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Abstract
For graphs G,F and H we write G → (F,H) to mean that if the edges of G are

coloured with two colours, say red and blue, then the red subgraph contains a copy
of F or the blue subgraph contains a copy of H. The graph G is (F,H)-minimal
(Ramsey-minimal) if G → (F,H) but G′ 6→ (F,H) for any proper subgraph G′ ⊆ G.
The class of all (F,H)-minimal graphs shall be denoted by R(F,H). In this paper
we will determine the graphs in R(K1,2,K3).

1 Introduction and Notation

We consider finite undirected graphs without loops or multiple edges. A graph G has a
vertex set V (G) and an edge set E(G). We say that G contains H whenever G contains
a subgraph isomorphic to H . The subgraph of G isomorphic to K3 we will call a triangle
of G and sometimes denoted by its vertices.

Let G1, G2 be subgraphs of G. We write G1 ∪ G2 (G1 ∩ G2) for a subgraph of G
with V (G1 ∪ G2) = V (G1) ∪ V (G2) and E(G1 ∪ G2) = E(G1) ∪ E(G2) (V (G1 ∩ G2) =
V (G1) ∩ V (G2) and E(G1 ∩ G2) = E(G1) ∩ E(G2)).
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Let x and y be two nonadjacent vertices of G. Then G + xy is the graph obtained from
G by adding to G the edge xy.

Let G, F and H be graphs. We write G → (F, H) if whenever each edge of G is
coloured either red or blue, then the red subgraph of G contains a copy of F or the blue
subgraph of G contains a copy of H .

A graph G is (F, H)-minimal (Ramsey-minimal) if G → (F, H) but G′ 6→ (F, H) for
any proper subgraph G′ ⊆ G.

The class of all (F, H)-minimal graphs will be denoted by R(F, H).
A (F, H)-decomposition of G is a partition (E1, E2) of E(G), such that the graph

G[E1] does not contain the graph F and the graph G[E2] does not contain the graph H .
Obviously, if there is no (F, H)-decomposition of G then G → (F, H) holds.

In general, we follow the terminology of [4].
There are several papers dealing with the problem of determining the set R(F, H).

For example, Burr, Erdős and Lovász [1] proved that R(2K2, 2K2) = {3K2, C5} and
R(K1,2, K1,2) = {K1,3, C2n+1} for n ≥ 1. Burr et al. [3] determined the set R(2K2, K3).
In [6] the graphs belonging to R(2K2, K1,n) were characterized. It is shown in [2] that if
m, n are odd then R(K1,m, K1,n) = {Km+n+1}. Also the problem of characterizing pairs
of graphs (F, H), for which the set R(F, H) is finite or infinite has been investigated
in numerous papers. In particular, all pairs of two forest for which the set R(F, H) is
finite are specified in a theorem of Faudree [5].  Luczak [7] states that for each pair which
consists of a non-trivial forest and non-forest the set of Ramsey-minimal graphs is infinite.
From  Luczak’s results it follows that the set R(K1,2, K3) is infinite. In the paper we shall
describe all graphs belonging to R(K1,2, K3).

2 Definitions of some classes of graphs

To prove the main result we need some classes of graphs.
Let k be an integer such that k ≥ 2. A graph G with V (G) = {v1, v2, ..., vk, w1, w2, ...,

wk−1} and E(G) = {vivi+1 : i = 1, 2, ..., k − 1} ∪ {viwi : i = 1, 2, ..., k − 1} ∪ {wivi+1 : i =
1, 2, ..., k − 1} is called the K3-path. The edges of {vivi+1 : i = 1, 2, ..., k − 1} are internal
edges of the K3-path and {viwi : i = 1, 2, ..., k} ∪ {wivi+1 : i = 1, 2, ..., k − 1} is the set of
external edges of the K3-path. The vertex v1 or w1 is called the first vertex of K3-path.
The vertex vk or wk−1 is called the last vertex of K3-path.

Let k be an integer such that k ≥ 4. A graph G with V (G) = {v1, v2, ..., vk, w1, w2, ...,
wk} and E(G) = {vivj : i = 1, 2, ..., k, j ≡ i + 1 (mod k)} ∪ {wivi : i = 1, 2, ..., k} ∪
{wivj : i = 1, 2, ..., k j ≡ i + 1 (mod k)} is called the K3-cycle. We will say that
{vivj : i = 1, 2, ..., k, j ≡ i + 1 (mod k)} is the set of internal edges of the K3-cycle and
{wivi : i = 1, 2, ..., k}∪{wivj : i = 1, 2, ..., k j ≡ i+ 1 (mod k)} is the set of external edges
of the K3-cycle.

A length of K3-path (K2
3 -path, K3-cycle) is the number of triangles in K3-path (K2

3 -
path, K3-cycle).

If we add to a K3-path the edges wiwi+1 (i = 1, ..., k − 2) then we obtain the graph,
which we call the K2

3 -path of odd length. If we add to a K2
3 -path of odd length a new
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vertex wk and edges wk−1wk, vkwk then we obtain the K2
3 -path of even length.

By R we will denote the graph with the root r, which is presented in Figure 1.
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Figure 2.

Let T be the family of graphs, which contains:
(1) F1, F2, F3 (see Fig. 2.);
(2) F4(k), k ≥ 0 — two vertex-disjoint copies of R with a K3-path of length k, joining

two roots (if k = 0 we have two copies of R, which are stuck together by the roots);
(3) F5(t1, t2, k), t1 ≥ 4, t2 ≥ 4, k ≥ 0 — two vertex disjoint copies of K3-cycles of

lengths t1 and t2 with a K3-path of length k joining the two arbitrary vertices of K3-
cycles (if k = 0 we have two copies of K3-cycles, which are stuck together by an arbitrary
vertex);

(4) F6(t, k), t ≥ 4, k ≥ 0 — a copy of R and a copy of a K3-cycle of length t with a
K3-path of length k joining the root of R and an arbitrary vertex of the K3-path;

(5) F7(t, k), t ≥ 4, k ≥ 1 — a K3-cycle H of length t with a K3-path of length k
joining two arbitrary vertices x, y of the K3-cycle, such that k + dH(x, y) ≥ 4;

(6) F8(t), F9(t),..., F15(t), t ≥ 4 — graphs, which are obtained from a K3-cycle of
length t by adding some new triangles as in Fig. 3;

(7) F16(t), t ≥ 5 — the graph, which is obtained from a K2
3 -path of odd length t in

the following way: Let xyz and x′y′z′ be the last triangles of the K2
3 -path such that z and

z′ are degree 2, y, y′ are degree 3, x, x′ are degree 4. Then we add new edges zy′, yz′ and
zz′.

For short we omit the parameters t, t1, t2, k if it does not lead to a misunderstanding.

It is easy to see that κ(G) ≤ 3 for any graph G ∈ T . Let us denote denote by

Ti = {G ∈ T : κ(G) = i}, i = 1, 2, 3.
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Figure 3.

Let A be the family of graphs each with a root denoted by x. To the family A belong:
(1) L1(k), k ≥ 0 — a copy of R and a copy of a K3-path of length k, which are stuck

together by the root of R and the first vertex of the K3-path. The last vertex of the
K3-path is the root x of L1(k); if k = 0 then L1(0) is isomorphic to R;

(2) L2(t, k), t ≥ 4, k ≥ 0 — a copy of a K3-cycle of length t and a copy of a K3-path
of length k, which are stuck together by an arbitrary vertex of degree two of the K3-cycle
and the first vertex of the K3-path. The last vertex of the K3-path is the root x of L2(k);
if k = 0 then L2(0) is isomorphic to a K3-cycle and an arbitrary vertex of degree two is
the root;

(3) L3(t, k), t ≥ 4, k ≥ 0 — a copy of a K3-cycle of length t and a copy of a K3-path
of length k, which are stuck together by an arbitrary vertex of degree four of the K3-cycle
and the first vertex of the K3-path. The root x of L3(k) is the last vertex of the K3-path;
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if k = 0 then L3(0) is isomorphic to a K3-cycle and an arbitrary vertex of degree 4 is the
root.

The graphs of the family A will be also denoted briefly by L1, L2, L3, if the parameters
t, k are clear.

Let P be a subgraph of G isomorphic to a K3-path such that V (P ) = {v1, v2, ..., vk, w1,
w2, ..., wk−1} and dG(v1) ≥ 2 (the first vertex of P ), dG(vk) ≥ 2 (the last vertex of P ),
dG(vi) = 4 (i = 2, .., k − 1), dG(wj) = 2 (j = 1, ..., k − 1) then P we will call a diagonal
K3-path. If k = 2 (P is a triangle) and each edge of P is only in one triangle then we will
say that P is a diagonal triangle in G.

Let B be the family of graphs with two roots denoted by x, y, constructed in the
following way. Let G be a graph of T2 which has a diagonal K3-path P (i.e., G ∈
{F7, F8, ..., F15}). Let x, y be the first and the last vertex of P , respectively. We delete
from G vertices V (P ) \ {x, y}. The vertices x and y are the roots in the new graph. We
denote such graphs in the following way:

(1) B1(t, k1, k2), B2(t, k1, k2), B3(t, k1, k2) t ≥ 4, k1, k2 ≥ 0 — a graph constructed from
F7(t, k), which we also can obtain in the following way:

B1(t, k1, k2) — we stick together a K3-cycle of length t and two K3-paths of lengths
k1 and k2 with the first vertex of each K3-path and an arbitrary vertex of degree 4 of the
K3-cycle (the K3-path are stuck on different vertices of the K3-cycle);

B2(t, k1, k2) — we stick together a K3-cycle of length t and two K3-paths of lengths
k1 and k2, we stick the first vertex of the first K3-path on an arbitrary vertex of degree 4
and the first vertex of the second K3-path on an arbitrary vertex of degree 2;

B3(t, k1, k2) — we stick together a K3-cycle of length t and two K3-paths of lengths
k1 and k2 with the first vertex of each K3-path and an arbitrary vertex of degree 2 of the
K3-cycle (the K3-path are stuck on different vertices of K3-cycle);

(2) B8(k1, k2), B9(k1, k2), ..., B15(k1, k2), k1, k2 ≥ 0 — the graphs obtained from F8(t),
F9(t),..., F15(t), respectively (k1, k2 are the lengths of the diagonal K3-paths).

Sometimes the graphs of the family B will be denoted by B1, B2, B3, B8, ..., B15 for
short.

Z1(k) (k ≥ 2) is a graph, which is obtained in the following way: A copy of R and
a copy of a K3-path of length k we stick together by the root of R and the first vertex
of the K3-path. Then we add a new edge, which joins two vertices of degree 2 of the
neighbouring triangles of the K3-path.

Z2(t) (t ≥ 4) is a graph obtained from a K3-cycle H of length t by adding two new
edges. Each new edge joins two vertices of degree 2 in H of the neighbouring triangles.

Z3(t, k) (t ≥ 4, k ≥ 4) is a graph obtained in the following way: A copy of a K3-cycle
of length t and a copy of a K3-path of length k we stick together by an arbitrary vertex
of the K3-cycle and the first vertex of the K3-path. Then we add an edge, joining two
vertices of degree 2 of the neighbouring triangles of the K3-path.
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3 Preliminary Results

Let G be a graph, which has a (K1,2, K3)-decomposition and x, y be vertices of G. If for
any (K1,2, K3)-decomposition (E1, E2) of E(G) at least one of the vertices x, y is incident
with an edge of E1 then we say that the pair (x, y) is stable in G. If x = y, then we say
that x is a stable vertex in G.

First we prove some lemmas characterizing the graphs, which have a (K1,2, K3)-
decomposition.

Lemma 1 Let H 6→ (K1,2, K3) and x be a stable vertex in H. Then H contains a subgraph
H ′ such that H ′ ∈ A and x is the root of H ′.

Proof. Assume that in H there is no subgraph with the root x, which is isomorphic
to a member of A. Let (E1, E2) be any (K1,2, K3)-decomposition of H . Let v0 be the
vertex such that xv0 ∈ E1. Let x1 be the third vertex of the triangle which contains the
edge xv0. If such the triangle does not exist then (E1/{xv0}, E2 ∪ {xv0}) is a (K1,2, K3)-
decomposition such that the vertex x is not incident with any edge of the set inducing
the K1,2-free graph, a contradiction. If there is a second triangle containing xv0 then x
is the root of L1(0) ⊆ H . The vertex x1 must be incident with an edge of E1, otherwise
((E1/{xv0}) ∪ v0x1, (E2/{v0x1) ∪ {xv0}) is a (K1,2, K3)-decomposition, which contradicts
that x is stable. Let x1v1 ∈ E1 and x2 be the third vertex of the triangle which contains the
edge x1v1. Note, that the vertex x2 such that x2 6= x and x2 6= v0 must exist. If x2 = x then
x is the root of L1(0). If x2 = v0 then ((E1/{xv0, x1v1})∪x1v0, (E2/{x1v0})∪{xv0, x1v1})
is a (K1,2, K3)-decomposition, which contradicts that x is stable. Since x is not the root
of L1, it follows that x1x2v1 and x1v1v0 are the only triangles which contain x1v1 (the
second triangle need not exist). If x2 is not incident with any edge of E1 then similarly as
above we can show that there exists a (K1,2, K3)-decomposition, which contradicts that
x is stable.

In a similar manner we can obtain the next triangle and then we obtain a K3-path
starting in x. Let P be the longest K3-path, which is obtained in such way and let
xk−1xkvk−1 be the last triangle in P . The edges xv0, x1v1, ..., xk−1vk−1 of P are in E1

and in H the edge xivi is contained in at most two triangles xixi+1vi and xivivi−1 for
i = 1, 2, ..., k − 1 (the second triangle need not exist). If xk is not incident with any edge
of E1 then similarly as above we can show that there exists a (K1,2, K3)-decomposition
of H , which contradicts that x is stable. Let xkvk ∈ E1. Since all vertices of P are
incident with any edge of E1, we have that vk /∈ V (P ). If xk−1xkvk is the triangle then
x is the root of L1 ⊆ H . If xkvk−1vk is the triangle then we can show that there exists
a (K1,2, K3)-decomposition, which contradicts the stability of x. Then the triangle which
contains xkvk is edge disjoint with P and the third vertex xk+1 of this triangle is in P
(otherwise we obtain a longer K3-path). If xk+1 = vk−2 or xk+1 = xk−2 then H contains
F1, otherwise x is the root of L2 or L3, a contradiction.

Lemma 2 Let H 6→ (K1,2, K3) and (x, y) be a stable pair in H (x 6= y). Then H contains
a graph of the family A with the root in one of the vertices x, y or there is a K3-path joining
x and y.
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Proof. Assume that H does not contain a subgraph with the root x or y isomorphic
to a member of A and there is no K3-path joining x and y. Since x and y are not stable
in H , it follows that there is a (K1,2, K3)-decomposition (E1, E2) of E(H) such that x
is incident with an edge of E1 and y is not incident with any edge of E1. Let v0 be
a neighbour of x such that xv0 ∈ E1 and xv0x1 is the triangle, which contains xv0. If
x1 = y then there is a K3-path joining x and y, a contradiction. Suppose that the vertex
x1 is not incident with any edge of E1. Then ((E1/{xv0}) ∪ v0x1, (E2/{v0x1) ∪ {xv0})
is a (K1,2, K3)-decomposition, in which neither x nor y is incident with any edge of the
set, which induces a K1,2-free graph, a contradiction. Hence x1 is incident with an edge
of E1. Let v1 be the second vertex of this edge (i.e., x1v1 ∈ E1) . Note, that there
is no second triangle containing xv0, otherwise x is the root of L1 ⊆ H . Similarly if
v1x ∈ E(H) then x is the root of L1 ⊆ H . We show that there is a triangle disjoint with
the triangle xx1v0, containing x1v1. If x1v1v0 is the only triangle which contains x1v1

then ((E1/{xv0, x1v1})∪x1v0, (E2/{x1v0})∪{xv0, x1v1}) is the (K1,2, K3)-decomposition,
which contradicts that the pair (x, y) is stable. Then there is a triangle vertex-disjoint
with the triangle xx1v0 containing x1v1. Let x2 be the third vertex of this triangle. Since
x is not the root of L1, it follows that x1v1x2 and x1v1v0 are the only triangles containing
x1v1 (the second triangle need not exist). If x2 = y then there is a K3-path joining x
and y, a contradiction. If x2 6= y then x2 is incident with the edge of E1, otherwise there
exists a (K1,2, K3)-decomposition, contradicting the stability of the pair (x, y).

In a similar manner we can obtain the next triangle and then we obtain a K3-path
starting in x. Let P be the longest K3-path obtained in such way and let xk−1xkvk−1 be
the last triangle in P . The edge xivi is contained in at most two triangles xixi+1vi and
xivivi−1 for i = 1, 2, ..., k − 1. Since there is no K3-path joining x and y, we have xk 6= y
and vk−1 6= y. The vertex xk must be incident with an edge of E1, otherwise there exists
a (K1,2, K3)-decomposition, which contradicts that the pair (x, y) is stable. Let vk be the
second vertex of this edge and xk+1 ∈ V (P ) be the third vertex of the triangle containing
the edge xkvk. Similarly as in the proof of Lemma 2 we can show that F1 ⊆ H or x is the
root of L2 or L3.

Lemma 3 Let H 6→ (K1,2, K3) and let x, y be two different, nonadjacent vertices such
that x and y are not isolated in H and the pair (x, y) is stable in H. If the following
condition holds:
(*) in any proper subgraph of H, containing vertices x and y, the pair (x, y) is not stable;
then H is a K3-path.

Proof. If there is a K3-path joining x and y then for any (K1,2, K3)-decomposition
(E1, E2) of the K3-path the vertex x or the vertex y is incident with an edge of E1. Then
by (*) H is the K3-path. Suppose that there is no K3-path in H , which joins x and y.
By Lemma 2 one of vertices x, y is stable in H , say x is stable in H . Hence x is the root
of a graph L ∈ A in H . The condition (*) implies that E(H) = E(L). Since y is not
isolated, we have y ∈ V (L). Then H contains a K3-path in H , which joins x and y, a
contradiction.

The next lemmas provide necessary conditions for graphs belonging to R(K1,2, K3).
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Lemma 4 If G ∈ R(K1,2, K3) then it does not contain Z1(k).

Proof. Suppose that G contains Z1(k). Let us denote by v1, v2, ..., vp, x1, x2, ..., xp, xp+1

vertices of the K3-path in Z1(k) such that vi is the vertex of degree 2 and xi is the vertex
of degree 4 (k = 1, 2, ..., p) in the K3-path and vertices xixi+1vi form a triangle, xp+1 is
the common vertex of the K3-path and R in Z1(k). Let e = vivi+1. Let (E1, E2) be the
(K1,2, K3)-decomposition of G − e. The set E1 must contain edges xivi, (i = 1, 2, .., p).
If vivi+1xi+1 is the only triangle which contains e then (E1, E2 ∪ e) is a (K1,2, K3)-
decomposition of G, a contradiction. Suppose that vivi+1w is the second triangle con-
taining e. If w 6= xi+1 and w 6= xi+2 then G contains F1. If w = xi+2 then F4(k) ⊆ G. If
w = xi+1 then (E1, E2 ∪ e) is a (K1,2, K3)-decomposition of G.

Lemma 5 If G ∈ R(K1,2, K3) then it does not contain Z2(t).

Proof. Suppose that G contains Z2(t). Let us denote by v1, v2, ..., vk, x1, x2, ..., xk the
vertices of the K3-cycle in Z2(t) such that vi is the vertex of degree 2 and xi is the vertex
of degree 4 (k = 1, 2, ..., k) in the K3-cycle and vixivj, j ≡ i + 1 (mod k) form a triangle.
Assume that one edge of e1, e2 is only in one triangle in G, say e1. Let (E1, E2) be a
(K1,2, K3)-decomposition of G − e1. Then (E1, E2 ∪ e1) is a (K1,2, K3)-decomposition of
G, a contradiction. Hence each edge e1 and e2 is contained in at least two triangles.

Case 1. The edges e1, e2 are not incident.
W.l.o.g assume that e1 = v1v2. Let T = v1v2y be the triangle which contains e1 such

that y 6= x2. Since G does not contain F1, it follows that y = x1 or y = x3. In both cases
we obtain a subgraph Z1(k) contained in G, a contradiction.

Case 2. The edges e1, e2 are incident.
W.l.o.g assume that e1 = v1v2 and e2 = v2v3. Let T1 = v1v2y be the triangle which

contains e1 such that y 6= x2 and T2 = v2v3z be the triangle which contains e2 such that
z 6= x3. We may assume that (y = x1 or y = x3) and (z = x2 or z = x4), otherwise G
contains F1. Suppose that y = x1 and z = x2. Let (E1, E2) be a (K1,2, K3)-decomposition
of G − e1. Since E1 must contain xivi (i = 1, ..., k), it follows that (E1, E2 ∪ e1) is a
(K1,2, K3)-decomposition of G. Using the same arguments we can obtain a (K1,2, K3)-
decomposition of G if y = x3 and z = x4. If y = x1 and z = x4 then G contains F4. If
y = x3 and z = x2 then G contains F11.

Similarly as Lemma 4 we can prove the next lemma.

Lemma 6 If G ∈ R(K1,2, K3) then it does not contain Z3(t, k).

4 Main result

Theorem 1 G ∈ R(K1,2, K3) if and only if G ∈ T .

To prove the sufficient condition for a graph to be in R(K1,2, K3) it is enough to check
that each graph G ∈ T has no (K1,2, K3)-decomposition, but if we delete an edge from G
then we obtain a graph which has a (K1,2, K3)-decomposition. The proof of the necessary
condition is partitioned into three cases depending on the connectivity of the graph. The
conclusion follows by Lemmas 7, 13, 20.
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4.1 κ(G) = 1

Lemma 7 Let G ∈ R(K1,2, K3) and κ = 1. Then G ∈ T1.

Proof. Let x be a cut vertex of G. Let H1, H2, ..., Hp be components of G − x. Let
Gi = G[Hi ∪ {x}], i = 1, ..., p. Since G is minimal, the graph Gi (i = 1, 2, ..., p) has
a (K1,2, K3)-decomposition. Suppose that there is a graph Gi and there is a (K1,2, K3)-
decomposition (E1, E2) of Gi such that x is not incident with any edge of E1. Then the
(K1,2, K3)-decomposition of G−Hi can be extended to a (K1,2, K3)-decomposition of G, a
contradiction. Therefore in each (K1,2, K3)-decomposition of Gi (i = 1, 2, ..., p) the vertex
x is incident with an edge of the set inducing the K1,2-free graph. Hence the vertex x is
stable in Gi, i = 1, 2, ..., p. Moreover G − x has only two components (i.e., p = 2). By
Lemma 1 x is the root of the graph of the family A in G1 and x is the root of a graph of
the family A in G2. Since G is minimal, it follows that for any proper subgraph G′

i of Gi

containing x, the vertex x is not stable. Then Gi (i = 1, 2) is isomorphic to a graph of A.
Hence G ∈ T1.

4.2 κ(G) = 2

Lemma 8 Let H 6→ (K1,2, K3) and let x, y be two nonadjacent stable vertices in H. If
for any proper subgraph H ′ of H containing x and y at least one of vertices x or y is not
stable in H ′ then H does not contain Z1(k), Z2(t) and Z3(t, k).

Proof. Let G be the graph obtained from H by adding a K3-path joining vertices x
and y. It is easy to see that G ∈ R(K1,2, K3). Then by Lemmas 4, 5, 6 the graph G does
not contain Z1(k), Z2(t) and Z3(t, k). Hence any subgraph of G does not contain such
graphs, too and the lemma follows.

Lemma 9 Let H 6→ (K1,2, K3) and let x, y be two nonadjacent stable vertices in H. If
the following conditions hold

(1) κ(H + xy) ≥ 2,
(2) for any proper subgraph H ′ of H containing x and y at least one of the vertices x

or y is not stable in H ′,
then the vertices x, y are the pair of roots of any graph of the family B in H.

Proof. (Sketch of proof. A complete proof of Lemma 9 can be found at:
http://www.wmie.uz.zgora.pl/badania/raporty/) By Lemma 1 vertices x and y are roots
of subgraphs isomorphic to some graphs of A. Let L and L′ be subgraphs with roots x and
y, respectively. By the condition (2) we have E(H) = E(L)∪E(L′). Since κ(H +xy) ≥ 2,
the subgraphs L and L′ are not vertex-disjoint. Then H is obtained by sticking together
L and L′. We stick together L and L′ in such way that we obtain a graph, which has
a (K1,2, K3)-decomposition (does not contain graphs F1, F2, ..., F16) and is minimal (by
Lemma 8 does not contain Z1(k), Z2(t) and Z3(t, k)).
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Lemma 10 Let H 6→ (K1,2, K3) and let x, y be two adjacent stable vertices in H. If the
following conditions hold

1) κ(H) ≥ 2,
2) for any proper subgraph H ′ of H, containing x and y, at least one of the vertices x

or y is not stable in H ′,
then H is isomorphic to the graph B12(0, 0) or H contains a diagonal triangle.

Proof. Similarly as in Lemma 9 vertices x and y are the roots of subgraphs isomorphic
to some graphs of the family A. Let us denote by L and L′ these subgraphs with roots x
and y, respectively. By the condition (2) we have E(H) = E(L)∪E(L′). Since κ(H) ≥ 2,
the subgraphs L and L′ are not vertex-disjoint. Then H is obtained by sticking together L
and L′. If L and L′ are isomorphic to L1(0) then we obtain the graph B12(0, 0). Otherwise
H contains a diagonal triangle.

To prove the main lemma of this part we need the next two lemmas.

Lemma 11 Let H 6→ (K1,2, K3) and x and y be two nonadjacent vertices of H such that
x is stable in H. If the following conditions hold

1) κ(H + xy) ≥ 2,
2) for any proper subgraph H ′ of H the vertex x is not stable in H ′,

then H contains a diagonal triangle.

Proof. By Lemma 1 the vertex x is a root of a graph L ∈ A. By the condition (2)
we have E(H) = E(L). Because κ(H) ≥ 2, we have y ∈ V (L). Since the vertices x and y
are not adjacent, it follows that L is not isomorphic to L1(0). Then L contains a diagonal
triangle and the lemma follows.

The next lemma can be proved similarly as Lemma 11.

Lemma 12 Let H 6→ (K1,2, K3) and let xy ∈ E(G) and x is stable in H. If the following
conditions hold

1) κ(H) ≥ 2,
2) for any proper subgraph H ′ of H the vertex x is not stable in H ′,

then H is isomorphic to the graph L1(0) and x is the root or H contains a diagonal
triangle.

Lemma 13 If G ∈ R(K1,2, K3) and κ(G) = 2, then G ∈ T2.

Proof. First assume that G contains a diagonal triangle T = xyz. Let z be a
vertex of degree 2. Since G has no (K1,2, K3)-decomposition, it follows that in the graph
(G−z)−{xy} the vertices x and y are stable. Because of the minimality of G and Lemma
9 we have that the graph (G − z) − {xy} ∈ B. Hence G ∈ T2.

Now, assume that G has no diagonal triangle. Let S ⊆ V (G) be a cut set of G such
that |S| = 2. Let H1 be a component of G−S. Let us denote by G1 = G[V (H1)∪S], G2 =
G−H1. By the minimality of G we have that Gi (i = 1, 2) has a (K1,2, K3)-decomposition.
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Let S = {x, y}. If there is i (i = 1, 2) such that Gi has a (K1,2, K3)-decomposition (E1, E2),
in which x and y are not incident with any edge of E1 (in Gi the pair (x, y) is not stable)
then we can extend the (K1,2, K3)-decomposition of G−Hi to a (K1,2, K3)-decomposition
of G, a contradiction. Then the pair (x, y) is stable in Gi for i = 1, 2. Moreover, since
κ(G) = 2, it follows that κ(Gi + xy) = 2.

Case 1. xy /∈ E(G)
Suppose that x and y are stable in G1. Because of the minimality of G we have that

G1 does not contain a proper subgraph in which x and y are stable and for any proper
subgraph G′

2 of G2 containing x and y the pair (x, y) is not stable in G′
2. Then by Lemma

3 G2 is isomorphic to the K3-path (the length of G2 is at least 2 because xy /∈ E(G)).
Hence G contains a diagonal triangle.

If only one vertex of x, y is stable in G1 then by Lemma 11 the graph G contains a
diagonal triangle.

If neither x nor y is stable in G1 then G1 is a K3-path of length at least 2 because the
pair (x, y) is stable in G1. Then again G contains a diagonal triangle.

Case 2. xy ∈ E(G)
If x and y are stable in one graph of G1, G2, say x and y are stable in G1, then by

Lemma 10 G1 = B12(0, 0). Since there is no (K1,2, K3)-decomposition of B12(0, 0) in which
xy is in the set inducing the K1,2-free graph, we have G2 = K3. Hence G = F1.

If only one vertex of x, y is stable in G1 then the same vertex is stable in G2, say
that x is stable in G1 and G2. Moreover there is no (K1,2, K3)-decomposition of G1 or
G2 in which xy is in the set inducing the K1,2-free graph. Assume that G2 has no such
(K1,2, K3)-decomposition. Since for each proper subgraph of G2 containing x and y, the
vertex x is not stable and by Lemma 12, it follows that G2 = L1(0). But G2 contains
the (K1,2, K3)-decomposition in which xy is in the set inducing the K1,2-free graph, a
contradiction.

If no vertex of x, y is stable in G1 then x and y are stable in G2 because G has no
(K1,2, K3)-decomposition. As above we obtain G = F1.

4.3 κ(G) ≥ 3

Lemma 14 If G ∈ R(K1,2, K3) and κ(G) ≥ 3 then G does not contain L1(k), k ≥ 2 and
L2(t, k), L3(t, k), t ≥ 4, k ≥ 1.

Proof. Suppose that G contains one of these graphs. Let us denote it by L. Let
T = xyz be the last triangle in L, x and y be the vertices of degree 2 in L and z be the
vertex of degree 4. Let (E1, E2) be a (K1,2, K3)-decomposition of G − xy. If x and y are
not incident with any edge of E1 then (E1 ∪ {xy}, E2) is the (K1,2, K3)-decomposition of
G. Hence the pair (x, y) is stable in G − xy.

Let L′ be the minimal subgraph of G − xy, in which the pair (x, y) is stable (i.e., the
pair (x, y) is not stable in any proper subgraph of L′). Because of the minimality of G we
can deduce that G is obtained by sticking together L and L′. Since κ(G) ≥ 3, it follows
that there is no vertex of degree less than 3 in G. Then x and y are not isolated in L′.
Hence by Lemma 3 L′ is isomorphic to the K3-path, which joins x and y.
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Let x1, x2 be the neighbours of x such that xx1x2 is the triangle in L′ and x1 is the
vertex of degree 2 and x2 is the vertex of degree 4 in L′. Similarly let y1, y2 be the
neighbours of y such that yy1y2 is the triangle in L′ and y1 is the vertex of degree 2 and
y2 is the vertex of degree 4 in L′. Note that z is the root of a graph of A in L−xy. Hence
xz /∈ E1 and yz /∈ E1.

Knowing all (K1,2, K3)-decompositions of L′ we can see that at least one of the vertices
x1, y1 is incident with an edge of E1, say x1 is incident with an edge of E1 (xx1 ∈ E1).
Because G does not contain any vertex of degree less than 3, we have that x1 is also in
V (L). Since in each decomposition of L2(k, t) and L3(k, t) each vertex is incident with an
edge of the set inducing the K1,2-free graph, it follows that L is isomorphic to L1(k) and
x1 is the vertex of degree 2 of subgraph R of L1. Then G[V (L)∪ {x, x1, x2}] contains the
K3-cycle. Let w be the vertex of degree 2 of K3-path of L other than x and y. Then w
is also in V (L′). Hence G contains F7(t, k) or F1.

Similarly as Lemma 14 we can prove the next lemma.

Lemma 15 Let G ∈ R(K1,2, K3) and κ(G) ≥ 3. If G contains L1(1) then G is isomorphic
to F3.

Lemma 16 If G ∈ R(K1,2, K3) and κ(G) ≥ 3 then G does not contain any K3-cycle.

Proof. Suppose that G contains a K3-cycle. Let v be a vertex of degree two in the
K3-cycle. Let w be the third neighbour of v (such vertex exists because κ(G) ≥ 3). Since
G does not contain L2(t, k) (k ≥ 1), the triangle containing the edge vw is not vertex-
disjoint with the K3-cycle. Since G does not contain L1(1) and F1, it follows that w is
a vertex of degree 2 of the K3-cycle such that the triangle containing vw consist of two
external edges of the K3-cycle. The same property has each vertex of degree 2 of the
K3-cycle. From the definition we have that a K3-cycle has at least 4 vertices of degree 2,
hence we obtain that G contains Z2(t), a contradiction.

Lemma 17 Let G ∈ R(K1,2, K3) and κ(G) ≥ 3. Then each triangle of G contains at
most one edge, which is contained in one triangle.

Proof. Let T = xyz be the triangle of G containing two edges, which are only in T .
Let e1, e2 ∈ E(T ) be the edges which are only in T and e1 = xy, e2 = xz. Let e3 be the
third edge of T . In each (K1,2, K3)-decomposition (E1, E2) of G − {e1, e2} at least two
vertices of T are incident with an edge of E1. Then (x, y), (x, z) and (y, z) are stable pairs
in G − {e1, e2}. Moreover there is no (K1,2, K3)-decomposition of G − {e1, e2} in which
the edge e3 is in the set inducing the K1,2-free graph. From Lemma 14 and Lemma 15 it
follows that G does not contain L1(k), L2(t, k) and L3(t, k) (t ≥ 4, k ≥ 1). Then x is not
stable in G − {e1, e2}.

Suppose that y and z are stable in G − {e1, e2}. Lemma 1 implies that y and z
are the roots of graphs of A in G − {e1, e2}. Let L and L′ be the graph with root
in y and z, respectively. By Lemma 14 and Lemma 15 we have that L and L′ are
isomorphic to L1(0), L2(t, 0) or L3(t, 0) and they contain the edge e3. If one graph of
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L, L′, say L, is isomorphic to L2(t, 0) or L3(t, 0) then the triangle containing e3 and T
form the subgraph R of L1(1) in G, a contradiction. Hence L and L′ are isomorphic to
L1(0). If V (L) ∩ V (L′) = {y, z} then G also contains L1(1). Since there is no (K1,2, K3)-
decomposition of G − {e1, e2}, in which the edge e3 is in the subgraph inducing the
K1,2-free graph, we may assume that there are vertices y1, y2, which are the neighbours of
y in L, which have degree 2 and 3 in L, respectively (others than z). Similarly there are
the neighbours z1 and z2 of z, which have degree 2 and 3 in L′. If y2 6= z2 and (y1 6= z2 or
z1 6= y2) then G contains L1(1). If y2 = z2 and y1 6= z1 then G contains F1. If y2 = z2 and
y1 = z1 then G contains K4, which has a common edge (the edge e3) with T . If y2 6= z2

and y1 = z2 and z1 = y2 then G also contains K4, which has a common edge with T .
Then assume that G contains a subgraph K isomorphic to K4 such that y, z ∈ V (K). Let
y′, z′ be the remaining vertices of K. Note that the edges y′y and y′z are contained only
in two triangles in G (two triangles of K) and the edges z′y and z′z are contained in only
two triangles in G. Since e3 /∈ E1, it follows that yz′, zy′ ∈ E1 or yy′, zz′ ∈ E1. W.l.o.g
suppose that yy′, zz′ ∈ E1. Then (E1/{yy′, zz′}) ∪ {yz, y′z′}, (E2/{yz, y′z′}) ∪ {yy′, zz′})
is a (K1,2, K3)-decomposition of G, a contradiction.

Suppose that at most one vertex of y, z is stable in G− {e1, e2}, say z is not stable in
G − {e1, e2}. Then there is a K3-path joining x and z. If this K3-path does not contain
the edge e3 then G contains a K3-cycle, which contradicts Lemma 16. Then assume the
K3-path consists of the edge e3. Let w be the third vertex of the triangle of the K3-path
containing e3 (the vertex w has degree 4 in the K3-path). Let ww1w2 be the second
triangle of the K3-path. Suppose that w1 is a vertex of degree 2 in the K3-path and w2

is a vertex of degree 4 in the K3-path. Since z is not stable and G does not contain
L1(1), it follows that z is contained in one triangle ywz and y is contained in at most two
triangles ywz and yww1. Since G does not contain L1(1), we have that two edges of the
K3-path, which are incident with x, are contained in only one triangle. Moreover, each
edge of the K3-path, which is contained in E1 is in at most two triangles: the triangle
of the K3-path and the triangle containing two external edges of the K3-path. Then we
can change the edges of E1, which are in the K3-path, in such a way that we obtain a
(K1,2, K3)-decomposition of G − {e1, e2} containing e3, a contradiction.

Lemma 18 Let G ∈ R(K1,2, K3) and κ(G) ≥ 3. Then G does not contain K4.

Proof. Suppose that G contains a subgraph K isomorphic to K4. Since K has a
(K1,2, K3)-decomposition, it follows that there is a triangle T in G such that T 6⊆ K. By
Lemma 15 and the connectivity of G we have that T is not edge-disjoint with K. Let x
be the vertex of T , which is not in K and let y, z be vertices of V (K)∩ V (T ). Because of
Lemma 17 we have that xy or xz is in the second triangle T ′. Let w be the third vertex
of T ′. The triangle T ′ is not edge-disjoint with K (a contradiction to Lemma 15), then
w ∈ V (K). Hence G contains F2, a contradiction.

Let xyz and x′y′z′ be the last triangles of the K2
3 -path of odd length t (t ≥ 5) such that

z and z′ have degree 2, y, y′ have degree 3, x, x′ have degree 4. We denote by W (t) the
graph which is obtained from a K2

3 -path of odd length by adding new edges zy′ and zz′.
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Lemma 19 Let t ≥ 5 and G ∈ R(K1,2, K3), κ(G) ≥ 3. If G contains W (t), then
G = F16(t).

Proof. Suppose that G contains a subgraph W isomorphic to W (t). Let us denote
the vertices of W as in the definition of W (t). By Lemma 17 we have that in G there is a
second triangle containing zy′ or there is a second triangle containing zz′. If this triangle
contains neither y nor x then G contains L1(1) (a contradiction to Lemma 15). If xz′ or
yz′ or yy′ is in G then G contains Z2 (a contradiction to Lemma 5). If yz′ ∈ E(G) then
G = F16(t).

Lemma 20 Let G ∈ R(K1,2, K3) and κ(G) ≥ 3. Then G ∈ T3.

Proof. Let P be the longest K2
3 -path in G. From Lemma 17 and Lemma 18 it follows

that the length of P is at least 3.
Case 1. The length of P is equal to 3.
Let x be a vertex of degree 4 in P and y, z, z′, y′ be the neighbours of x such that

yz, zz′, z′y′ ∈ E(P ). By Lemma 17 we have that xy or yz is contained in at least two
triangles in G and xy′ or y′z′ is contained in at least two triangles in G.

First we show that there is no second triangle containing yz (similarly there is no
second triangle containing y′z′). Suppose that w is the third vertex of such triangle. If
w /∈ V (P ) then there is a K2

3 -path of length 4 in G, a contradiction. If w = z′ or w = y′

then G contains K4, which contradicts Lemma 18.
Now we show that if xy and xy′ are in the second triangle then G = F2 or G = F3. Let

w be the third vertex of the second triangle containing xy. If w /∈ V (P ) then by Lemma
15 we have G = F3. If w = z′ then G contains K4 (a contradiction to Lemma 18). If
w = y′ then G = F2.

Case 2. The length of P is equal to 4.
Let x, x′ be vertices of degree 4, y, y′ vertices of degree 3, z, z′ vertices of degree 2 in P

such that xyz and x′y′z′ are triangles. By Lemma 17 we have that xz or yz is contained
in at least two triangles in G and x′z′ or y′z′ is contained in at least two triangles in G.

Similarly as above we show that there is no second triangle containing yz (and there
is no second triangle containing y′z′). Suppose that w is the third vertex of such triangle.
If w /∈ V (P ) then there is a K2

3 -path of length 5 in G, a contradiction. If w = x′ or w = y′

then G contains K4, which contradicts Lemma 18. If w = z′ then G contains F2.
Now suppose that xz is in the second triangle in G. Let w be the third vertex of this
triangle. If w 6= x′ and w 6= y′ then G contains L1(1). Hence by Lemma 15 we have
G = F3. If w = x′ then G contains K4, which contradicts Lemma 18. If w = y′ then G
contains F1.

Case 3. The length of P is at least 5.
Let us denote V (P ) = {x1, x2, ..., xk, y1, y2, ..., yk} (V (P ) = {x1, ..., xk, y1, y2, ..., yk−1}

if P is odd length) such that xixi+1yi (i = 1, 2, ..., k − 1) and yiyi+1xi+1 (i = 1, 2, ..., k − 1
for P of even length and i = 1, 2, ..., k − 2 for P of the odd length) form the triangle. By
Lemma 17 we have that x1x2 or x1y1 is contained in at least two triangles in G.
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Suppose that x1x2 is in the second triangle in G. Let w be the third vertex of this
triangle. If w 6= x3 and w 6= y2 then G contains L1(1) then by Lemma 15 G contains F3.
If w = x3 or w = y2 then G contains K4, which contradicts Lemma 18.

Suppose that x1y1 is in the second triangle in G. Let w be the third vertex of this
triangle. Since P is the longest K2

3 -path, we have w ∈ V (P ). Similarly as in Case 2 we
can show that w is not any vertex of {x2, x3, y2, y3}. If w = yi (i ≥ 4) then G contains
Z2(t) (a contradiction to Lemma 5). If w = xi (i ≥ 4) then G contains W (t). Hence by
Lemma 18 G = F16(t) or G contains F16(t).
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