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Abstract.
We consider two partial orders on the set of standard Young tableaux. The
first one is induced to this set from the weak right order on symmetric group
by Robinson-Schensted algorithm. The second one is induced to it from the
dominance order on Young diagrams by considering a Young tableau as a chain
of Young diagrams. We prove that these two orders of completely different
nature coincide on the subset of Young tableaux with 2 columns or with 2
rows. This fact has very interesting geometric implications for orbital varieties
of nilpotent order 2 in special linear algebra sln.

1. Introduction
1.1 Let Sn be a symmetric group, that is a group of permutations of {1, 2, . . . , n}.
Respectively, let Sn be a group of permutations of n positive integers {m1 < m2 < . . . <
mn} where mi ≥ i. It is obvious that there is a bijection from Sn onto Sn obtained by
mi → i, so we will use the notation Sn in all the cases where the results apply to both
Sn and Sn.

In this paper we write a permutation in a word form

w = [a1, a2, . . . , an] , where ai = w(mi). (∗).

All the words considered in this paper are permutations, i.e. with distinct letters only.
Set pw(mi) := j if aj = mi, in other words, pw(mi) is the place (index) of mi in

the word form of w. (If w ∈ Sn then pw(i) = w−1(i).)
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We consider the right weak (Bruhat) order on Sn that is we put w
D≤ y if for all

i, j : 1 ≤ i < j ≤ n the condition pw(mj) < pw(mi) implies py(mj) < py(mi). Note
that [m1, m2, . . . , mn] is the minimal word and [mn, mn−1, . . . , m1] is the maximal word
in this order.
1.2 Let λ = (λ1 ≥ λ2 ≥ · · · ≥ λk > 0) be a partition of n and λ′ := (λ′

1 ≥ λ′
2 ≥ · · · ≥

λ′
l > 0) the conjugate partition, that is λ′

i = ]{j | λj ≥ i}. In particular, λ′
1 = k.

We define the corresponding Young diagram Dλ of λ to be an array of k columns
of boxes starting from the top with the i-th column containing λi boxes. Note that it
is more customary that λ defines the rows of the diagram and λ′ defines the columns,
but in the present context we prefer this convention for the simplicity of notation. Let
Dn denote the set of all Young diagrams with n boxes.

We use the dominance order on partitions. It is a partial order defined as follows.
Let λ = (λ1, · · · , λk) and µ = (µ1, · · · , µj) be partitions of n. Set λ ≥ µ if for each
i : 1 ≤ i ≤ min(j, k) one has

i∑
m=1

λm ≥
i∑

m=1

µm .

1.3 Fill the boxes of the Young diagram Dλ with n distinct positive integers m1 <
m2 < . . . < mn. If the entries increase in rows from left to right and in columns from top
to bottom, we call such an array a Young tableau or simply a tableau. If the numbers
in a tableau form the set of integers from 1 to n, the tableau is called standard.

Let Tn denote the set of tableaux with n positive entries {m1 < m2 < . . . < mn}
where mi ≥ i, and respectively let Tn denote the set of standard tableaux. Again, the
bijection from Tn onto Tn is obtained by mi → i, and we will use the notation Tn

in all the cases where the results apply to both Tn and Tn. The Robinson-Schensted
algorithm (cf. [Sa,§3], or [Kn, 5.1.4], or [F, 4.1] ) gives the bijection w 7→ (T (w), Q(w))
from Sn onto the set of pairs of tableaux of the same shape. For each T ∈ Tn set
CT = {w | T (w) = T}. It is called a Young cell. The right weak order on Sn induces a

natural order relation
D≤ on Tn as follows. We say that T

D≤ S if there exists a sequence
of tableaux T = P1, . . . , Pk = S such that for each j : 1 ≤ j < k there exists a pair

w ∈ CPj
, y ∈ CPj+1 satisfying w

D≤ y.

I would like to explain the notation
D≤ . I use it in honor of M. Duflo who was the first

to discover the implication of the weak order on Weyl group for the primitive spectrum
of the corresponding enveloping algebra (cf. [D]). I would like to use the notation since
his result was the source of my personal interest to the different combinatorial orderings
of Young tableaux.

Consider Sn as a Weyl group of sln(C). By Duflo, there is a surjection from Sn onto
the set of primitive ideals (with infinitesimal character). Let us define the corresponding

primitive ideal by Iw. By [D], w
D≤ y implies Iw ⊆ Iy. As it was shown by A. Joseph

[J], Iw and Iy coincide iff w and y are in the same Young cell. Together these two facts

show that the order
D≤ is well defined on Tn.
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As shown in [M1, 4.3.1], one may have T, S ∈ Tn for which T
D

< S; yet for any

w ∈ C(T ), y ∈ C(S) one has w 6D< y. Thus, it is essential to define it through the sequence
of tableaux.
1.4 Take T ∈ Tn and let sh (T ) be the underlying diagram of T. We will write it as
sh (T ) = (λ1, . . . , λk) where λi is the length of the i−th column. Given i, j : 1 ≤ i <
j ≤ n we define πi,j(T ) to be the tableau obtained from T by removing m1, . . . , mi−1

and mj+1, . . . , mn by “jeu de taquin” (cf. [Sch] or 2.10). Put D〈i,j〉(T ) := sh (πi,j(T )).

We define the following partial order on Tn which we call the chain order. We set T
C≤ S

if for any i, j : 1 ≤ i < j ≤ n one has D〈i,j〉(T ) ≤ D〈i,j〉(S).
This order is obviously well defined.

1.5 The above constructions give two purely combinatorial orders on Tn which are
moreover of an entirely different nature.

Given two partial orders
a≤ and

b≤ on the same set S, call
b≤ an extension of

a≤ if

s
a≤t implies s

b≤t for any s, t ∈ S.

As we explain in 1.11,
C≤ is an extension of

D≤ on Tn. Moreover, these two orders

coincide for n ≤ 5 and
C≤ is a proper extension of

D≤ for n ≥ 6, as shown in [M].
There is a significant simplification when one considers only tableaux with two

columns. Let us denote the subset of tableaux with two columns in Tn by T2
n. We show

that for S, T ∈ T2
n one has T

C≤ S if and only if T
D≤ S. Moreover, for any T ∈ T2

n we

construct a canonical representative wT ∈ CT such that T
C

< S if and only if wT

D

< wS .

1.6 Given a set S and a partial order
a≤, the cover of t ∈ S in this order is the set of

all s ∈ S such that t
a
<s and there is no p ∈ S such that t

a
<p

a
<s. We will denote it by

Da(t).
As explained in [M1], in general, even an inductive description of DD(T ) is a very

complex task. Yet, in 3.16 we provide the exact description of DD(T ) (which is a cover

in
C≤ as well) for any T ∈ T2

n.

1.7 For each tableau T let T † denote the transposed tableau. Obviously, T
C

< S iff
S† C

< T †. By Schensted-Schützenberger theorem (cf. 2.14), it is obvious that T
D

< S iff

S† D

< T †. Consequently, the above results can be translated to tableaux with two rows.
1.8 Let us finish the introduction by explaining why these two orders are of interest
and what implication our results have for the theory of orbital varieties.

Orbital varieties arose from the works of N. Spaltenstein ([Sp1] and [Sp2]), and R.
Steinberg ([St1] and [St2]) during their studies of the unipotent variety of a semisimple
group G.

Orbital varieties are the translation of these components from the unipotent variety
of G to the nilpotent cone of g = Lie (G). They are defined as follows.

Let G be a connected semisimple finite dimensional complex algebraic group. Let
g be its Lie algebra and U(g) be the enveloping algebra of g. Consider the adjoint
action of G on g. Fix some triangular decomposition g = n

⊕
h
⊕

n−. A G orbit O
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in g is called nilpotent if it consists of nilpotent elements, that is if O = Gx for some
x ∈ n. The intersection O ∩ n is reducible. Its irreducible components are called orbital
varieties associated to O. They are Lagrangian subvarieties of O. According to the orbit
method philosophy, they should play an important role in the representation theory
of corresponding Lie algebras. Indeed, they play the key role in the study of primitive
ideals in U(g). They also play an important role in Springer’s Weyl group representations
described in terms of fixed point sets Bu where u is a unipotent element acting on the
flag variety B.

Orbital varieties are very interesting objects from the point of view of algebraic ge-
ometry. Given an orbital variety V, one can easily find the nilradical mV of a standard
parabolic subalgebra of the smallest dimension containing V. Consider an orbital vari-
ety closure as an algebraic variety in the affine linear space mV . Then the vast majority
of orbital varieties are not complete intersections. So, orbital varieties are examples of
algebraic varieties which are both Lagrangian subvarieties and not complete intersec-
tions.
1.9 There are many hard open questions involving orbital varieties. Their only general
description was given by R. Steinberg [St1]. Let us explain it briefly.

Let R ⊂ h∗ denote the set of non-zero roots, R+ the set of positive roots corre-
sponding to n and Π ⊂ R+ the resulting set of simple roots. Let W be the Weyl group
for the pair (g, h). For any α ∈ R let Xα be the corresponding root space.

For S, S′ ⊂ R and w ∈W set S ∩w S′ := {α ∈ S : α ∈ w(S′)}. Then set

n ∩w n :=
⊕

α∈R+∩wR+

Xα.

This is a subspace of n. For each closed irreducible subgroup H of G let H(n ∩w n) be
the set of H conjugates of n ∩w n. It is an irreducible locally closed subvariety. Let ∗
denote the (Zariski) closure of a variety ∗.

Since there are only finitely many nilpotent orbits in g, it follows that there exists
a unique nilpotent orbit which we denote by Ow such that G(n ∩w n) = Ow.

Let B be the standard Borel subgroup of G, i.e. such that Lie (B) = b = h
⊕

n.
A result of Steinberg [St1] asserts that Vw := B(n ∩w n) ∩ Ow is an orbital variety and
that the map ϕ : w 7→ Vw is a surjection of W onto the set of orbital varieties. The
fibers of this mapping, namely ϕ−1(V) = {w ∈W : Vw = V} are called geometric cells.

This description is not very satisfactory from the geometric point of view since a B
invariant subvariety generated by a linear space is a very complex object. For example,
one can describe the regular functions (differential operators) on Vw or on Vw only in
some special cases.
1.10 On the other hand, there exists a very nice combinatorial characterization of
orbital varieties in sln in terms of Young tableaux. Indeed, in that case Vw and Vy

coincide iff w and y are in the same Young cell. Moreover, let Ow = GVw be the
corresponding nilpotent orbit, then its Jordan form is defined by µ = (sh Tw)′. Let us
denote such orbit by Oµ.

Recall the order relation on Young diagrams from 1.2. A result of Gerstenhaber
(see [H, §3.10] for example) describes the closure of a nilpotent orbit.
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Theorem. Let µ be a partition of n. One has

Oµ =
∐

λ|λ≥µ

Oλ

1.11 Define geometric order on Tn by T
G≤ S if VS ⊂ VT . In general, the combinatorial

description of this order is an open (and very difficult) task. On the other hand, both
D≤ and

C≤ are connected to
G≤ as follows.

Let us identify n with the subalgebra of strictly upper-triangular matrices. Any
α ∈ R+ can be decomposed into the sum of simple roots α =

∑j−1
k=i αk where i < j.

Then the root space Xα is identified with Xi,j . By [JM, 2.3], Xi,j ∈ n∩w n if and only if

pw(i) < pw(j). Thus, w
D≤ y implies n∩y n ⊂ n∩w n, hence, also Vy ⊂ Vw and Oy ⊂ Ow.

Therefore,
G≤ is an extension of

D≤ on Tn.

On the other hand, note that T
G≤ S implies, in particular, the inclusion of cor-

responding orbit closures so that (via Gerstenhaber’s construction) T
G≤ S implies

sh (T ) ≤ sh (S). As shown in [M1, 4.1.1], the projections on the Levi factor of stan-
dard parabolic subalgebras of g preserve orbital variety closures. Moreover, in the case
of sln one has πi,j(VT ) = Vπi,j(T ) for any i, j : 1 ≤ i < j ≤ n where πi,j(T ) is obtained
from T by jeu de taquin and Vπi,j(T ) is an orbital variety in the corresponding Levi

factor. Thus, T
G≤ S implies πi,j(T )

G≤ πi,j(S). Altogether, this provides that
C≤ is an

extension of
G≤ .

Consequently,
C≤ is an extension of

G≤ and
G≤ is an extension of

D≤ . All three orders

coincide for n ≤ 5, and
C≤ is a proper extension of

G≤ which is, in turn, a proper extension

of
D≤ for n ≥ 6 as shown in [M].

However, our results show that
D≤ and

C≤ coincide on T2
n and there they provide a

full combinatorial description of
G≤ .

Consider VT where T ∈ T2
n. For any X ∈ VT one has X ∈ Osh (T ), that is X is

an element of nilpotent order 2 or in other words X2 = 0. Thus, we get a complete
combinatorial description of inclusion of orbital varieties closures of nilpotent order 2
in sln.
1.12 The body of the paper consists of two sections.

In section 2 we explain all the background in combinatorics of Young tableaux
essential in the subsequent analysis and set the notation. In particular, we explain
Robinson-Schensted insertion from the left and jeu de taquin. I hope this part makes
the paper self-contained.

In section 3 we work out the machinery for comparing
D≤ and

C≤ and show that
they coincide. The main technical result of the paper is stated in 3.5 and proved in

3.11. Further in 3.12, 3.13 and 3.14 we explain the implications of this result for
D≤,

G≤
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and
C≤ . In 3.16 we give the exact description of DG(T ) for T ∈ T2

n. Finally, in 3.17 we
explain the corresponding facts for the tableaux with two rows.

2. Combinatorics of Young tableaux
2.1 Recall from 1.1 (∗) the presentation of w ∈ Sn in the word form. Given w ∈ Sn,
set

τ(w) := {i : pw(i + 1) < pw(i)},
that is τ(w) is the set of left descents of w.

Note that if w
D≤ y then τ(w) ⊆ τ(y).

2.2 Given a word or a tableau ∗, we denote by 〈∗〉 the set of its entries. Introduce the
following useful notational conventions.
(i) For m ∈ 〈w〉 set w \ {m} to be the word obtained from w by deleting m, that is if

m = ai then w \ {m} := [a1, . . . , ai−1, ai+1, . . . , an].
(ii) For the words x = [a1, . . . , an] and y = [b1, . . . , bm] such that 〈x〉∩〈y〉 = ∅ we define

a colligation [x, y] := [a1, . . . , an, b1, . . . , bm].
(iii) For a word w = [a1, . . . , an] set w to be the word with reverse order, that is

w := [an, an−1, . . . , a1].
Given i, j : 1 ≤ i < j ≤ n, set S〈i,j〉 to be a (symmetric) group of per-

mutations of {mk}jk=i. Let us define projection πi,j : Sn → S〈i,j〉 by omitting all
the letters m1, . . . , mi−1 and mj+1, . . . , mn from word w ∈ Sn, i.e. πi,j(w) = w \
{m1, . . . , mi−1, mj+1, . . . , mn}. For w ∈ Sn it is obvious that τ(πi,j(w)) = τ(w)∩{k}j−1

k=i .

Lemma. Let w, y be in Sn.

(i) For any a 6∈ {mi}ni=1 one has w
D≤ y iff [a, w]

D≤ [a, y].
(ii) For w, y such that π1,n−1(y) = π1,n−1(w) and pw(mn) = 1, py(mn) > 1 one has

w
D

> y.

(iii) w
D

< y iff y
D

< w.

(iv) If w
D≤ y then πi,j(w)

D≤ πi,j(y) for any i, j : 1 ≤ i < j ≤ n.

All four parts of the lemma are obvious.
2.3 We will use the following notation for tableaux. Let T be a tableau and let T i

j for
i, j ∈ N denote the entry on the intersection of the i-th row and the j-th column. Given
u an entry of T , set rT (u) to be the number of the row, u belongs to and cT (u) to be
the number of the column, u belongs to. Set

τ(T ) := {i : rT (i + 1) > rT (i)}.
Let Ti denote the i-th column of T. Let ωi(T ) denote the largest entry of Ti.

We consider a tableau as a matrix T := (T j
i ) and write T by columns: T =

(T1, · · · , Tl)
For i, j : 1 ≤ i < j ≤ l we set Ti,j to be a subtableau of T consisting of columns

from i to j, that is Ti,j = (Ti, · · · , Tj). For each tableau T let T † denote the transposed
tableau. Note that sh (T †) = sh (T )′.
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2.4 Given Dλ ∈ Dn with λ = (λ1, · · · , λj), we define a corner box (or simply, a corner)
of the Young diagram to be a box with no neighbours to right and below.

For example, in D below all the corner boxes are labeled by X .

D =

X

X

X

The entry of a tableau in a corner is called a corner entry. Take Dλ with λ = (λ1, · · · , λk).
Then there is a corner entry ωi(T ) at the corner c with coordinates (λi, i) iff λi+1 < λi.

2.5 We now define the insertion algorithm. Consider a column C =


 a1

...
ar


 . Given

j ∈ N+ \ 〈C〉, let ai be the smallest entry greater then j, if exists. Set

j → C :=







a1

...
ai−1

j
ai+1

...




, jC = ai if j < ar




a1

...
ar

j


 , jC =∞ if j > ar or C = ∅

Put also ∞ → C = C. The inductive extension of this operation to a tableau T with l
columns for j ∈ N

+ \ 〈T 〉 given by

j ⇒ T = (j → T1, jT1 ⇒ T2,l)

is called the insertion algorithm.
Note that the shape of j ⇒ T is the shape of T obtained by adding one new corner.

The entry of this corner is denoted by jT .
This procedure (like many others used here) is described in the wonderful book of

B.E. Sagan ([Sa]).
2.6 Let w = [a1, a2, . . . , an] be a word. According to Robinson-Schensted algorithm we
associate an ordered pair of tableaux (T (w), Q(w)) to w. The procedure is fully explained
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in many places, for example, in [Sa, §3], [Kn, 5.1.4] or [F,4.1]. Here we explain only the
inductive procedure of constructing the first tableau T (w) by insertions from the left.
In what follows we call it RS procedure.
(1) Set 1T (w) = (an).
(2) Set j+1T (w) = an+1−j ⇒ jT (w) .
(3) Set T (w) = nT (w) .

For example, let w = [2, 5, 1, 4, 3], then

1T (w) = 3 2T (w) =
3

4
3T (w) =

1 3

4

4T (w) =

1 3

4

5

T (w) = 5T (w) =

1 3

2 4

5

The result due to Robinson and Schensted implies the map ϕ : w 7→ T (w) is a
surjection from Sn onto Tn.
2.7 For T ∈ Tn one has (cf. for example, [M1, 2.4.14]) τ(T (w)) = τ(w). Thus, by 2.1
one has

Lemma. Let S, T ∈ Tn. If T
D≤ S then τ(T ) ⊆ τ(S).

2.8 Let us describe a few algorithms connected to RS procedure which we use for
proofs and constructions.

First let us describe some operations for columns and tableaux. Consider a column

C =

(
a1

...

)
.

(i) For m ∈ 〈C〉 set C \ {m} to be a column obtained from C by deleting m.
(ii) For j ∈ N, j 6∈ 〈C〉 set C + {j} to be a column obtained from C by adding j at

the right place of C, that is if ai is the greatest element of 〈C〉 smaller than j then
C + {j} is obtained from C by adding j between ai and ai+1.

(iii) We define a pushing left operation. Again let j ∈ N, j 6∈ 〈C〉 and j > a1. Let ai be
the greatest entry of C smaller than j and set :

C ← j :=




a1
...

ai−1

j
ai+1

...




, jC := ai.
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The last operation is extended to a tableau T by induction on the number of
columns. Let Tm be the last column of T and assume T 1

m < j. Then T ← j =
(T1,m−1 ← jTm , Tm ← j). We denote by jT the element pushed out from the first
column of the tableau in the last step.

2.9 The pushing left operation gives us a procedure of deleting a corner inverse to the
insertion algorithm. This is also described in many places, in particular, in all three
books mentioned above.

As a result of insertion, we get a new tableau of a shape obtained from the old
one just by adding one corner. As a result of deletion, we get a new tableau of a shape
obtained from the old one by removing one corner.

Let T = (T1, . . . , Tl). Recall the definition of ωi(T ) from 2.3. Assume λi > λi+1

and let c = c(λi, i) be a corner of T on the i-th column. To delete the corner c we delete
ωi(T ) from the column Ti and push it left through the tableau T1,i−1. The element
pushed out from the tableau is denoted by cT . This is written

T ⇐ c := (T1,i−1 ← ωi(T ), Ti \ {ωi(T )}, Ti+1,l)

For example,

1 3

2 4

5

⇐ c(2, 2) =

1 3

4

5

, cT = 2.

Note that insertion and deletion are indeed inverse since for any T ∈ Tn

cT ⇒ (T ⇐ c) = T and (j ⇒ T )⇐ jT = T (for j 6∈ 〈T 〉)
Note that sometimes we will write T ⇐ a where a is a corner entry just as we have
written above.

Let {ci}ji=1 be a set of corners of T. By Robinson-Schensted procedure, one has

CT =
j∐

i=1

∐
y′∈CT⇐ci

[cT

i , y′]. (∗)

2.10 Let us describe the jeu de taquin procedure (see [Sch]) which removes T i
j from

T. The resulting tableau is denoted by T \ {T i
j}. The idea of jeu de taquin is to remove

T i
j from the tableau and to fill the gape created so that the resulting object is again a

tableau. The procedure goes as following. Remove a box from the tableau. Examine
the content of the box to the right of the removed box and that of the box below of the
removed box. Slide the box containing the smaller of these two numbers to the vacant
position. Now repeat this procedure to fill the hole created by the slide. Repeat the
process until no holes remain, that is until the hole has worked itself to the corner of
the tableau.
The result due to M. P. Schützenberger [Sch] gives
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Theorem. If T is a Young tableau then T \{T i
j} is a Young tableau and the elimination

of different entries from T by jeu de taquin is independent of the order chosen.

Therefore, given i1, . . . , is ∈ 〈T 〉, a tableau T \{i1, . . . , is} is a well defined tableau.
For example, let us take

T =

1 2 5

3 4

6

Then a few tableaux obtained from T by jeu de taquin are

T \ {6} =
1 2 5

3 4
, T \ {3} =

1 2 5

4

6

, T \ {1, 2} =
3 4 5

6
.

2.11 Given s, t : 1 ≤ s < t ≤ n, set T〈s,t〉 to be a set of Young tableaux with
the entries {mk}tk=s. Let us define projection πs,t : Tn → T〈s,t〉 by πs,t(T ) = T \
{m1, . . . , ms−1, mt+1, . . . , mn}. As a straightforward corollary of 2.10 (cf. for example,
[M1, 4.1.1]), we get

Theorem. for any s, t : 1 ≤ s < t ≤ n one has πs,t(T (w)) = T (πs,t(w)).

2.12 As a straightforward corollary of lemma 2.2 (iv) and theorem 2.11, we get that
D≤ is preserved under projections and, as a straightforward corollary of lemma 2.2 (i)

and RS procedure, we get that
D≤ is preserved under insertions, namely

Proposition. Let T, S be in Tn. If T
D≤ S then

(i) for any s, t : 1 ≤ s < t ≤ n one has πs,t(T )
D≤ πs,t(S).

(ii) for any a 6∈ {ms}ns=1 one has a⇒ T
D≤ a⇒ S.

2.13 Consider T ∈ Tn. Note that

πi,i+1(T ) =




i

i+1
if i ∈ τ(T )

i i+1 if i 6∈ τ(T )

We need the following properties of the chain order.
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Proposition. Let S, T ∈ Tn.

(i) If T
C≤ S then τ(T ) ⊂ τ(S).

(ii) If T
C≤ S then for any i, j : 1 ≤ i < j ≤ n one has πi,j(T )

C≤ πi,j(S).

(iii) If T
D≤ S then T

C≤ S.

Proof.
The first two assertions are trivial. The third assertion is a corollary of Steinberg’s
construction explained in 1.9 and 1.10 and of proposition 2.12 (i) or of the results
explained in 1.11.

Indeed, y
D≤ w implies that Oy ⊇ Ow. Thus, T

D≤ S implies sh (T ) ≤ sh (S). By

proposition 2.12 (i), T
D≤ S implies πs,t(T )

D≤ πs,t(S) for any s, t : 1 ≤ s < t ≤ n.

Altogether, this provides T
C≤ S.

2.14 All the results for the tableaux with two columns can be translated to tableaux
with two rows by Schensted-Schützenberger theorem (cf. [Kn, 5.4.1]).

Theorem. For any w ∈ Sn one has T †(w) = T (w).

3. Combinatorics of T2
n.

3.1 Recall from 1.5 that T
2
n ⊂ Tn is the set of Young tableaux with 2 columns. For

T ∈ T2
n let λ1(T ) be the length of the first column and λ2(T ) be the length of the second

column, that is sh (T ) = (λ1(T ), λ2(T )).

Lemma. Let T ∈ T2
n be such that cT (n) = 2. Set T ′ = π2,n(T ). Then cT ′(n) = 2 if and

only if either λ1(T ) > λ2(T ) or there exists i such that T i
2 < T i+1

1 .

The proof is a straightforward and easy computation, so we omit it.
3.2 Consider tableaux T, S ∈ T2

n.

Lemma. If cT (n) = 1 and S
C

> T then cS(n) = 1.

Proof.
This is true for n = 3. Assume this is true for k = n−1 and show for k = n. If cT (n) = 1

then λ1(T ) > λ2(T ). Since S
C

> T one has sh (S) > sh (T ). Thus, λ1(S) > λ2(S). Assume
cS(n) = 2. Then by lemma 3.1 cπ2,n(S)(n) = 2. On the other hand, cπ2,n(T )(n) = 1 by
the induction assumption, and this is a contradiction.

3.3 As a corollary of lemma 3.2, we get

Corollary. For S, T ∈ T2
n one has

(i) If T 6= S and sh T = sh S then T and S are incompatible in the chain order.

(ii) If S
C

> T then 〈S1〉 ⊃ 〈T1〉 and 〈S2〉 ⊂ 〈T2〉.
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Proof.
(i) This is true for n = 3. Assume this is true for n− 1 and show for n.

(a) If cT (n) = cS(n) then π1,n−1(T ) 6= π1,n−1(S) and sh π1,n−1(T ) = sh π1,n−1(S),
hence, they are incompatible by assumption hypothesis.

(b) If cT (n) = 1 and cS(n) = 2 then sh π1,n−1(T ) = (λ1(T )− 1, λ2(T )) and
sh π1,n−1(S) = (λ1(T ), λ2(T ) − 1) so that sh π1,n−1(T ) < sh π1,n−1(S). Hence,

S 6C≤ T. On the other hand, by lemma 3.2 T 6C≤ S.

(ii) For any j : j < n one has π1,j(S)
C≥ π1,j(T ). If cT (j) = 1 then by lemma 3.2

applied to π1,j(T ), π1,j(S) we get cS(j) = 1. Further note that 〈T2〉 = {i}ni=1 \ 〈T1〉.

Note that in general neither of these assertion is true, as it is shown in the following
example: T

C

< S where

T =

1 2 5

3 4

6

and S =

1 2 5

3 6

4

Therefore, to avoid two tableaux of the same shape to be in the chain order we have to
restrict the chain order by the demand that if for some T

C

< S and for some i, j : 1 ≤
i < j ≤ n one has D〈i,j〉(T ) = D〈i,j〉(S) then πi,j(T ) = πi,j(S). As we see, we do not
need this restriction on T2

n.

3.4 One has

Lemma. If T
D

< S and cT (n) = 2, cS(n) = 1 then T ′ D≤ S where T ′ = (T1 + {n}, T2 \
{n}).

Proof.

Indeed, if T
D

< S then by proposition 2.12 (i) π1,n−1(T )
D≤ π1,n−1(S) and further by

proposition 2.12 (ii) (T1 + {n}, T2 \ {n}) = n⇒ π1,n−1(T )
D≤ n⇒ π1,n−1(S) = S.

3.5 Now we construct the special representative of CT which plays the key role in our
constructions.

Given T ∈ T2
n, put T(n) = T. Let zi := max〈T(i)〉. Obviously zi is a corner element

of T(i). Set T(i−1) = T(i) ⇐ zi. Recall notion cT from 2.9. Set ai := zT
i .

Note that for any s ∈ T2 there exists a unique i such that s = zi = zi−1. For s ∈ T2

set T{s} := T(i).
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For example, let

T =

1 3

2 5

4 6

7

then

T(7) = T, z7 = 7; T(6) = T(7) ⇐ 7 =

1 3

2 5

4 6

, a7 = 7, z6 = 6, T{6} = T(6);

T(5) = T(6) ⇐ 6 =

1 3

2 5

6

, a6 = 4, z5 = 6;

T(4) = T(5) ⇐ 6 =
1 3

2 5
, a5 = 6, z4 = 5, T{5} = T(4);

T(3) = T(4) ⇐ 5 =
1 3

5
, a4 = 2, z3 = 5;

T(2) = T(3) ⇐ 5 = 1 3 , a3 = 5, z2 = 3, T{3} = T(2);

T(1) = T(2) ⇐ 3 = 3 , a2 = 1, z1 = a1 = 3.

Put wT := [an, an−1, . . . , a1]. In our example wT = [7, 4, 6, 2, 5, 1, 3]. Note that by
Robinson-Schensted procedure T (wT ) = T.

Now we can formulate the main theorem of the paper

Theorem. For T, S ∈ T2
n one has T

C

< S iff wT

D

< wS .

To prove the theorem we need a few technical lemmas.
3.6 First of all we show that wT is a maximal element of CT in the weak order.

Lemma. For any y ∈ CT one has y
D≤ wT .

the electronic journal of combinatorics 12 (2005) #R21 13



Proof.
This is true for n = 3. Assume that this is true for k ≤ n − 1 and show for n. Take
T ∈ T2

n. Set ω1 := ω1(T ) and ω2 := ω2(T ).
(i) If cT (n) = 1 (which means ω1 = n) then wT = [n, wπ1,n−1(T )] and for any y such

that T (π1,n−1(y)) = π1,n−1(T ) one has by lemma 2.2 (ii) y
D≤ [n, π1,n−1(y)]. In

particular, for any y ∈ CT one has y
D≤ [n, π1,n−1(y)]

D≤ [n, wπ1,n−1(T )] just by
induction assumption and lemma 2.2 (i).

(ii) If cT (n) = 2 (which means ω2 = n) then ωT
1 = ωT

2 = ω1 thus, by 2.9 (∗) any
y ∈ CT has a form y = [ω1, y

′] where either T (y′) = T ⇐ n =: T ′ or T (y′) =
T ⇐ ω1 =: T ′′. Note that wT = [ω1, wT ′ ] thus, by induction assumption and

lemma 2.2 (i) for any y′ ∈ CT ′ one has [ω1, y
′]

D≤ wT . For any y′ ∈ CT ′′ one has

just by induction assumption that y′ D≤ wT ′′ where wT ′′ = [ω1(T ′′), n, z], where z

is the rest of this word. Note that by definition of the right weak order wT ′′
D

<

[n, ω1(T ′′), z] so that for any y′ ∈ C(T ′′) one has y′ D

< [n, ω1(T ′′), z]. On the other
hand, T ([n, ω1(T ′′), z]) = T ′. Indeed, T (π1,n−2([n, ω1(T ′′), z])) = π1,n−2(T ′′) =
π1,n−2(T ′) and by RS procedure cT ([n,ω1(T ′′),z])(n) = 1. Thus, for any y′ ∈ C(T ′′)

one has y′ D

< [n, ω1(T ′′), z]
D≤ wT ′ . Applying lemma 2.2 (i) we get that for any

y′ ∈ C(T ′′) one has [ω1, y
′]

D

< wT .

3.7 As a corollary of lemma 3.6 and its proof, we get

Corollary. If cT (n) = 2 and T ′ = n ⇒ π1,n−1(T ) then for any y ∈ CT one has that

y
D

< wT ′ .

Proof.
Indeed, y

D≤ wT = [ω1(T ), n, z]
D

< [n, ω1(T ), z] and as we have shown in (ii) of the proof

of lemma 3.6, [n, ω1(T ), z] ∈ C(T ′), hence, by lemma 3.6, y
D

< wT ′ .

3.8 Let us return to the description of the orders on the level of tableaux.

Lemma. Let T, S ∈ T2
n. If S

C

> T and cT (n) = cS(n) then ω1(T ) = ω1(S).

Proof.
If cT (n) = 1 then ω1(T ) = ω1(S) = n.

Assume that cT (n) = 2. For n = 4 this is true. Assume this is true for k = n − 1
and show for k = n. Consider T ′ = π1,n−1(T ) and S′ = π1,n−1(S). By proposition 2.13

(ii), S′ C

> T ′.
(i) If cS′(n − 1) = 2 then by lemma 3.2 cT ′(n − 1) = 2 and by induction assumption

ω1(S′) = ω1(T ′). On the other hand, ω1(S′) = ω1(S) and ω1(T ′) = ω1(T ).
(ii) If cS′(n− 1) = 1 then n− 1 6∈ τ(S). Thus, by proposition 2.13 (i) n− 1 6∈ τ(T ) so

that cT ′(n− 1) = 1 and ω1(T ) = ω1(S) = n− 1.
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3.9 Let S be a tableau with two columns. For x ∈ 〈S2〉 recall notion S{x} from 3.5.
Since x is ω2(S{x}) we consider S{x} ⇐ x and get xS{x} (as defined in 2.9). Obviously,
xS{x} is some element of S1.

Lemma. Let T, S ∈ T2
n. wT

D

< wS iff 〈S2〉 ⊂ 〈T2〉 and for any x ∈ 〈S2〉 one has
xS{x} ∈ 〈T1〉.

Proof.
First of all note that wT

D

< wS implies that 〈S2〉 ⊂ 〈T2〉 by corollary 3.3 (ii). As well,
this implies that for any x ∈ 〈S2〉 one has xS{x} ∈ 〈T1〉. Indeed, assume that there exist
x ∈ 〈S2〉 such that a := xS{x} 6∈ 〈T1〉. Then cT (a) = 2 and by definition of wT one has
pwT

(a) > pwT
(x). On the other hand, pwS

(a) = pwS
(x)− 1. Thus, we have found a < x

such that pwT
(x) < pwT

(a) and pwS
(x) > pwS

(a). This implies that wT 6
D≤ wS .

We show the other direction by induction. The claim is true for n = 4. Assume
this is true for k ≤ n− 1 and show for k = n.

(i) If cT (n) = 1 then cS(n) = 1 since 〈S2〉 ⊂ 〈T2〉. Set T ′ := π1,n−1(T ) and S′ :=
π1,n−1(S). One has T ′

1 = T1 − n and S′
2 = S2. As well, xS{x} = xS′{x} for any

x ∈ 〈S2〉. Thus, if xS{x} ∈ 〈T1〉 then xS′{x} ∈ 〈T ′
1〉. By induction hypothesis, this

provides wT ′
D

< wS′ . Note that wT = [n, wT ′ ], wS = [n, wS′ ]. Thus, by lemma 2.2

(i) wT

D

< wS.

(ii) Assume that cT (n) = cS(n) = 2. Since 〈S2〉 ⊂ 〈T2〉, we get that 〈S1〉 ⊃ 〈T1〉 and, in
particular, ω1(T ) ≤ ω1(S). Since nS = ω1(S), by the condition nS ∈ 〈T1〉 we get that
ω1(T ) = ω1(S). Let us denote it by ω1. Thus, by the construction wT = [ω1, n, wT′ ]
and wS = [ω1, n, wS′] where T ′ = (T1 − ω1, T2 − n) and S′ = (S1 − ω1, S2 − n). Let
us show that T ′, S′ satisfy the conditions. It is obvious that 〈S′

2〉 ⊂ 〈T ′
2〉. Further,

nS = ω1 ∈ 〈T1〉 and for any x : x 6= n, x ∈ 〈S2〉 one has x ∈ 〈S′
2〉 and xS{x} = xS′{x}

just by construction. Moreover, for such x one has xS{x} 6= ω1. Thus, the condition
xS{x} ∈ 〈T1〉 for any x ∈ 〈S2〉 provides xS′{x} ∈ 〈T ′

1〉 for any x ∈ 〈S′
2〉. By induction

hypothesis, this implies wT ′
D

< wS′ . Again by lemma 2.2 (i) if wT ′
D

< wS′ then

wT

D

< wS.

(iii) Finally, assume that cT (n) = 2 and cS(n) = 1. Consider T ′ = n⇒ π1,n−1(T ). Note
that 〈S2〉 ⊂ 〈T2〉 and n 6∈ 〈S2〉 imply that 〈S2〉 ⊂ 〈T ′

2〉. Let us show that T ′, S
satisfy the second condition as well. Indeed, T ′

1 = (T1 + n). Thus, for any x ∈ 〈S2〉
one has xS{x} ∈ 〈T1〉 iff xS{x} ∈ 〈T ′

1〉. By (i), this implies wS

D

> wT ′ and by corollary

3.7 wT ′
D

> wT . This completes the proof.

3.10 We need the following result about the chain order

Lemma. Let T, S ∈ Tn. Let T
C

< S and assume that cT (n) = cS(n) = 2. If T ′ = T ⇐
n, S′ = S ⇐ n then T ′ C

< S′.
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Proof.
By lemma 3.8, the assumption cT (n) = cS(n) = 2 implies ω1(T ) = ω1(S) and we will
denote it by ω1. We give a proof by induction. This is true for n = 4. Assume this is
true for k = n− 1 and show for k = n.
(i) Suppose that ω1 = n− 1 then T ′ is equivalent to π1,n−1(T ) and S′ is equivalent to

π1,n−1(S) and the statement is obvious.

(ii) Let us consider the case ω1 < n−1. We have that T ′, S′ ∈ T2
n−1. To show that T ′ C

<
S′ we note first that sh (T ′) = (λ1(T ), λ2(T )− 1) and sh (S′) = (λ1(S), λ2(S)− 1).
Thus, sh (T ′) < sh (S′). As well, sh (π1,n−2(T ′)) = (λ1(T ) − 1, λ2(T ) − 1) and
sh (π1,n−2(S′)) = (λ1(S)−1, λ2(S)−1). So, again, sh (π1,n−2(T ′)) < sh (π1,n−2(S′)).

Let us show that π1,n−3(T ′)
C

< π1,n−3(S′) by induction hypothesis. Indeed, P =
T, S and for P ′ = T ′, S′ one has π1,n−3(P ′) = π1,n−3(π1,n−1(P ) ⇐ n − 1) so that

by induction hypothesis π1,n−3(T ′)
C

< π1,n−3(S′). To complete the proof we have

to show that π2,n−1(T ′)
C≤ π2,n−1(S′). Indeed, set P ′′ = π2,n(P ) where P is T or

S. Since S
C

> T one has λ1(S) > λ2(S). Thus, S satisfies conditions (i) and (ii) of
lemma 3.1, so that cS′′(n) = 2. This implies in turn by lemma 3.2 that cT ′′(n) = 2.

In particular, this provides π2,n−1(P ′) = P ′′ ⇐ n. Hence, π2,n−1(T ′)
C≤ π2,n−1(S′)

by induction assumption.

Note that this property is unique for T2
n. Indeed, in general, the facts T

C

< S and
cT (n) = cS(n) even do not provide that 〈T ⇐ n〉 = 〈S ⇐ n〉.
3.11 Now we are ready to prove theorem 3.5. Let us recall its formulation.

Theorem. For T, S ∈ T2
n one has T

C

< S iff wT

D

< wS .

Proof.
As we explained in 1.11, wT

D

< wS implies T
C

< S.
We will show the other direction by induction. For n = 3 the other direction is

true. Assume that for k ≤ n− 1 if T
C

< S then wT

D

< wS and show this for k = n.

Assume T
C

< S.
(i) If cS(n) = 1 then consider S′ = π1,n−1(S) and T ′ = π1,n−1(T ). By proposition 2.13

(ii), T ′ C≤ S′, thus, by induction assumption wT ′
D≤ wS′ . One has wS = [n, wS′] and

by lemma 2.2 (i) this implies [n, wS′]
D≥ [n, wT ′ ] = wT ′′ where T ′′ = n ⇒ T ′. By

corollary 3.7, wT ′′
D≥ wT . Thus, we get in that case wT

D≤ wS.
(ii) If cS(n) = 2 then by lemma 3.2 cT (n) = 2. By lemma 3.8, ω1(T ) = ω1(S) =: ω1.

As well, ω1 = nS = nT . Consider S′ = S ⇐ n and T ′ = T ⇐ n. By lemma 3.10,
T ′ C

< S′ and by induction hypothesis this provides wT ′
D

< wS′ . On the other hand,
wT = [ω1, wT ′ ] and wS = [ω1, wS′ ]. Thus, by lemma 2.2 (i) in that case, as well,

wT

D

< wS.
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3.12 The first and very easy corollary of the theorem is

Corollary. For T, S ∈ T2
n one has T

D

< S iff wT

D

< wS.

Proof.
The implication wT

D

< wS ⇒ T
D

< S follow just from the definition; the other implica-
tion is obvious from theorem 3.11 since T

D

< S implies T
C

< S.

3.13 As well, we get the following geometric fact from this purely combinatorial
theorem

Corollary. For orbital varieties VT ,VS of nilpotent order 2 one has VS ⊂ VT if and
only if n∩wS n ⊂ n∩wT n that the inclusion of orbital variety closures is determined by
inclusion of generating subspaces.

Proof.
Again one implication is obvious from the definition and the other one from theorem
3.11 since VS ⊂ VT implies by 1.11 S

C

> T.

3.14 Theorem 3.11 and corollary 3.12 provide us also

Corollary.
C≤ and

D≤ coincide on orbital varieties of nilpotent order 2.

3.15 Note that lemma 3.9 together with theorem 3.11 give the exact description of
inclusion of orbital variety closures of nilpotent order 2 in terms of Young tableaux.

Since
G≤,

D≤, and
C≤ coincide on T2

n we will denote them simply by ≤ and the cover in ≤
simply by D(T ).

Let us first give the recursive description of S : S > T and of D(T ) for T ∈ T2
n.

Proposition. Let T ∈ T2
n. One has

(i) If cT (n) = 1 then S > T iff S = n ⇒ S′ where S′ > π1,n−1(T ). In particular,
D(T ) = {n⇒ S}S∈D(π1,n−1(T )).

(ii) If cT (n) = 2 then S > T in the next two cases. Either S = n ⇒ S′ where
S′ ≥ π1,n−1(T ) or S = ω1(T ) ⇒ S′ where S′ > T ⇐ n. In particular, D(T ) =
{ω1(T )⇒ (n⇒ S′′)}S′′∈D(T1\{om1(T )},T2\{n}) ∪ {(T1 + {n}, T2 \ {n})}.
In particular, for any T ∈ T2

n and for any S ∈ D(T ) one has sh (S) = (λ1(T ) +
1, λ2(T )− 1).

Proof.
Indeed, if cT (n) = 1 and S > T then by lemma 3.2 one has cS(n) = 1. Thus,

wT = [n, wπ1,n−1(T )] and wS = [n, wπ1,n−1(S)]. One has by lemma 2.2 (i) that wT

D

< wS

iff wπ1,n−1(T )

D

< wπ1,n−1(S) which is equivalent by theorem 3.11 and its corollaries to
π1,n−1(T ) < π1,n−1(S). Now if cT (n) = 1 then sh (π1,n−1(T )) = (λ1(T )− 1, λ2(T )) and
for any S ∈ D(T ) one has sh (π1,n−1(S)) = (λ1(S) − 1, λ2(S)). Note that π1,n−1(S) >
π1,n−1(T ) by shape consideration. The same shape considerations show that if S ∈ D(T )
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then π1,n−1(S) ∈ D(π1,n−1(T )) and that for any S′ ∈ D(π1,n−1(T )) one has n ⇒ S′ ∈
D(T ).

Now assume that cT (n) = 2. Consider S : S > T. If cS(n) = 2 then by lemma
3.10 and corollary 3.14 (T ⇐ n) < (S ⇐ n). Thus, S = ω1(T )⇒ S′ where S′ > T ⇐ n.
If cS(n) = 1 then by lemma 3.4 and corollary 3.14 S ≥ T ′ = (T1 + {n}, T2 \ {n}). Thus,
by (i) S = n⇒ S′ where S′ ≥ π1,n−1(T ). If S ∈ D(T ) then
(a) If cS(n) = 1 then by lemma 3.4 S = (T1 + {n}, T2 \ {n})
(b) If cS(n) = 2 then by lemma 3.10 and (i) S = ω1(T ) ⇒ (n ⇒ S′′) where S′′ ∈
D(T1 \ {ω1(T )}, T2 \ {n}).
The note on the shape of S ∈ D(T ) is obvious.

3.16 Let us give explicit description ofD(T ). Consider T ∈ T2
n. One can write T2 as

the union of connected subsequences 〈T2〉 = {a1, a1+1, . . . a1+k1}∪. . .∪{as, . . . , as+ks}
where ai > ai−1 + ki−1 + 1 for any i : 1 < i ≤ s. For any x ∈ 〈T2〉 set T 〈x〉 :=
(T1 + {x}, T2 \ {x}). Note that T 〈x〉 is always a tableau. Recall notion of T{x} from
3.5. Note that for x ∈ 〈T2〉 sometimes T{x} = π1,x(T ) and sometimes T{x} 6= π1,x(T ).
Returning to example 3.5, we get T{6} = π1,6(T ) and T{5} 6= π1,5(T ), T{3} 6= π1,3(T ).

Proposition. For T ∈ T2
n let T2 be the union of connected subsequences {a1, a1 +

1, . . . a1 + k1}, . . . , {as, . . . , as + ks} where ai > ai−1 + ki−1 + 1 for any i : 1 < i ≤ s.
Then

D(T ) = {T 〈aj + kj〉 | 1 ≤ j ≤ s and π1,aj+kj
(T ) = T{aj + kj}}.

Proof.
By corollary 3.3 (ii) and proposition 3.15, one has D(T ) ⊂ {T 〈s〉}s∈T2. Moreover, for
any s : aj ≤ s < aj +kj one has s ∈ τ(T ) and s 6∈ τ(T{s}). Thus, T 〈s〉 6> T. We obtain
that D(T ) ⊂ {T 〈aj + kj〉}sj=1.

Consider T ′ = T 〈aj + kj〉. Since T ′
1 = T1 + {aj + kj} and respectively 〈T ′

2〉 ⊂ 〈T2〉
it is enough to show that the second condition of lemma 3.9 is satisfied, i.e. for any
s ∈ T ′

2 one has sT ′{s} 6= aj + kj . Indeed, if π1,aj+kj
(T ) = T{aj + kj} one has that

sT ′{s} > aj + kj for any s > aj + kj and sT ′{s} < aj + kj for any s < aj + kj .
On the other hand, if T{aj + kj} 6= π1,aj+kj

(T ) that means that for aj+1 one has

a
T{aj+1}
j+1 < aj + kj Thus, a

T ′{aj+1}
j+1 = aj + kj . Hence, by lemma 3.9 T ′ 6> T. And this

concludes the proof.

Again consider T from example 3.5. One has

D




1 3

2 5

4 6

7




=




1 3

2 5

4

6

7



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3.17 Finally, let us consider the case of tableaux with two rows. Let (T2
n)† denote

the set of standard Young tableaux with two rows. For any S ∈ (T2
n)† one has by 2.14

S = T †(wS†) = T (wS†).

By 1.7, for any T, S ∈ (T2
n)† on has T

D

< S (resp. T
C

< S) iff T † D

> S† (resp.

T † C

> S†).
For any S ∈ (T2

n)† set wS := wS† . By 2.2 (iii), for any S, T ∈ (T2
n)† one has

wS

D

< wT iff wS†
D

> wT† , therefore, all the results for T2
n can be translated to (T2

n)†.

Theorem. Let T, S ∈ (T2
n)†.

(i) One has T
C

< S iff wT

D

< wS .

(ii) One has T
D

< S iff wT

D

< wS .
(iii) VS ⊂ VT iff n ∩wS n ⊂ n ∩wT n.

(iv) Orders
D≤ and

C≤ coincide on (T2
n)†.
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