r3 + 1) = l2 + (s − ξ4 + k) = (l2 + 1) + (s − ξ4 + k − 1),

which is impossible. But l2 + 1 ∈ A2, so also in this case it follows that |A2| > |A1|, since
l2 + 1 6∈ K ∪C for large n. Again we conclude that A∩ [r3 + 2, l2 − 1] = ∅. Consequently,

|A2| = |A1| ⇔ |A ∩ ([l2, r2] ∪ {r3 + 1})| = |(l2, r2]|,
which gives A∩ [l2, r2] = [l2 +2, r2] if r3 +1 ∈ A. If r3 +1 /∈ A and either l2 /∈ A or r2 /∈ A,
we get A ∩ [l2, r2] = (l2, r2] or A ∩ [l2, r2] = [l2, r2), respectively. In case r3 + 1 /∈ A and
both l2, r2 ∈ A, we see that kl2 − r2 = r2 − ξ3 /∈ A. If ξ3 ≥ 2 then I1

l2
⊆ (l2, r2] and l2

could be profitably replaced. Hence ξ3 = 1, A ∩ [l2, r2] = [l2, r2] \ {r2 − 1} and k is odd.

(III) For the final interval (l1, r1] we use Lemma 1 to conclude from

[s, r3 − 2] ⊆ A and [l2 + 2, r2 − 2] ⊆ A

in view of (16) and (17) that, for n � 0,

∅ = A ∩ [k(l2 + 2) − (r2 − 2), k(r2 − 2) − (l2 + 2)]

= A ∩ [r2 − ξ3 + 2k + 2, l1 + s − ξ2 − 2k − l2 − 2], and

∅ = A ∩ [k(l2 + 2) − (r3 − 2), k(r2 − 2) − s]

= A ∩ [2r2 − ξ3 + 2k − r3 + 2, l1 − ξ2 − 2k]
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Let J = [r2 + 2, r2 − ξ3 + 2k + 1] ∩ A and K = ∪x∈J{kx − s, kx − (s + 1), kx − (s + 2)}.
From (14) we have

K ⊆ [l1 − ξ2 + 2k − 2, l1 − ξ2 − kξ3 + 2k2 + k] ⊆ (l1 + k − 2, r1], if n � 0.

Let B = [l1 − ξ2 − 2k + 1, l1] ∩ A. If sB < l1 with C as in (I) we can verify that, for
sufficiently large n,

C ⊆
[
2r1 − ξ1 − kξ2 − 2k2 + k − 5

2
, r1

]
⊆ (l1, r1],

|C \ A| > |B| and maxK < sC . By analogy with part (II) we get A ∩ [r2 + 2, l1 − 1] = ∅
and the rest of the claim follows as before. �

4 Estimates and Periodicity

We first want to estimate values of ni(k), i = 0, 1, for which Lemmas 3 and 4, and Theorem
2 respectively are valid. The estimates we shall arrive at can probably be improved upon.
The example of a k-sum-free set A in [3], referred to in the proof of Lemma 3, satisfies

|A| >
k(k − 2)

k2 − 2
n +

8(k − 2)

k(k2 − 2)(k4 − 2k2 − 4)
n − 3.

Hence the proof of Lemma 3 goes through provided n is sufficiently large so that

ckn − t0 ≥ 3, (20)

where t0 = t0(n, k) is the largest possible value for t in Definition 1. Now from Definition

1 we easily deduce that, if i < t, then ri+1 ≤
(

4
k2

)
ri, and hence that rt ≤

(
4
k2

)t−1
n. Since

rt ≥ 1 a priori, we can thus estimate

t0 ≤ 1

2
logk/2 n + 1. (21)

Since, by (7), ck = O( 1
k6 ), we thus deduce from (18) and (19) that one can take n0(k) =

O(k6). It is then an easy and tedious exercise to go through the proof of Theorem 2 and
check that one can also take n1(k) = O(k6).

Next, we explain what we mean by the word ‘periodicity’ in the title of this section.
If k ≥ 4 is even then, for n > 0, we have s′ = S + 1 = b 8n

k5−2k3−4k
c + 1. Hence for a fixed

k, if we regard s′ as a function of n, then s′(n) + 1 = s′(n + pk), where pk := k5−2k3−4k
8

.
For odd k, we define pk := k5 − 2k3 − 4k and in this case, a little more care is required to
check that s′(n) + 8 = s′(n + pk).
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Now for any k and n, let F(k, n) denote the family of maximal k-sum-free subsets of
{1, ..., n}. Then for n sufficiently large, as estimated above, and k even (resp. k odd), the
map s 7→ s+1 (resp. s 7→ s+8) clearly induces a 1-1 correspondence between the sets in
F(k, n) and F(k, n+ pk). This is what we mean by ‘periodicity’. This observation clearly
reduces, for any fixed k, the full classification of all k-sum-free subsets of {1, ..., n}, for all
n, to a finite computation.

As an example, we now look at k = 4. By (7) we compute c4 = 47
48290

. Then Lemma
3 is valid at least for all n satisfying

c4n − 1

2
log2 n − 1 ≥ 3,

which reduces to n ≥ 11008. One can then check that the proof of Theorem 2 also goes
through for all such n. We have p4 = 110. We now present the full classification of all
4-sum-free subsets of {1, ..., n}, valid (at least) for all n ≥ 11008. This was obtained with
the help of a computer.
For each s, n ∈ N we define the sets Jx(s), 1 ≤ x ≤ 13, as follows (the li and ri are
functions of s and n as in Definition 1) :

J1 = [S, r3 − 1] ∪ [l2, r2 − 1] ∪ [l1, n − 1],

J2 = [S, r3 − 1] ∪ [l2, r2 − 1] ∪ [l1 + 1, n],

J3 = [S, r3 − 1] ∪ [l2 + 1, r2] ∪ [l1, n − 1],

J4 = [S, r3 − 1] ∪ [l2 + 1, r2] ∪ [l1 + 1, n],

J5 = [S, r3 − 1] ∪ [l2 + 1, r2 + 1] ∪ [l1 + 2, n],

J6(s) = [s, r3] ∪ [l2, r2 − 1] ∪ [l1, n − 1],

J7(s) = [s, r3] ∪ [l2, r2 − 1] ∪ [l1 + 1, n],

J8(s) = [s, r3] ∪ [l2 + 1, r2] ∪ [l1, n − 1],

J9(s) = [s, r3] ∪ [l2 + 1, r2] ∪ [l1 + 1, n],

J10(s) = [s, r3] ∪ [l2 + 1, r2 + 1] ∪ [l1 + 2, n],

J11(s) = [s, r3 + 1] ∪ [l2 + 2, r2] ∪ [l1, n − 1],

J12(s) = [s, r3 + 1] ∪ [l2 + 2, r2] ∪ [l1 + 1, n],

J13(s) = [s, r3 + 1] ∪ [l2 + 2, r2 + 1] ∪ [l1 + 2, n].

Note that, by Theorem 2, for a given n ≥ 11008, every maximal 4-sum-free subset of
{1, ..., n} is one of the sets Jx(s), for some s ∈ [S, S + 3] = [s′ − 1, s′ + 2]. By the
remarks above, for each i ∈ {0, ..., 109}, there are natural 1-1 correspondences between
the sets in the families F(4, n) for all n ≡ i (mod 110). By slight abuse of notation, we
denote any such family simply by Fi. Our computer program yielded the following result :

If |Fi| = 1, then i = 6, 7, 22, 23, 46, 47, 49, 51, 54, 55, 57, 59, 61, 70, 71, 73, 75, 77, 86, 87, 89
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or 91 and

Fi = {J9(s
′)},

or i = 36, 37, 100 or 101 and

Fi = {J9(s
′ + 1)}.

If |Fi| = 2, then Fi is

{J9(s
′), J9(s

′ + 1)} if i = 93, 103, 105, 107,

{J4, J9(s
′)} if i = 9, 11, 13, 25, 27,

{J8(s
′), J9(s

′)} if i = 48, 50, 56, 58, 60, 72, 74, 76, 88, 90

{J7(s
′), J9(s

′)} if i = 63, 65, 67, 79, 81.

If |Fi| = 3:

F8 = F24 = {J4, J8(s
′), J9(s

′)},
F15 = {J4, J7(s

′), J9(s
′)},

F29 = {J4, J9(s
′), J9(s

′ + 1)},
F39 = {J9(s

′), J12(s
′), J9(s

′ + 1)},
F62 = F78 = {J6(s

′), J7(s
′), J9(s

′)},
F53 = {J9(s

′), J10(s
′), J9(s

′ + 1)},
F83 = {J7(s

′), J9(s
′), J9(s

′ + 2)},
F92 = {J8(s

′), J9(s
′), J9(s

′ + 1)},
F95 = F97 = {J7(s

′), J9(s
′), J9(s

′ + 1)},
F102 = {J9(s

′), J8(s
′ + 1), J9(s

′ + 1)},
F109 = {J9(s

′), J7(s
′ + 1), J9(s

′ + 1)}.
If |Fi| = 4:

F1 = F3 = F17 = {J2, J4, J7(s
′), J9(s

′)},
F10 = F12 = F26 = {J3, J4, J8(s

′), J9(s
′)},

F38 = {J9(s
′), J12(s

′), J8(s
′ + 1), J9(s

′ + 1)},
F41 = F43 = {J4, J9(s

′), J12(s
′), J9(s

′ + 1)},
F52 = = {J8(s

′), J9(s
′), J10(s

′), J9(s
′ + 1)},

F64 = F66 = F80 = {J6(s
′), J7(s

′), J8(s
′), J9(s

′)},
F104 = F106 = {J8(s

′), J9(s
′), J8(s

′ + 1), J9(s
′ + 1)},

F69 = {J7(s
′), J9(s

′), J10(s
′), J9(s

′ + 1)}.
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If |Fi| = 5 :

F14 = {J3, J4, J6(s
′), J7(s

′), J9(s
′)},

F19 = {J2, J4, J7(s
′), J9(s

′), J9(s
′ + 2)},

F28 = {J3, J4, J8(s
′), J9(s

′), J9(s
′ + 1)},

F31 = {J4, J7(s
′), J9(s

′), J12(s
′), J9(s

′ + 1)},
F82 = {J6(s

′), J7(s
′), J8(s

′), J9(s
′), J9(s

′ + 2)},
F94 = {J6(s

′), J7(s
′), J9(s

′), J8(s
′ + 1), J9(s

′ + 1)},
F99 = {J7(s

′), J9(s
′), J9(s

′ + 1), J10(s
′ + 1), J9(s

′ + 2)},
F108 = {J8(s

′), J9(s
′), J6(s

′ + 1), J7(s
′ + 1), J9(s

′ + 1)}.
If |Fi| = 6:

F5 = {J2, J4, J7(s
′), J9(s

′), J10(s
′), J9(s

′ + 1)},
F33 = {J2, J4, J7(s

′), J9(s
′), J12(s

′), J9(s
′ + 1)},

F45 = {J4, J9(s
′), J12(s

′), J13(s
′), J7(s

′ + 1), J9(s
′ + 1)},

F68 = {J6(s
′), J7(s

′), J8(s
′), J9(s

′), J10(s
′), J9(s

′ + 1)},
F85 = {J7(s

′), J9(s
′), J10(s

′), J9(s
′ + 1), J12(s

′ + 1), J9(s
′ + 2)},

F96 = {J6(s
′), J7(s

′), J8(s
′), J9(s

′), J8(s
′ + 1), J9(s

′ + 1)}.
If |Fi| = 7:

F0 = F16 = {J1, J2, J4, J6(s
′), J7(s

′), J8(s
′), J9(s

′)},
F40 = {J4, J8(s

′), J9(s
′), J11(s

′), J12(s
′), J8(s

′ + 1), J9(s
′ + 1)}.

If |Fi| = 8:

F2 = {J1, J2, J3, J4, J6(s
′), J7(s

′), J8(s
′), J9(s

′)},
F21 = {J2, J4, J7(s

′), J9(s
′), J10(s

′), J9(s
′ + 1), J12(s

′ + 1), J9(s
′ + 2)},

F30 = {J3, J4, J6(s
′), J7(s

′), J9(s
′), J12(s

′), J8(s
′ + 1), J9(s

′ + 1)},
F35 = {J2, J4, J7(s

′), J9(s
′), J12(s

′), J9(s
′ + 1), J10(s

′ + 1), J9(s
′ + 2)},

F42 = {J3, J4, J8(s
′), J9(s

′), J11(s
′), J12(s

′), J8(s
′ + 1), J9(s

′ + 1)},
F98 = {J6(s

′), J7(s
′), J8(s

′), J9(s
′), J8(s

′ + 1), J9(s
′ + 1), J10(s

′ + 1), J9(s
′ + 2)}.

If |Fi| = 9:

F18 = {J1, J2, J3, J4, J6(s
′), J7(s

′), J8(s
′), J9(s

′), J9(s
′ + 2)},

F84 = {J6(s
′), J7(s

′), J8(s
′), J9(s

′), J10(s
′), J9(s

′ + 1), J12(s
′ + 1), J8(s

′ + 2), J9(s
′ + 2)}.

If |Fi| = 10:

F4 = {J1, J2, J3, J4, J6(s
′), J7(s

′), J8(s
′), J9(s

′), J10(s
′), J9(s

′ + 1)},
F44 = {J3, J4, J8(s

′), J9(s
′), J11(s

′), J12(s
′), J13(s

′), J6(s
′ + 1), J7(s

′ + 1), J9(s
′ + 1)}.
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If |Fi| = 11, 13 or 14, we get precisely one family for each size:

F32 = {J1, J2, J4, J6(s
′), J7(s

′), J8(s
′), J9(s

′), J11(s
′), J12(s

′), J8(s
′ + 1), J9(s

′ + 1)},
F20 = {J1, J2, J3, J4, J6(s

′), J7(s
′), J8(s

′), J9(s
′), J10(s

′),

J9(s
′ + 1), J12(s

′ + 1), J8(s
′ + 2), J9(s

′ + 2)},
F34 = {J1, J2, J3, J4, J6(s

′), J7(s
′), J8(s

′), J9(s
′), J11(s

′), J12(s
′),

J8(s
′ + 1), J9(s

′ + 1), J10(s
′ + 1), J9(s

′ + 2)}.

Note, in particular, that |F(4, n)| ≤ 14 for all sufficiently large n. Computer simulations
suggest the same may be true for any even k, with a similar result for odd k, but we leave
the investigation of this possibility to a subsequent paper.

Appendix

As a prototype for a type of calculation which appears in several places in the paper, we
now show, in the notation of Lemma 4, that s′ = S + 1 when k is even.

We must investigate the condition l3(s) < s. By definition of l3 this is just⌊
2r3

k

⌋
< s ⇔ 2r3

k
< s ⇔ r3 <

ks

2
⇔
⌊

l2 + s

k

⌋
<

ks

2
⇔ l2 + s

k
<

ks

2

⇔ l2 <

(
k2

2
− 1

)
s ⇔ 2r2

k
<

(
k2

2
− 1

)
s ⇔ r2 <

(
k3

4
− k

2

)
s

⇔ l1 + s

k
<

(
k3

4
− k

2

)
s ⇔ l1 <

(
k4

4
− k2

2
− 1

)
s

⇔ 2n

k
<

(
k4

4
− k2

2
− 1

)
s ⇔ n <

(
k5

8
− k3

4
− k

2

)
s ⇔ s >

8n

k5 − 2k3 − 4k

⇔ s > S.

Thus s′ = S + 1, as required.
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