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Abstract

The Kronecker product of two Schur functions sλ and sµ, denoted sλ ∗ sµ, is
defined as the Frobenius characteristic of the tensor product of the irreducible rep-
resentations of the symmetric group indexed by partitions of n, λ and µ, respectively.
The coefficient, gλ,µ,ν , of sν in sλ ∗ sµ is equal to the multiplicity of the irreducible
representation indexed by ν in the tensor product. In this paper we give an al-
gorithm for expanding the Kronecker product s(n−p,p) ∗ sλ if λ1 − λ2 ≥ 2p. As a
consequence of this algorithm we obtain a formula for g(n−p,p),λ,ν in terms of the
Littlewood-Richardson coefficients which does not involve cancellations. Another
consequence of our algorithm is that if λ1 − λ2 ≥ 2p then every Kronecker coeffi-
cient in s(n−p,p) ∗ sλ is independent of n, in other words, g(n−p,p),λ,ν is stable for all
ν.

Introduction

Let χλ and χµ be the irreducible characters of Sn (the symmetric group on n letters)
indexed by the partitions λ and µ of n. The Kronecker product χλχµ is defined by
(χλχµ)(w) = χλ(w)χµ(w) for all w ∈ Sn. Hence, χλχµ is the character that corresponds
to the diagonal action of Sn on the tensor product of the irreducible representations
indexed by λ and µ. Then we have

χλχµ =
∑
ν`n

gλ,µ,νχ
ν ,
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where gλ,µ,ν is the multiplicity of χν in χλχµ. Hence the gλ,µ,ν are non-negative integers.
By means of the Frobenius map one can define the Kronecker (internal) product on

the Schur symmetric functions by

sλ ∗ sµ =
∑
ν`n

gλ,µ,νsν .

A reasonable formula for decomposing the Kronecker product is unavailable, although the
problem has been studied since the early twentieth century. In recent years Lascoux [La],
Remmel [R-1], Remmel and Whitehead [RWd] and Rosas [Ro] derived closed formulas for
Kronecker products of Schur functions indexed by two row shapes or hook shapes. Gessel
[Ge] obtained a combinatorial interpretation for zigzag partitions.

More general results include a formula of Garsia and Remmel [GR-1] which decomposes
the product of homogeneous symmetric functions with a Schur function. Dvir [D] and
Clausen and Meier [CM] have given for any λ and µ a simple and precise description for the
maximum length of ν and the maximum size of ν1 whenever gλ,µ,ν is nonzero. Bessenrodt
and Kleshchev [BK] have looked at the problem of determining when the decomposition
of the Kronecker product has one or two constituents.

The main result of this paper is an algorithm for decomposing the Kronecker product
s(n−p,p) ∗ sλ whenever λ1 − λ2 ≥ 2p. We use this algorithm to obtain a closed formula
for g(n−p,p),λ,ν in terms of Littlewood-Richardson coefficients that does not involve can-
cellations. Our algorithm is a generalization of the following simple algorithm for the
decomposition of s(n−1,1) ∗ sλ whenever λ1− λ2 ≥ 2. Let λ̄ = (λ2, λ3, . . . , λ`(λ)) denote the
Young diagram obtained by removing the first part from λ.

First Step: Everywhere possible delete zero or one box from λ̄ such that the resulting
diagram corresponds to a partition.

Second step: To each diagram β 6= λ̄ obtained in the first step, everywhere possible
add zero or one box so that the resulting diagram corresponds to a partition. And to
β = λ̄ add everywhere possible one box.

Finally, we complete the resulting diagrams ν̄ obtained in the second step such that
ν = (n − |ν̄|, ν̄) is a partition of n. Then s(n−1,1) ∗ sλ is equal to the sum of the Schur
functions corresponding to all diagrams ν obtained via the remove/add steps above.

In 1937 Murnaghan [M] noticed that for large n the Kronecker product did not depend
on the first part of the partitions λ and µ. That is, if λ is a partition of n and λ̄ =
(λ2, . . . , λ`(λ)) denotes the partition obtained by removing the first part of λ, then there
exists an n such that g(n−|λ̄|,λ̄),(n−|µ̄|,µ̄),(n−|ν̄|,ν̄) = g(m−|λ̄|,λ̄),(m−|µ̄|,µ̄),(m−|ν̄|,ν̄) for all m ≥ n. In
this case we say that gλ,µ,ν is stable. Vallejo [V1] has recently found a bound for n for the
stability of gλ,µ,ν . As a consequence of our algorithm we have that g(n−p,p),λ,ν is stable for
all ν if λ1 − λ2 ≥ 2p. This improves Vallejo’s bound in some cases.

Other consequences of our algorithm are bounds for the size of ν1 and ν2 whenever
g(n−p,p),λ,ν 6= 0.

Our main tools for establishing the algorithm are the Garsia-Remmel identity [GR-1,
Lemma 6.3] and the Remmel-Whitney algorithm for multiplying Schur functions [RWy].
The main strength of the algorithm relies in the fact that it does not involve cancellations.
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The paper is organized as follows. In Section 1 we review basic terminology and estab-
lish notation. We also give a variation of the Remmel-Whitney algorithm for multiplying
Schur functions. In Section 2 we state our algorithm for the product s(n−p,p) ∗ sλ and
give an example of the algorithm. In Section 3 we prove the main theorem which states
that the result of the algorithm in Section 2 yields the decomposition of s(n−p,p) ∗ sλ. In
Section 4 we give a closed formula for the coefficient g(n−p,p),λ,ν in terms of Littlewood-
Richardson coefficients when λ1− λ2 ≥ 2p− 1. We also give bounds for ν1 and ν2 so that
g(n−p,p),λ,ν 6= 0. In Section 5 we discuss the stability of the coefficients g(n−p,p),λ,ν.

Acknowledgement: The authors would like to thank C. Bessenrodt for helpful discus-
sions. They are also grateful to an anonymous reviewer for several useful suggestions.

1 Notation and Basic Algorithms

For details and proofs of the contents of this section see [Ma] or [S, Chapter 7]. Let n be
a non-negative integer. A partition of n is a weakly decreasing sequence of non-negative
integers, λ := (λ1, λ2, · · · , λ`), such that |λ| = ∑

λi = n. We write λ ` n to mean λ is a
partition of n. The nonzero integers λi are called the parts of λ. We identify a partition
with its Young diagram, i.e. the array of left-justified squares (boxes) with λ1 boxes in
the first row, λ2 boxes in the second row, and so on. The rows are arranged in matrix
form from top to bottom. By the box in position (i, j) we mean the box in the i-th row
and j-th column of λ. The length of λ, `(λ), is the number of rows in the Young diagram.

λ = (6, 4, 2, 1, 1), `(λ) = 5, |λ| = 14
Fig. 1

Given two partitions λ and µ, we write µ ⊆ λ if and only if `(µ) ≤ `(λ) and λi ≥ µi for
1 ≤ i ≤ `(µ). If µ ⊆ λ, we denote by λ/µ the skew shape obtained by removing the boxes
corresponding to µ from λ.

λ/µ where λ = (6, 4, 2, 1, 1) and µ = (3, 1, 1)
Fig.2

A horizontal strip is a skew shape λ/µ with no two squares in the same column.
Let D = λ/µ be a skew shape and let a = (a1, a2, · · · , ak) be a sequence of positive

integers such that
∑

ai = |D| = |λ| − |µ|. A decomposition of D of type a, denoted
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D1 + · · ·+ Dk = D, is given by a sequence of shapes µ = λ(0) ⊆ λ(1) . . . ⊆ λ(k) = λ, where
Di = λ(i)/λ(i−1) and |Di| = ai.

For example, if λ = (4, 4, 4, 3, 1), µ = ∅ and a = (3, 6, 7) the sequence

∅ ⊆ (2, 1) ⊆ (4, 2, 1, 1, 1) ⊆ (4, 4, 4, 3, 1)

gives the decomposition

(2, 1) + (4, 2, 1, 1, 1)/(2, 1) + (4, 4, 4, 3, 1)/(4, 2, 1, 1, 1) = λ

of λ of type (3, 6, 7).
A semi-standard Young tableau (SSYT) of shape λ/µ is a filling of the boxes of the

skew shape λ/µ with positive integers so that the numbers weakly increase in each row
from left to right and strictly increase in each column from top to bottom. The type of a
SSYT T is the sequence of non-negative integers (t1, t2, . . .), where ti is the number of i’s
in T .

2 2 3 4
1 4 4 6

1 3 6 6
2 2 4

is a SSYT of shape λ/µ = (7, 6, 5, 3)/(3, 2, 1) and type (2, 4, 2, 4, 0, 3).
Fig. 3

Given a SSYT T of shape λ/µ and type (t1, t2, . . .), we define its weight, w(T ), to be the
monomial obtained by replacing each i in T by xi and taking the product over all boxes,
i.e. w(T ) = xt1

1 xt2
2 · · · . For example, the weight of the SSYT in Fig. 3 is x2

1x
4
2x

2
3x

4
4x

3
6. The

skew Schur function sλ/µ is defined combinatorially by the formal power series

sλ/µ =
∑

T

w(T ),

where the sum runs over all SSYTs of shape λ/µ. To obtain the usual Schur function one
sets µ = ∅.

The space of homogeneous symmetric functions of degree n is denoted by Λn. A basis
for this space is given by the Schur functions {sλ | λ ` n}. The Hall inner product on Λn

is denoted by 〈 , 〉Λn and it is defined by

〈sλ, sµ〉Λn = δλµ,

where δλµ denotes the Kronecker delta.
For a positive integer r, let pr = xr

1 +xr
2 + · · · . Then pµ = pµ1pµ2 · · · pµ`(µ) is the power

symmetric function corresponding to the partition µ of n. If CSn denotes the space of
class functions of Sn, then the Frobenius characteristic map F : CSn → Λn is defined by

F (σ) =
∑
µ`n

z−1
µ σ(µ)pµ,
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where zµ = 1m1 m1! 2
m2 m2! · · ·nmn mn! if µ = (1m1 , 2m2 , . . . , nmn), i.e. k is repeated mk

times in µ, and σ(µ) = σ(ω) for an ω ∈ Sn of cycle type µ. Note that F is an isometry.
If χλ is an irreducible character of Sn then, by the Murnaghan-Nakayama rule [S, 7.17.5],
F (χλ) = sλ.

For a positive integer r, let hr = s(r). Then hµ = hµ1hµ2 · · ·hµ`(µ)
is the homogeneous

symmetric function corresponding to the partition µ of n. The Jacobi-Trudi identity
allows us to express a Schur function in terms of homogeneous symmetric functions:

sλ = det ‖hλi−i+j‖1≤i,j≤`(λ),

where we set h0 = 1 and hk = 0 for k < 0.

The Littlewood-Richardson coefficients are defined via the Hall inner product on sym-
metric functions as follows:

cλ
µ ν := 〈sλ, sµsν〉 = 〈sλ/µ, sν〉.

That is, skewing is the adjoint operator of multiplication with respect to this inner prod-
uct. The Littlewood-Richardson coefficients are best described combinatorially by the
Littlewood-Richardson rule. Before presenting the rule we need to recall two additional
notions. A lattice permutation is a sequence a1a2 · · ·an such that in any initial factor
a1a2 · · ·aj, the number of i’s is at least as great as the number of (i + 1)’s for all i. For
example 11122321 is a lattice permutation. The reverse reading word of a tableau is the
sequence of entries of T obtained by reading the entries from right to left and top to
bottom, starting with the first row.

Example: The reverse reading word of the tableau
1 2

3 5 6 8
4 7 9

is 218653974.

The Littlewood-Richardson rule states that the Littlewood-Richardson coefficient cλ
µ ν

is equal to the number of SSYTs of shape λ/µ and type ν whose reverse reading word is
a lattice permutation.

We now recall an algorithm given by Remmel-Whitney [RWy] for expanding the prod-
uct of Schur functions sλsµ. In this paper we give two slight variations of the Remmel-
Whitney algorithm: one for multiplication and the other for skewing. This will allow us
to give a nicer presentation of our main result. The algorithm for expanding the skew
Schur function sλ/µ =

∑
ν cλ

µ νsν is a special case of the algorithm for the product of Schur
functions. We will refer to the algorithm for multiplying sλsµ as Add[µ] to λ, and we will
refer to skewing algorithm as Delete[µ] from λ.

The reverse lexicographic filling of µ, rl(µ), is a filling of the Young diagram µ with
the numbers 1, 2, . . . , |µ| so that the numbers are entered in order from right to left and

top to bottom. For example, the reverse lexicographic filling of (5,3,1) is
5 4 3 2 1
8 7 6
9

.

Definition: A tableau T is (λ, µ)-compatible if it contains |λ| unlabelled boxes and |µ|
labelled boxes (with labels 1, 2 . . . , |µ|) and all of the following conditions are satisfied:

(a) T contains |λ| unlabelled boxes in the shape λ. They are positioned in the upper-left
corner of T .
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(b) The labelled boxes in T are in increasing order in each row from left to right and in
each column from top to bottom. If one box of T is labelled, so are all the boxes in
the same row that are to the right of it.

(c) If a box labelled i + 1 occurs immediately to the left of the box labelled i in rl(µ),
then in T the label i + 1 occurs weakly above and strictly to the right of i.

(d) If the box labelled y occurs immediately below the box labelled x in rl(µ), then in
T the label y occurs strictly below and weakly to the left of x.

Remmel and Whitney showed that cν
λ µ is the number of (λ, µ)-compatible tableaux of

shape ν [RWy].

Multiplication: sλsµ - Add[µ] to λ

The Add[µ] to λ algorithm for computing sλsµ =
∑

|ν|=|λ|+|µ|
cν
λ µsν is as follows:

(1) To the Young diagram λ add a box labelled 1 everywhere possible so that the rows
are weakly increasing in size.

(2) We add each subsequent number so that, at each step, the conditions of the definition
of (λ, µ)-compatible tableau are satisfied.

In this way we obtain a tree. The leaves of this tree are the elements of the multi-set
Add[µ] to λ. They are the summands in the decomposition of sλsµ.

Example: The decomposition of sλsµ, where λ = (3, 1), µ = (2, 1): λ = and
rl(µ) = 2 1

3
.

1 2
3

1 2

3

1 2

1

2
1 3

2
1

3

2
1

1 2
3

1 2

1

2
3

1

2

1
3

2

1

2
1 3

2
1
3

2
1

1

Add[µ] to λ = {(5, 2), (5, 1, 1), (4, 3), 2(4, 2, 1), (3, 3, 1), (4, 1, 1, 1), (3, 2, 2), (3, 2, 1, 1)}.
Hence sλsµ = s(5,2) + s(5,1,1) + s(4,3) + 2s(4,2,1) + s(3,3,1) + s(4,1,1,1) + s(3,2,2) + s(3,2,1,1).

Remark: The Add[µ] to λ algorithm is the same as the Remmel-Whitney algorithm. We
do not label the boxes of λ since, by Remark 1 of [RWy], they will always be placed in
the shape of λ in the upper left corner.

The Remmel-Whitney algorithm for multiplying Schur functions is a special case of
a skew Schur function expansion rule [RWy][Remark 3]. See also [R-2]. The Remmel-
Whitney algorithm for the decomposition of the skew Schur function sη/ν requires forming
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the reverse lexicographic filling of η/ν and placing the labels in increasing order such that
(c) and (d) in the definition of compatible tableau are satisfied at each step. Consider
now the skew shape (µ/ρ)× λ given by

(µ1+λ1, µ2+λ1, . . . , µ`(µ)+λ1, λ1, λ2, . . . , λ`(λ))/(λ1+ρ1, λ2+ρ2, . . . , λ`(ρ)+ρ`(ρ), λ
`(µ)−`(ρ)
1 ).

To obtain the expansion of s(µ/ρ)×λ, the Remmel-Whitney algorithm first decomposes the
skew Schur function sµ/ρ =

∑
sγi

. Continuing the algorithm, we place the labels of λ
thus obtaining the decomposition for each sγi

sλ. The leaves of the obtained tree are the
diagrams indexing the Schur functions in the decomposition of sµ/ρsλ. In performing the
algorithm, the labels themselves are irrelevant; only their relative position to each other is
important. Thus, expanding s(µ/ρ)×λ gives the same decomposition as expanding sλ×(µ/ρ),
where λ× (µ/ρ) is the skew shape

(λ1 + µ1, λ2 + µ1, . . . , λ`(λ) + µ1, µ1, µ2, . . . , µ`(µ))/(µ
`(λ)
1 , ρ).

We have the following lemma.

Lemma 1.1. The Add algorithm can be applied to compute the product of a skew Schur
function and a straight Schur function. To perform Add [µ/ρ] to λ form the reverse
lexicographic filling of µ/ρ and add the labels of µ/ρ to λ according to the Add algorithm
above. The leaves of the obtained tree correspond to the summands in the decomposition
of sµ/ρsλ.

Skew: sλ/µ - Delete[µ] from λ

The Delete[µ] from λ for computing sλ/µ =
∑

|ν|=|λ|−|µ|
cλ
µ νsν is as follows:

(1) Form the reverse lexicographic filling of µ.

(2) Starting with the Young diagram λ we will label its outermost boxes with the
numbers 1, 2, . . . , |µ| in decreasing order, starting with |µ|, in the following way. At
every step, the diagram obtained from λ by deleting the labelled boxes must be a
Young diagram. Suppose the position (i, j) in rl(µ) is labelled x. If j > 1, let x−

be the label in position (i, j− 1) in rl(µ). If i < `(µ), let x+ be the label in position
(i + 1, j) in rl(µ). In λ, x will be placed to the left and weakly below (to the SW)
of x− and above and weakly to the right (to the NE) of x+.

From each of the diagrams obtained (with |µ| labelled boxes) we remove all labelled
boxes. The resulting diagrams are the elements in the multi-set Delete[µ] from λ.
They are the summands in the decomposition of sλ/µ.

Remark: Suppose (i, j) is the position of the label x in rl(µ) and (l, m) is the new
position of x in λ. Because of the above rules, there will be constraints on l and m. It
can be easily verified that we must have l ≥ i and m ≥ µi− j +1, where µi is the number
of boxes in the i-th row of µ.
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Example: The decomposition of sλ/µ, λ = (4, 4, 2, 2), µ = (3, 3): λ = , rl(µ) = 3 2 1
6 5 4

.

First we establish the constraints on the position of each label in λ.
label position (i, j) in rl(µ) position (l,m) in λ position relative to

x− and x+

6 (2, 1) l ≥ 2 and m ≥ 3− 1 + 1 = 3
5 (2, 2) l ≥ 2 and m ≥ 3− 2 + 1 = 2 SW of 6
4 (2, 3) l ≥ 2 and m ≥ 3− 3 + 1 = 1 SW of 5
3 (1, 1) l ≥ 1 and m ≥ 3− 1 + 1 = 3 NE of 6
2 (1, 2) l ≥ 1 and m ≥ 3− 2 + 1 = 2 SW of 3 and NE of 5
1 (1, 3) l ≥ 1 and m ≥ 3− 3 + 1 = 1 SW of 2 and NE of 4

2 3
5 6

1
4

2 3
5 6

4

3
5 6

4

5 6

4

5 6

3
2 6

1
4 5

3
2 6

4 5

3
6

1 2
4 5

3
6

2
4 5

3
6

4 5

6

4 5

6

5

6

Thus Delete[µ] from λ = {(2, 2, 1, 1), (3, 2, 1), (3, 3)}. Hence sλ/µ = s(2,2,1,1)+s(3,2,1)+s(3,3).

Remark: The Delete[µ] from λ algorithm follows from the Add[µ] to ν algorithm and the
fact that skewing is the adjoint operation of multiplication, i.e. < sλ/µ, sν >=< sλ, sµsν >.

1.1 Kronecker Product

The Kronecker product of homogenous symmetric polynomials is defined in terms of the
Frobenius characteristic map F . Let χ1, χ2 be two class functions in the center of the
group algebra of Sn. Then χ1χ2, defined by χ1χ2(σ) = χ1(σ)χ2(σ) for all σ ∈ Sn, is also
a class function. If P1 = F (χ1) and P2 = F (χ2), we define the Kronecker product of P1
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and P2 by:
P1 ∗ P2 = F (χ1χ2).

The following are well-known rules for the Kronecker product:

(1) s(n) ∗ sλ = sλ

(2) s(1n) ∗ sλ = sλ′ , where λ′ denotes the conjugate of λ.

(3) sλ ∗ sµ = sµ ∗ sλ = sλ′ ∗ sµ′ = sµ′ ∗ sλ′

(4) (P + Q) ∗R = P ∗R + Q ∗R, for any symmetric homogenous polynomials P, Q, R.

(5) (sλsµ) ∗ sν =
∑
τ`|λ|
η`|µ|

cν
τ η(sτ ∗ sλ)(sη ∗ sµ), where λ, µ, τ, η are straight shapes.

Formula (5) was proved by Littlewood [Li]. Garsia and Remmel [GR-2] used this formula
to prove the following more general result:

(sAsB) ∗ sD =
∑

D1+D2=D

|D1|=|A|,|D2|=|B|

(sA ∗ sD1)(sB ∗ sD2),

where A, B and D are skew shapes and the sum runs over all decompositions of the skew
shape D. In particular, an inductive argument establishes that

(s(n1)s(n2) · · · s(nk)) ∗ sD =
∑

D1+D2+···Dk=D

|Di|=ni

sD1 · · · sDk
,

where the sum runs over all decompositions of D of length k such that |Di| = ni for
all i. This in turn helps in the computation of arbitrary Kronecker products using the
Jacobi-Trudy identity.

Kronecker products of Schur functions, as well as Kronecker products of skew Schur
functions, are homogenous symmetric functions. Thus they can be written as linear com-
binations of Schur functions. Since Schur functions are images of characters of symmetric
group representations under the Frobenius characteristic map, it is known that the coeffi-
cients in their expansion are non-negative integers. More specifically, the coefficients are
multiplicities of irreducible representations.

2 Algorithm for computing s(n−p,p) ∗ sλ

If µ = (µ1, µ2, . . . , µk), we denote by µ̄ the partition µ̄ = (µ2, . . . , µk). We will follow the
philosophy of [M] and work with the partition µ̄ instead of µ whenever possible. Knowing
that µ ` n, µ1 is completely determined by µ̄.

Let p be a positive integer and λ a partition of n such that λ1−λ2 ≥ 2p. We consider
the subset of partitions of p contained in λ: Sλ = {α ` p |α ⊆ λ}.
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Algorithm: For every α ∈ Sλ form the following set of Young diagrams:

Q(α) =
⋃α1

j=0{ν| ν is obtained by removing a horizontal strip with j boxes from α}

=
⋃α1

j=0 Delete [(j)] from α

For each α ∈ Sλ perform the following two steps:

(1) Remove[α]: For each δ ∈ Q(α) perform Delete[δ] from λ̄. Record all diagrams
obtained from Delete[δ] from λ̄, with multiplicity, in the multi-set D(α). Denote by dαλβ

the multiplicity of β in D(α). If α1 > α2, let D′(α) be the submulti-set of D(α) of diagrams
obtained by performing Delete[δ] from λ̄ whenever δ1 = α1. Denote the multiplicity of
β ∈ D′(α) by d′

αλβ. If α1 = α2, set d′
αλβ = 0.

(2) Add[α]: For each (distinct) β ∈ D(α),

(a) If d′
αλβ = 0, then for each γ ∈ Q(α) with γ1 = α1 perform Add[γ] to β. The

multiplicity of each resulting diagram is multiplied by dαλβ .

(b) If 0 < d′
αλβ = dαλβ, then for each γ ∈ Q(α) perform Add[γ] to β. The multiplicity

of each resulting diagram is multiplied by dαλβ .

(c) If 0 < d′
αλβ < dαλβ , then for each γ ∈ Q(α) perform Add[γ] to β. For each γ ∈ Q(α)

with γ1 = α1 the multiplicity of each resulting diagram is multiplied by dαλβ. And
for each γ such that γ1 < α1 the multiplicity of each resulting diagram is multiplied
by d′

αλβ .

Finally, we record all diagrams obtained in step (2), for every β, in a multi-set Rα.
Note: Whenever we perform Delete[η] from η, the empty diagram, denoted ε, will be
recorded. Thus, if α = (p), then ε ∈ Q(α). Similarly, in the Remove[α] step, if δ = λ̄ ∈
Q(α), then ε ∈ D(α).

If η = (η1, . . . , η`(η)) ∈ Rα, let η̃ = (η0, η1, . . . , η`(η)), where η0 = n− |η|. Thus η̃ ` n.

Theorem 2.1. Let p be a positive integer and λ a partition of n such that λ1 − λ2 ≥ 2p.
Then

s(n−p,p) ∗ sλ =
∑
α∈Sλ

∑
η∈Rα

sη̃.

We prove this theorem in the next section.

Remark: The multiplicity of each β ∈ D(α) is

dαλβ =
∑

δ∈Q(α)

|δ|=|λ̄|−|β|

cλ̄
δ β,

where cλ̄
δ β are Littlewood-Richardson coefficients.

Corollary 2.2. The coefficient of sν in s(n−p,p)∗sλ is g(n−p,p),λ,ν =
∑

α∈Sλ
c(α, λ, ν) where

c(α, λ, ν) is the multiplicity of ν̄ ∈ Rα.
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Example: We will perform the algorithm for s(n−p,p) ∗ sλ in the case when n = 12, p = 3
and λ = (8, 2, 1, 1). Since λ1 − λ2 = 8 − 2 = 6 ≥ 2p, the condition of the algorithm is
satisfied. The Young diagrams for λ and λ̄ are

λ = and λ̄ = .

We have Sλ = {α ` 3 | α ≤ λ} =
{

, ,
}

α = : From α remove j boxes, 0 ≤ j ≤ 3, no two in the same column.

Q(α) = { , , , ε}

(1) Remove[α]: For each δ ∈ Q(α) perform Delete[δ] from λ̄.

Delete[ 3 2 1 ], Delete[ 2 1 ], Delete[ 1 ], and Delete[ε] from . Then we have

D(α) =
{

, , ,
}

and D′(α) = ∅.

(2) Add[α]: Since D′(α) = ∅, we have d′
αλβ = 0 for all β ∈ D(α). We are in case (a).

The only γ ∈ Q(α) with γ1 = α1 is γ = . For every β ∈ D(α) we perform Add[ ]
to β.

Add[ 3 2 1 ] to = {(4, 1), (3, 1, 1)};
Add[ 3 2 1 ] to = {(4, 1, 1), (3, 1, 1, 1)};
Add[ 3 2 1 ] to = {(5, 1), (4, 2), (4, 1, 1), (3, 2, 1)};
Add[ 3 2 1 ] to = {(5, 1, 1), (4, 2, 1), (4, 1, 1, 1), (3, 2, 1, 1)}.
We take the union of these four multi-sets to get:

R = {(4, 1), (3, 1, 1), 2(4, 1, 1), (3, 1, 1, 1), (5, 1), (4, 2), (3, 2, 1), (5, 1, 1), (4, 2, 1),
(4, 1, 1, 1), (3, 2, 1, 1)}

α = : From α remove j boxes, 0 ≤ j ≤ 2, no two in the same column.

Q(α) =
{

, , ,
}

(1) Remove[α]: For each δ ∈ Q(α) perform Delete[δ] from λ̄.

Delete[ 2 1
3

] from ={(1)}; Delete[ 1
2
] from = {(1, 1), (2)};

Delete[ 2 1 ] from ={(1, 1)}; Delete[ 1 ] from ={(2, 1), (1, 1, 1)}.
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This yields:

D(α) =
{

, 2 , , ,
}

and D′(α) =
{

,
}

.

(2) Add[α]: If β = , then we have d′
αλβ = 1 = dαλβ and we are in case (b). For each

γ ∈ Q(α) we perform Add[γ] to .

Add[ 2 1
3

] to = {(3, 1), (2, 2), (2, 1, 1)}; Add[ 1
2
] to = {(2, 1), (1, 1, 1)};

Add[ 2 1 ] to = {(3), (2, 1)}; Add[ 1 ] to = {(2), (1, 1)}.
If β = , then d′

αλβ = 1 and dαλβ = 2. Thus we are in case (c).

For each γ ∈ Q(α) we perform Add[γ] to and if γ1 = α1 count the resulting diagrams
with multiplicity dαλβ = 2.

2× Add[ 2 1
3

] to = {2(3, 2), 2(3, 1, 1), 2(2, 2, 1), 2(2, 1, 1, 1)};
Add[ 1

2
] to = {(2, 2), (2, 1, 1), (1, 1, 1, 1)};

2× Add[ 2 1 ] to = {2(3, 1), 2(2, 1, 1)};
Add[ 1 ] to = {(2, 1), (1, 1, 1)}.
If β = , then d′

αλβ = 0. We are in case (a). The only γ ∈ Q(α) with γ1 = α1 are
γ = and γ = .

Add[ 2 1
3

] to = {(4, 1), (3, 2), (3, 1, 1), (2, 2, 1)};
Add[ 2 1 ] to = {(4), (3, 1), (2, 2)};
If β = , then d′

αλβ = 0. We are in case (a). As before, the only γ ∈ Q(α)
with γ1 = α1 are γ = and γ = .

Add[ 2 1
3

] to = {(4, 2), (4, 1, 1), (3, 3), 2(3, 2, 1), (3, 1, 1, 1), (2, 2, 2), (2, 2, 1, 1)};
Add[ 2 1 ] to = {(4, 1), (3, 2), (3, 1, 1), (2, 2, 1)}.
If β = , then d′

αλβ = 0 . We are in case (a). As before, the only γ ∈ Q(α)

with γ1 = α1 are γ = and γ = .

Add[ 2 1
3

] to = {(3, 2, 1), (3, 1, 1, 1), (2, 2, 1, 1), (2, 1, 1, 1, 1)};

Add[ 2 1 ] to = {(3, 1, 1), (2, 1, 1, 1)}.
We take the union of all the multi-sets above (from the Add step):

R = {4(3, 1), 3(2, 2), 4(2, 1, 1), 3(2, 1), 2(1, 1, 1), (3), (2), (1, 1), 4(3, 2),

5(3, 1, 1), 4(2, 2, 1), 3(2, 1, 1, 1), (1, 1, 1, 1), 2(4, 1), (4), (4, 2), (4, 1, 1),

(3, 3), 3(3, 2, 1), 2(3, 1, 1, 1), (2, 2, 2), 2(2, 2, 1, 1), (2, 1, 1, 1, 1)}
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α = : From α remove j boxes, 0 ≤ j ≤ 1, no two in the same column.

Q(α) =
{

,
}

(1) Remove[α]: For each δ ∈ Q(α) perform Delete[δ] from λ̄.

Delete[
1
2
3
] from = {(1)}; Delete[ 1

2
] from = {(2), (1, 1)}.

This yields:

D(α) =
{

, ,
}

.

(2) Add[α]: Since α1 = α2, d′
αλβ = 0 for all β ∈ D(α). We are in case (a). For

α = (1, 1, 1), all γ ∈ Q(α) satisfy γ1 = α1. We perform Add[γ] to β for all γ ∈ Q(α) and
all β ∈ D(α).

Add[
1
2
3
] to = {(2, 1, 1), (1, 1, 1, 1)}

Add[
1
2
3
] to = {(2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1)}

Add[
1
2
3
] to = {(3, 1, 1), (2, 1, 1, 1)}

Add[ 1
2
] to = {(2, 1), (1, 1, 1)}

Add[ 1
2
] to = {(2, 2), (2, 1, 1), (1, 1, 1, 1)}

Add[ 1
2
] to = {(3, 1), (2, 1, 1)}

We take the union of all the multi-sets above:

R = {3(2, 1, 1), 2(1, 1, 1, 1), (2, 1), (1, 1, 1), (2, 2, 1),

2(2, 1, 1, 1), (1, 1, 1, 1, 1), (2, 2), (3, 1, 1), (3, 1)}
Finally, we use Theorem 2.1 to obtain the decomposition of s(9,3) ∗ s(8,2,1,1). Consider

the union of the multi-sets Rα, for all α ∈ S(8,2,1,1), and ”complete” each shape to size 12.
Thus

s(9,3) ∗ s(8,2,1,1) = 3s(7,4,1) + 7s(7,3,1,1) + 3s(6,4,1,1) + 3s(6,3,1,1,1) + s(6,5,1) + 2s(6,4,2) + 4s(6,3,2,1) +
s(5,5,1,1) +s(5,4,2,1)+s(5,4,1,1,1)+s(5,3,2,1,1)+5s(8,3,1)+4s(8,2,2)+7s(8,2,1,1)+4s(9,2,1)+3s(9,1,1,1)+
s(9,3)+s(10,2)+s(10,1,1)+4s(7,3,2)+5s(7,2,2,1)+5s(7,2,1,1,1)+3s(8,1,1,1,1)+s(8,4)+s(6,3,3)+s(6,2,2,2)+
2s(6,2,2,1,1) + s(6,2,1,1,1,1) + s(7,1,1,1,1,1).

3 Proof of Theorem 2.1

In this section we prove Theorem 2.1, but first we establish a few facts about the multi-
plicities dαλβ and d′

αλβ of the elements β in D(α) and D′(α) respectively.
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As in Section 1, we denote by cµ
ν η the Littlewood-Richardson coefficient. If we denote

by T η
µ/ν the set of semistandard Young tableaux of shape µ/ν and type η whose reverse

reading word is a lattice permutation, then the cardinality of T η
µ/ν is equal to cµ

ν η. Let

T η
µ/ν(i, j) be the subset of T η

µ/ν of SSYTs of shape µ/ν and type η with label 1 in position

(i, j). Note that this multi-subset could be empty. Define

aµ
ν η :=

{
|T η

µ/ν(2, ν1)|, if µ2 ≥ ν1 and ν1 > ν2,

0 otherwise.

Remarks: (1) Since aµ
ν η counts SSYTs whose reverse reading word is a lattice permu-

tation, the first row of each such tableau must be filled with 1’s. Thus, if η1 ≤ µ1 − ν1,
we have aη

µ ν = 0. Moreover, if position (2, ν1) is to be filled with 1, then all boxes in the
second row of µ/ν that are to the left of position (2, ν1) must be filled with 1’s. Thus, if
η1 < µ1 − ν2, we have aµ

ν η = 0.

(2) In general, if ν1 > ν2, aµ
ν η equals the number of SSYTs of shape µ/ν and type η whose

reverse reading word is a lattice permutation and having exactly ν1 − ν2 boxes in the
second row of µ/ν labelled 1.

Theorem 3.1. Let p and n be positive integers such that n ≥ p. Let λ = (λ1, . . . , λ`(λ))
be a partition of n such that λ1 − λ2 ≥ p and let α = (α1, . . . , α`(α)) be a partition

of p. Let β̂ = (β0, β1, . . . , β`(β)) be a partition of n − p. Denote by β the partition

β = (β1, β2, . . . , β`(β)), i.e. β =
¯̂
β.

(a) If |β| > |λ̄| − |ᾱ| or |β| < |λ̄| − p, then

cλ
α β̂

= 0.

(b) If |λ̄| − p ≤ |β| ≤ |λ̄| − |ᾱ|, then

cλ
α β̂

=
∑

δ∈Q(α); δ⊆λ̄

|δ|=|λ̄|−|β|

cλ̄
δ β.

Proof: (a) If |β| > |λ̄|−|ᾱ|, then β0 = n−p−|β| < n−p−|λ̄|+|ᾱ| = n−|λ̄|−(p−|ᾱ|) =
λ1 − α1. Since β0 < λ1 − α1, there are not enough 1’s to create any SSYT of shape λ/α
and type β̂ (the first row of λ/α has length λ1 − α1 and needs to be filled with 1’s).

If |β| < |λ̄| − p, then β0 = n− p− |β| > n− p− |λ̄|+ p = n− |λ̄| = λ1. Since β0 > λ1,
there are too many 1’s. The maximum number of 1’s, in creating a SSYT of shape λ/α
and type β̂ is λ1 (since the numbers in the filling of the SSYT must increase strictly in
the columns).

In both cases we obtain cλ
α β̂

= 0.

(b) Assume |λ̄| − p ≤ |β| ≤ |λ̄| − |ᾱ|. Consider the skew diagram λ/α. To determine
cλ
α β̂

we need to find the number of SSYTs of shape λ/α and type β̂ whose reverse reading
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word is a lattice permutation. Thus, in the skew-shape λ/α we need to fill β0 places with
1’s, β1 places with 2’s, . . ., and β`(β) places with (`(β) + 1)’s.

In filling β0 places with 1’s one is forced to place λ1 − α1 of them in the first row of
λ/α. There are now β0−λ1 +α1 = n−p−|β|−λ1 +α1 = |λ̄|−|ᾱ|−|β| ≥ 0 remaining 1’s.
Since we are to obtain SSYTs, the remaining 1’s need to be placed at the beginning (left
end) of the remaining rows of λ/α (i.e. at the beginning of the rows of λ̄/ᾱ) such that no
two 1’s are placed directly under each other. Thus, there is a one-to-one correspondence
between the possible ways of filling the 1’s in λ/α and the Young diagrams η ⊆ λ̄ obtained
from ᾱ by adding |λ̄| − |ᾱ| − |β| boxes, no two in the same column and no more that
α1 − α2 boxes in the first row of ᾱ.

After all 1’s have been placed, completing the SSYT of shape λ/α and type β̂ such
that the reverse reading word is a lattice permutation is equivalent to determining the
SSYT of shape λ̄/η and type β whose reverse reading word is a lattice permutation for
the corresponding η: each label i (i = 1, 2, . . . , `(β)) in the SSYT of shape λ̄/η and type β
corresponds to a label i+1 in the SSYT of shape λ/α and type β̂. The maximum number
of 2’s that can be placed in λ/α equals λ2. Since λ1 − λ2 ≥ p, we have λ1 − α1 ≥ λ2 and
therefore the total number of 2’s in λ/α is less or equal than the number of 1’s in the
first row. If the SSYT of shape λ̄/η and type β is such that the reverse reading word is a
lattice permutation, then the same will be true of the SSYT of shape λ/α and type β̂.

Claim: The diagrams η ⊆ λ̄ obtained above by adding |λ̄| − |ᾱ| − |β| boxes to ᾱ, no
two in the same column and no more that α1−α2 boxes in the first row of ᾱ, are precisely
the elements of δ ∈ Q(α) of size |δ| = |λ̄| − |β|, such that δ ⊆ λ̄.

Proof of the claim: Let η ⊆ λ̄ be a Young diagram obtained from ᾱ by adding
|λ̄| − |ᾱ| − |β| boxes, no two in the same column and no more than α1 − α2 boxes in the
first row of ᾱ. Then η ` |λ̄| − |β|, ᾱ = (α2, α3, . . . , α`(α)) ⊆ η = (η1, η2, . . . , η`(η)) and
`(α)− 1 = `(ᾱ) ≤ `(η) ≤ `(ᾱ) + 1 = `(α).

Since ᾱ ⊆ η, we have αj+1 ≤ ηj for all j = 1, 2, . . . , `(α)− 1. Since no two boxes are
added to the same column, we have ηj ≤ αj for all j = 2, 3, . . . , `(α). Since no more than
α1 − α2 boxes are added to the first row of ᾱ, we have η1 ≤ α2 + α1 − α2 = α1. Thus,
αj+1 ≤ ηj ≤ αj for all j = 1, 2, . . . , `(α)− 1 and η`(α) ≤ α`(α) (η`(α) might be zero).

The diagram η is exactly the Young diagram δ obtained from α by removing, for
each j = 1, 2, . . . , `(α), αj − ηj ≥ 0 boxes from the j-th row of α. Since, for each
j = 1, 2, . . . , `(α)− 1, αj+1 ≤ ηj = αj − (αj − ηj), no two boxes have been removed from
the same column and thus δ ∈ Q(α).

Conversely, if δ ∈ Q(α), |δ| = |λ̄| − |β|, δ ⊆ λ̄, then δj ≤ αj for all j = 1, 2 . . . , `(α)
and, since no two boxes are removed from the same column of α, δj ≥ αj+1 for all
j = 1, 2 . . . , `(α)− 1. Moreover, `(α)− 1 ≤ `(δ) ≤ `(α).

The diagram δ is exactly the Young diagram η obtained from ᾱ by adding, for each
j = 1, 2 . . . , `(α)− 1, δj − αj+1 ≥ 0 boxes to the j-th row of ᾱ (i.e. the j + 1-st row of α)
and δ`(α) boxes below the last row of ᾱ. Note that δ`(α) might be zero.

Thus δ is in fact a Young diagram η obtained from ᾱ by adding
∑`(α)−1

j=1 (δj − αj+1) +

δ`(α) = |λ̄| − |β| − |ᾱ| boxes. Since αj+1 + (δj − αj+1) = δj ≤ αj , no two boxes have been
added to the same column. Since δ1 = α2 + (δ1 − α2) and δ1 ≤ α1, no more than α1 − α2
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boxes have been added to the first row of ᾱ. �

Corollary 3.2. The Littlewood-Richardson coefficient cλ
α β̂

is equal to dαλβ, the multiplicity

of β in D(α).

Proof: Since δ ∈ Q(α) is such that |ᾱ| = p− α1 ≤ |δ| ≤ p and β ∈ D(α) is obtained
by performing Delete[δ] from λ̄, the size of β must satisfy |λ̄| − p ≤ |β| ≤ |λ̄| − |ᾱ|. Thus,
if |β| > |λ̄| − |ᾱ| or |β| < |λ̄| − p, then β does not occur in D(α).

If |λ̄| − p ≤ |β| ≤ |λ̄| − |ᾱ|, the corollary follows from Theorem 3.1 and the Remark
after Theorem 2.1. �

Theorem 3.3. With the notation of Theorem 3.1,

(a) If |β| > |λ̄| − p + α2 or |β| < |λ̄| − p, then

aλ
α β̂

= 0.

(b) If |λ̄| − p ≤ |β| ≤ |λ̄| − p + α2, then

aλ
α β̂

=
∑

δ∈Q(α); δ⊆λ̄
|δ|=|λ̄|−|β|

δ1=α1

cλ̄
δ β

Proof: (a) Since position (2, α1) must be filled with 1, the entire first row and exactly
α1 − α2 boxes in the second row of λ/α must be filled with 1’s. Thus β0 = n − p − |β|
must be at least λ1−α1 +α1−α2 = λ1−α2. Therefore, we must have |β| ≤ |λ̄| − p +α2.
If |β| < |λ̄| − p, the result follows from Theorem 3.1.

(b) The proof of this part of the theorem is similar to the proof of Theorem 3.1, part
(b). We are forced to place λ1 − α1 1’s in the first row, and when placing the remaining
|λ̄| − |ᾱ| − |β| 1’s we are forced to place exactly α1 − α2 of them in the second row.

Thus, there is a one-to-one correspondence between the possible ways of filling the 1’s
in λ/α and the Young diagrams η ⊆ λ̄ obtained from ᾱ by adding |λ̄| − |ᾱ| − |β| boxes,
no two in the same column and exactly α1 − α2 boxes in the first row of ᾱ.

The claim of Theorem 3.1 becomes:
Claim: The diagrams η ⊆ λ̄ obtained above by adding |λ̄| − |ᾱ| − |β| boxes to ᾱ, no

two in the same column and exactly α1 − α2 boxes in the first row of ᾱ, are precisely the
elements of δ ∈ Q(α) of size |δ| = |λ̄| − |β|, such that δ ⊆ λ̄ and δ1 = α1 (i.e. no boxes
have been removed from the first row of α).

The proof of the claim in this case is similar to that of the claim of Theorem 3.1. �

Corollary 3.4. If α = (α1, . . . , α`(α)) ` p, with α1 > α2, let D′(α) be defined as in the
algorithm. Then aλ

α β̂
is equal to d′

αλβ, the multiplicity of β in D′(α).
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Lemma 3.5. Let n, p be non-negative integers such that n ≥ 2p. Let β = (β1, β2, . . . , β`(β))

be a partition such that β1 ≤ n − 2p − |β| and suppose that α ` p. As before, let β̂ =

(β0, β1, . . . , β`(β)) ` n−p be such that β =
¯̂
β. Thus β0−β1 ≥ p. Then performing Add[α]

to β̂ is equivalent to performing Add[γ] to β for each γ ∈ Q(α) and then adding a row of
the correct size to the resulting diagrams.

Proof: To perform the Add[α] to β̂ algorithm we form rl(α), the reverse lexicographic
filling of α, and add the labelled boxes of rl(α) to the rows of β̂ according to the Add
algorithm. The only labels that could be added to the first row of β̂ are the labels of the
first row of α. If exactly j, 0 ≤ j ≤ α1, labels of the first row of α are added to the first row
of β̂, then these labels are α1−j+1, α1−j+2, . . . , α1−1, α1. Notice that since β0−β1 ≥ p,
no more than β0 − β1 boxes are added to the first row of β. Adding the remaining labels
of α to β̂ is equivalent to adding the labels of the reverse lexicographic filling of α/(j) to β
according to the rules of the Add algorithm. By Lemma 1.1 this gives the decomposition
of sα/(j)sβ. One can first straighten α/(j) using the Delete algorithm. Letting j run from

0 to α1, we have that performing Add[α] to β̂ is equivalent to performing Add[γ] to β
for each γ ∈ Q(α) and adding a first row of the correct size to each diagram to obtain
diagrams of size n. �
Proof of Theorem 2.1

Let λ = (λ1, λ2, . . . , λk) be a fixed partition of n such that λ1−λ2 ≥ 2p (thus n ≥ 2p).
First, we expand s(n−p,p) ∗ sλ using the Jacobi-Trudi identity and the Garsia-Remmel
formula from Section 1.

By the Jacobi-Trudi identity, we have

s(n−p,p) =

∣∣∣∣ hn−p hn−p+1

hp−1 hp

∣∣∣∣ = hn−php − hn−p+1hp−1.

If p = 1, then hp−1 = h0 = 1, by convention.
Thus, s(n−p,p) ∗ sλ = (hn−php − hn−p+1hp−1) ∗ sλ = (hn−php) ∗ sλ − (hn−p+1hp−1) ∗ sλ

and, by Garsia-Remmel, we have

s(n−p,p) ∗ sλ =
∑

D1+D2=λ

|D2|=n−p

|D1|=p

sD1sD2 −
∑

L1+L2=λ

|L2|=n−p+1

|L1|=p−1

sL1sL2 .

Since λ is a shape (and not a skew-shape), D1 and L1 must be shapes. We write
D1 = α ` p and L1 = β ` p− 1. Therefore

s(n−p,p) ∗ sλ =
∑
α`p

α⊆λ

sαsλ/α −
∑

β`p−1

β⊆λ

sβsλ/β .

There is a 1 − 1 correspondence between the partitions α ` p with α1 > α2 and the
partitions α− ` p− 1 given by

α = (α1, α2, . . . α`(α))←→ α− = (α1 − 1, α2, . . . α`(α)).
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The Young diagram of α− is obtained from the Young diagram of α by removing the last
box of the first row. Hence, we have

s(n−p,p) ∗ sλ =
∑

α`p,α1>α2
α⊆λ

(sαsλ/α − sα−sλ/α−) +
∑

α`p,α1=α2
α⊆λ

sαsλ/α.

The symmetric function sαsλ/α−sα−sλ/α− above is Schur positive (i.e. when expanded
as a linear combination of Schur functions, all the coefficients are positive) [BO].

Now, one has to straighten each sλ/α and sλ/α− using the Delete[α] from λ (respectively
Delete[α−] from λ) algorithm and then use the Add algorithm to multiply each summand
by the corresponding sα (respectively sα−). Finally, in the first sum, one would cancel
out all negative summands with the corresponding positive summands. However, we will
figure out how the cancellations will take place and skip these shapes in the Delete and
Add algorithms, thus eliminating the redundant work.

When we compute sλ/α for α ` p and λ1−λ2 ≥ 2p using the Delete[α] from λ algorithm
we obtain a multi-set of Young diagrams with n− p boxes. We will show that there is a
one-to-one correspondence between the multi-sets:

Delete[α] from λ ←→ D(α),

where D(α) is the multi-set obtained in the Remove [α] step in our algorithm. By
the proof of Theorem 3.1, to each β ∈ D(α) there corresponds a partition β̂ of n − p,
β̂ = (β0, β1, . . . , β`(β)) ∈ Delete[α] from λ. The bijection is given by adding a row β0 to β

so that β̂ is a partition of n− p. By Corollary 3.2, the multiplicity of β̂ in Delete[α] from
λ is the same as the multiplicity of β in D(α). Hence, performing the Delete [α] from λ
algorithm is equivalent to performing the Remove [α] step.

First we compare the results of straightening both λ/α and λ/α−. If α1 > α2 in α, then
Q(α) − Q(α−) = {δ ∈ Q(α) | δ1 = α1}. To see this consider δ = (α1, α2 − t2, . . . , α`(α) −
t`(α)) ∈ Q(α), ti ≥ 0, i = 2, 3, . . . , `(α) (no box has been removed from the first row of α).
Then δ 6∈ Q(α−). On the other hand, if δ = (α1−t1, α2−t2, . . . , α`(α)−t`(α)) ∈ Q(α), with
t1 ≥ 1 and ti ≥ 0, i = 2, 3, . . . , `(α), then δ = (α1−1− (t1−1), α2− t2, . . . , α`(α)− t`(α)) ∈
Q(α−). Conversely, if δ′ ∈ Q(α−) is given by δ′ = (α1 − 1− j1, α2 − j2, . . . , α`(α) − j`(α))
with ji ≥ 0 for all i = 1, 2, . . . , `(α), then δ′ ∈ Q(α). If α1 = α2 then all δ ∈ Q(α) satisfy
δ1 = α1 since one cannot remove two boxes from the same column of α.

Since Q(α) − Q(α−) = {δ ∈ Q(α) δ1 = α1}, we have D(α) − D(α−) = D′(α).
Let β̂ ′ ` n − p + 1 be a diagram obtained when performing Delete[α−] from λ. The
Young diagram β̂ ′ is obtained from a diagram β ∈ D(α−) by adding a first row such
that |β̂ ′| = n − p + 1. Since D(α−) ⊆ D(α), β ∈ D(α). If we add a first row to β
to obtain β̂ ` n − p, then β̂ appears when we perform Delete[α] from λ. The diagram
β̂ ′ = (β0, β1, . . . , β`(β)), obtained when performing Delete[α−] from λ, corresponds to the

diagram β̂ = (β0−1, β1, . . . , β`(β)) obtained when performing Delete[α] from λ. Note that
|β| ≤ |λ̄| = n− λ1. Therefore β0 = n− p + 1− |β| ≥ n− p + 1− n + λ1 = λ1 − p + 1. On
the other hand, since λ1 − λ2 ≥ 2p, we have β1 ≤ λ2 ≤ λ1 − 2p ≤ λ1 − p + 1 ≤ β0. Thus
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β ∈ D(α−) can always be completed to a Young diagram of size n − p + 1 by adding a
first row of the correct size.

Now we will address the Add algorithm. On the one hand we have to multiply

sαsλ/α = sα

∑
β∈D(α)

sβ̂ =
∑

β∈D(α)

sβ̂sα.

On the other hand we will multiply

sα−sλ/α− = sα−
∑

β∈D(α−)

sβ̂′ =
∑

β∈D(α−)

sβ̂′sα− .

Consider the product sβ̂sα, where, as before, α ` p and β̂ ` n−p such that β =
¯̂
β ∈ D(α).

Since β̂ = (β0, β1, . . . , β`) is the result of applying Delete[α] from λ and λ1 − λ2 ≥ 2p, we
have that β0−β1 ≥ λ1−α1−λ2 ≥ λ1−λ2− p ≥ p. Thus β1 ≤ β0− p = n− p−|β| − p =
n−2p−|β|. By Lemma 3.5, performing Add[α] to β̂ is equivalent to performing Add[γ] to
β for each γ ∈ Q(α) and adding a first row of the correct size to each diagram to obtain
diagrams of size n.

We are finally able to decide which Schur functions remain after the cancellation. For
every β ∈ D(α−), since D(α−) ⊆ D(α), after performing Add[α] to β̂ and Add[α−] to β̂ ′,
the only shapes that do not cancel are shapes obtained from Add[γ] to β for γ ∈ Q(α)
with γ1 = α1 (i.e γ ∈ Q(α) − Q(α−)). For every β ∈ D′(α) = D(α)− D(α−), after the
Add algorithm is performed, all shapes remain, i.e. the shapes obtained from Add[γ] to
β for each γ ∈ Q(α).

(1) Case α1 > α2:

(a) If d′
αλβ = 0, β does not appear in D′(α) and thus we perform Add[γ] to β only for

γ ∈ Q(α) with γ1 = α1. This is case (a) in part (2) of the algorithm.

(b) If 0 < d′
αλβ = dαλβ , β appears only in D(α) (and not in D(α−)). We perform

Add[γ] to β for each γ ∈ Q(α). This is case (b) in part (2) of the algorithm.

(c) If 0 < d′
αλβ < dαλβ, β appears in both D′(α) and D(α−). Since β ∈ D′(α), we

perform Add[γ] to β for each γ ∈ Q(α). Since β ∈ D(α−), we perform Add[γ] to β for all
γ ∈ Q(α) with γ1 = α1. This is case (c) in part (2) of the algorithm.

(2) Case α1 = α2:

In this case, by definition d′
αλβ = 0 and according to the algorithm we are in case (a)

of part (2). On the other hand, if α1 = α2 all diagrams δ ∈ Q(α) satisfy δ1 = α1 and thus
D′(α) = D(α). For each β ∈ D(α) we need to perform Add[γ] to β for each γ ∈ Q(α).
Since all δ ∈ Q(α) satisfy δ1 = α1, following case (a) in part (2) of the algorithm gives
the correct answer. �

Let us show that the condition λ1 − λ2 ≥ 2p is indeed necessary: Since λ1 − λ2 ≥ p
(required in order for the Remove[α] step to give the diagrams occurring in λ/α), we have
λ1 ≥ p. If λ1 = p and λ1−λ2 ≥ p, then λ2 = 0 and λ = (p). This would imply that n = p
which is impossible. Thus λ1 > p. Then Sλ contains α = (p) and Q((p)) contains ε (the
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empty diagram). When we perform Delete[ε] from λ̄ we obtain β = λ̄ ∈ D((p)). For β = λ̄
we have β̂ = (λ1 − p, λ2, . . . , λ`(λ)) ` n− p. This is indeed a partition since λ1 − p ≥ λ2.
When we perform Add[(p)] to λ̄ one of the obtained diagrams is η = (λ2 +p, λ3, . . . , λ`(λ)).
To complete this diagram to a Young diagram η̃ = (λ1 − p, λ2 + p, λ3, . . . , λ`(λ)) of size n,
we must have λ1 − p ≥ λ2 + p and thus λ1 − λ2 ≥ 2p.
Note: The theorem holds even if λ1−λ2 = 2p− 1. However, in this case one obtains the
shape η = (λ2 + p, λ3, . . . , λ`(λ)) which does not complete to a Young diagram of size n
and needs to be discarded.

4 Multiplicities in the Kronecker Product

In this section we give a closed formula for the coefficients g(n−p,p),λ,ν in terms of
Littlewood-Richardson coefficients.

Theorem 4.1. Let n and p be positive integers such that n ≥ 2p and let λ be a partition
of n with λ1 − λ2 ≥ 2p. The multiplicity of sν in s(n−p,p) ∗ sλ is equal to

∑
β⊆λ̄, β⊆ν̄

|β|≥n−λ1−p

∑
α`p

α⊆λ




∑
γ∈Q(α)

γ1=α1, γ⊆ν̄

|γ|=|ν̄|−|β|

cλ
αβ̂

cν̄
βγ +

∑
γ∈Q(α)

γ1<α1, γ⊆ν̄

|γ|=|ν̄|−|β|

aλ
αβ̂

cν̄
βγ


 ,

where β̂ = (n− p− |β|, β).

Proof: We use Corollaries 3.2 and 3.4 and the Remmel-Whitney result that the multi-
plicity of ν̄ obtained by performing Add[γ] to β equals cν̄

βγ . Then, Theorem 2.1 implies
that

g(n−p,p),λ,ν =
∑
α`p

α⊆λ




∑
β∈D(α)

aλ
α β̂

=0


 ∑

γ∈Q(α)
γ1=α1

cλ
αβ̂

cν̄
βγ


 +

∑
β∈D(α)

aλ
α β̂

6=0


 ∑

γ∈Q(α)
γ1=α1

cλ
αβ̂

cν̄
βγ +

∑
γ∈Q(α)
γ1<α1

aλ
αβ̂

cν̄
βγ







=
∑
α`p

α⊆λ

∑
β∈D(α)

β⊆ν̄


 ∑

γ∈Q(α)
γ1=α1

cλ
αβ̂

cν̄
βγ +

∑
γ∈Q(α)
γ1<α1

aλ
αβ̂

cν̄
βγ




The second summation, where β ∈ D(α), runs over all distinct β ∈ D(α). The formula
of the theorem is just a reformulation of the last formula. We use the statements of
Theorems 3.1 and 3.3 that if |β| < |λ̄| − p = n− λ1 − p, then cλ

αβ̂
= aλ

αβ̂
= 0. �

Example: We use the above theorem to determine the multiplicity of s(13,4,2) in the
Kronecker product s(15,4) ∗ s(11,3,2,2,1).
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We have n = 19, p = 4, λ̄ = (3, 2, 2, 1) and ν̄ = (4, 2), i.e

λ̄ = , ν̄ = .

Since n − λ1 − p = 19− 11− 4 = 4, the first summation in the formula of Theorem 4.1
runs over all Young diagrams β such that |β| ≥ 4, β ⊆ λ̄ and β ⊆ ν̄. Thus β has at most
two rows: β = (β1, β2) with β1 ≤ 3 and β2 ≤ 2. The possible β’s in the first summation
are

, , .

The second summation runs over all Young diagrams α of size p = 4 with α ⊆ λ. They
are the elements of

Sλ =

{
, , , ,

}
.

(1) If β = , then β̂ = (11, 3, 1) ` n− p = 15. For each α, the inner sums will run
over all γ ∈ Q(α) with |γ| = |ν̄| − |β| = 6− 4 = 2.

If α = , then the only SSYT of shape λ/α and type β̂ = (11, 3, 1) is
1 1 1 1 1 1 1 1 1
2

1 1
2 2
3

.

Thus cλ
α β̂

= 1 and, since α1 = α2, we have aλ
α β̂

= 0. The only γ ∈ Q(α) with |γ| = 2 is

γ = . There is one SSYT of shape ν̄/β and type γ = (2): 1
1

. Therefore cν̄
β γ = 1.

Hence, cλ
α β̂

cν̄
β (2) = 1 This contributes 1 to the multiplicity.

If α = , then the only SSYT of shape λ/α and type β̂ = (11, 3, 1) is
1 1 1 1 1 1 1 1 1

1 2
2

1 3
2

.

Thus cλ
α β̂

= aλ
α β̂

= 1. The only γ ∈ Q(α) with |γ| = 2 is γ = . There is one SSYT of

shape ν̄/β and type γ = (1, 1): 1
2

. Therefore cν̄
β γ = 1. Hence, cλ

α β̂
cν̄
β (1,1) = 1. This

contributes 1 to the multiplicity.
For all other α ∈ Sλ we have cλ

α β̂
= aλ

α β̂
= 0. Hence, they do not contribute to the

multiplicity.

(2) If β = , then β̂ = (10, 3, 2) ` n− p = 15. For each α, the inner sums will run

over all γ ∈ Q(α) with |γ| = |ν̄| − |β| = 6− 5 = 1.
If α = then cλ

α β̂
= aλ

α β̂
= 0.

If α = ,
1 1 1 1 1 1 1 1

1 2
1 2
2 3
3

is the only SSYT of shape λ/α and type β̂ = (10, 3, 2). Thus

cλ
α β̂

= 1 and aλ
α β̂

= 0. Since α1 = 3, there is no γ ∈ Q(α) with γ1 = α1 and |γ| = 1.

If α = , α = or α = , there is no γ ∈ Q(α) with |γ| = 1.

(3) Finally, if β = , then β̂ = (11, 2, 2) ` n− p = 15. For each α, the inner sums

will run over all γ ∈ Q(α) with |γ| = |ν̄| − |β| = 6− 4 = 2.
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If α = ,
1 1 1 1 1 1 1 1

1 1
1 2
2 3
3

is the only SSYT of shape λ/α and type β̂ = (11, 2, 2). Thus

cλ
α β̂

= aλ
α β̂

= 1. The shapes γ ∈ Q(α) with |γ| = 2 are γ = and γ = . There is

exactly one SSYT of shape ν̄/β and type γ = (2). Thus, for γ = (2), cν̄
β γ = 1. Hence,

cλ
α β̂

cν̄
β (2) = 1. This contributes 1 to the multiplicity. We also have cν̄

β (1,1) = 0.

If α = , then
1 1 1 1 1 1 1 1 1
2

1 1
2 3
3

is the only SSYT of shape λ/α and type β̂ = (11, 2, 2).

Thus cλ
α β̂

= 1 and, since α1 = α2, aλ
α β̂

= 0. The only γ ∈ Q(α) with |γ| = 2 (and γ1 = α1)

is γ = . As before, there is one SSYT of shape ν̄/β and type γ = (2). Therefore
cν̄
β (2) = 1. Hence, cλ

α β̂
cν̄
β (2) = 1. This contributes 1 to the multiplicity.

If α = , then
1 1 1 1 1 1 1 1 1

1 2
2

1 3
3

is the only SSYT of shape λ/α and type β̂ = (11, 2, 2).

Thus cλ
α β̂

= aλ
α β̂

= 1. The only γ ∈ Q(α) with |γ| = 2 is γ = . However, cν̄
β (1,1) = 0.

For all other α ∈ Sλ we have cλ
α β̂

= aλ
α β̂

= 0.

Therefore the multiplicity of s(13,4,2) in s(15,4) ∗ s(11,3,2,2,1) equals 4.

Proposition 4.2. Let n and p be positive integers, n ≥ 2p, and let λ = (λ1, λ2, . . . , λ`(λ))
be a partition of n with λ1 − λ2 ≥ 2p. Consider the partition ν = (ν1, ν2, . . . , ν`(ν)) of n.
If the multiplicity g(n−p,p),λ,ν of sν in s(n−p,p) ∗ sλ is non-zero, then λ1 − p ≤ ν1 ≤ λ1 + p.
Moreover, if λ2 < p and g(n−p,p),λ,ν 6= 0, then λ1 − p ≤ ν1 ≤ λ1 + λ2.

Proof: First suppose all α ∈ Sλ are such that α1 ≤ λ2. For a fixed α ∈ Sλ, each δ ∈ Q(α)
satisfies p − α1 ≤ |δ| ≤ p. Thus β obtained in step (1) of the algorithm from Delete[δ]
from λ̄ satisfies

n− λ1 − p ≤ |β| = |λ̄| − |δ| ≤ n− λ1 − p + α1.

Now, in step (2) of the algorithm, we perform Add[γ] to β for some γ ∈ Q(α). Thus
p− α1 ≤ |γ| ≤ p and after the Add[γ] to β algorithm we obtain diagrams ν̄ with

n− λ1 − α1 ≤ |ν̄| = |β|+ |γ| ≤ n− λ1 + α1.

Thus, λ1 − α1 ≤ ν1 = n− |ν̄| ≤ λ1 + α1. Since α1 ≤ p (note that α = (p) always belongs
to Sλ), we have λ1 − p ≤ ν1 ≤ λ1 + p.

If λ2 < p and α is such that α1 > λ2 then, in step (1), the algorithm Delete[δ] from
λ̄ will return no shapes β if δ1 > λ2. Thus to obtain shapes β from Delete[δ] from λ̄, the
diagram δ ∈ Q(α) must have been obtained from α by removing at least α1 − λ2 boxes.
Hence p− α1 ≤ |δ| ≤ p− α1 + λ2. Therefore

n− λ1 − p + α1 − λ2 ≤ |β| ≤ n− λ1 − p + α1.

As before, p − α1 ≤ |γ| ≤ p and thus n − λ1 − λ2 ≤ |ν̄| ≤ n − λ1 + α1. Therefore
λ1 − α1 ≤ ν1 ≤ λ1 + λ2. Since α1 ≤ p, we have λ1 − p ≤ ν1 ≤ λ1 + λ2. �.
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Proposition 4.3. Let n and p and λ ` n be as in the previous proposition, i.e. λ1 −
λ2 ≥ 2p. Consider the partition ν = (ν1, ν2, . . . , ν`(ν)) of n. If ν2 > λ2 + p, then the
multiplicity gλ,(n−p,p),λ,ν of sν in s(n−p,p)∗sλ is equal to zero. Moreover, if ν = (λ1−p, λ2 +
p, λ3, . . . , λ`(λ)), then g(n−p,p),λ,ν = 1.

Proof: As noted at the end of the proof of Theorem 2.1, since λ1−λ2 ≥ 2p, the partition
α = (p) belongs to Sλ and Q((p)) contains the empty diagram ε. In Step (1), when we
perform Delete[ε] from λ̄, we obtain β = λ̄ ∈ D((p)). Thus β̂ = (λ1−p, λ2, . . . , λ`(λ)). We
have cλ

(p) β̂
= 1 and aλ

(p) β̂
= 0. Moreover, α = (p) is the only partition in Sλ for which λ̄

appears in D(α). Then, in step (2), when we perform Add[(p)] to λ̄, we obtain the largest
possible first row, of size λ2 + p, when all p labels of (p) are added to the first row of λ̄.
Thus ν2 ≤ λ2 + p. Therefore, if ν2 > λ2 + p, then g(n−p,p),λ,ν = 0.

Moreover, if ν was obtained as above, then ν = (λ1 − p, λ2 + p, λ3, . . . , λ`(λ)) and
g(n−p,p),λ,ν = 1.

Note that it is possible to obtain diagrams β ∈ D(α) with β1 = λ2 other than λ̄, and
therefore the decomposition of s(n−p,p) ∗ sλ might contain sν for other ν with ν2 = λ2 + p.
These diagrams ν will have ν1 > λ1 − p. �

If λ = (λ1, λ2, . . . , λ`(λ)) ` n and µ = (µ1, µ2, . . . , µ`(µ)) ` m, we say that λ is less than
µ in lexicographic order, and write λ <l µ, if there is a non-negative integer k such that
λi = µi for all i = 1, 2, . . . , k and λk+1 < µk+1. Note that the lexicographic order is a
total order on the set of all partitions.

Corollary 4.4. Let n and p be positive integers such that n ≥ 2p and let λ ` n such that
λ1 − λ2 ≥ 2p. The smallest partition in lexicographic order ν ` n such that sν appears
in the decomposition of s(n−p,p) ∗ sλ is the partition whose parts are λ1− p, λ2, . . . , λ`(λ), p,
reordered to form a partition. Moreover, this sν appears with multiplicity 1.

Proof: If sν appears in the decomposition of s(n−p.p) ∗ sλ, Proposition 4.2 implies that
ν1 ≥ λ1 − p. If ν is such that ν1 = λ1 − p, then |ν̄| = n− λ1 + p = |λ̄|+ p.

Now, in the algorithm, ν̄ is obtained after performing the Add[α] step for some (pos-
sibly more than one) α ` p, α ⊆ λ. In the Add[α] step, one performs, for each β ∈ D(α),
Add[γ] to β for certain (or all) γ ∈ Q(α). Thus, the diagrams obtained in this step have
size equal to |β| + |γ|. This size can equal |λ̄| + p if and only if |β| = |λ̄| and |γ| = p.
Therefore, as diagrams, we must have β = λ̄ and γ = α. The only α for which λ̄ ∈ D(α)
is α = (p). Thus, if sν with ν1 = λ1 − p appears in the decomposition of s(n−p,p) ∗ sλ,
then ν̄ is obtained by performing Add[(p)] to λ̄. By Corollary 2.2 of [BO], the smallest
partition ν̄ in lexicographic order obtained by performing Add[(p)] to λ̄ (i.e. smallest sν̄

in lexicographic order in the expansion of s(p)sλ̄) is obtained by concatenating the parts
of (p) and λ̄ and reordering them to form a partition. Following Theorem 2.1 of [BO],
one sees that this partition appears with multiplicity 1. This finishes the proof of the
corollary. �
Remark: The result of Corollary 4.4 is already known. It follows from Corollary 4.2.2 in
[V2] and Theorem 6.2 in [V3]. The new contribution of the corollary is that the minimal
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component sν , where ν is as in Corollary 4.4, is the minimal component in lexicographic
order.

5 Stability of Kronecker coefficients

As before, if n and p are positive integers such that n ≥ 2p and λ, ν ` n, we denote by
g(n−p,p),λ,ν the coefficient of sν in the decomposition of the Kronecker product s(n−p,p) ∗ sλ.
We refer to g(n−p,p),λ,ν as a Kronecker coefficient. Below we show that the Kronecker
coefficients are stable if λ1 − λ2 ≥ 2p, i.e. the Kronecker coefficients depend only on λ̄,
(n− p, p) = (p) and ν̄.

Theorem 5.1. Given an arbitrary partition λ̄ = (λ2, λ3, . . . , λ`(λ)), let n be a positive
integer such that n ≥ 2p+ |λ̄|+λ2. Then g(n−p,p),(n−|λ̄|,λ̄),(n−|ν̄|,ν̄) = g(m−p,p),(m−|λ̄|,λ̄),(m−|ν̄|,ν̄)

for all m ≥ n and all partitions ν ` n.

Proof: The condition n ≥ 2p+|λ̄|+λ2 is equivalent to λ1−λ2 ≥ 2p. In this case, Theorem
4.1 above gives a formula for the Kronecker coefficients. All indices of summation in the
formula depend only on λ̄, ν̄ and p = |(n− p, p)|. To see this, note that

{α ` p|α ⊆ λ} =
⋃

m≤p−1

⋃
{η`m| η⊆λ̄, η1≤p−m}

{α = (p−m, η1, η2, . . . , η`(η))}.

From Theorems 3.1(b) and 3.3(b), all Littlewood-Richardson type coefficients involved in
the formula of Theorem 4.1 depend only of λ̄, ν̄ and p. This proves the stability of the
Kronecker coefficients. �

Let us compare our stability result to Vallejo’s result [V1] in the particular case in
which one of the partitions is µ̄ = (p). The main difference is that Vallejo’s lower bound
on n (starting with which the Kronecker coefficients are stable) depends on λ̄, ν̄ and p
while our bound depends only on λ̄ and p.

Consider partitions λ̄, ν̄ and (p). If n ≥ λ2 + |λ̄| + 2p and sν appears in the de-
composition of sλ ∗ s(n−p,p), by Proposition 4.2 we have λ1 − p ≤ ν1 ≤ λ1 + p and
thus |λ̄| − p ≤ |ν̄| ≤ |λ̄| + p. Also, by Proposition 4.3 we have ν2 ≤ λ2 + p. Thus, if
n ≥ 2p + |λ̄|+ λ2 as in Theorem 5.1, then

n ≥ |λ̄|+ λ2, n ≥ |ν̄|+ ν2, n ≥ 2p

and (n− |λ̄|, λ̄), (n− |ν̄|, ν̄) and (n− p, p) are partitions of n.

If λ̄ = ν̄, Vallejo’s lower bound for the stability of the Kronecker coefficients is given
by

m = max{λ2 + |λ̄|+ p, 2p}.
In this case, our bound for stability, λ2 + |λ̄|+ 2p, is worse than Vallejo’s.
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If λ̄ 6= ν̄, Vallejo’s bound is given by

m = min{max{λ2 + |λ̄|+ p− 1, ν2 + |ν̄|+ p− 1, 2p},
max{λ2 + |λ̄|+ |ν̄| − 1, p + p + |ν̄| − 1, 2|ν̄|},
max{ν2 + |ν̄|+ |λ̄| − 1, p + p + |λ̄| − 1, 2|λ̄|}}.

If Vallejo’s bound m is such that m > λ2 + |λ̄|+ 2p, then our bound is an improvement.
This happens if, for example,

|ν̄| > max{2p + 1, λ2 + |λ̄|+ 1,
λ2 + |λ̄|

2
+ p}

and
ν2 + |ν̄| > max{λ2 + |λ̄|+ p + 1, λ2 + 2p + 1}.

Of course, depending on λ̄, our bound could be an improvement even for ”smaller” ν̄.

Example: Suppose p = 3, λ̄ = (2, 1) and ν̄ = (4, 2, 1). In this case, Vallejo’s bound for
the stability of g(n−|λ̄|,|λ̄|),(n−p,p),(n−|ν̄|,ν̄) is

m = min{max {7, 13, 6}, max{11, 12, 14}, max{13, 11, 6}} = 13,

while our bound is
λ2 + |λ̄|+ 2p = 11.
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