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Abstract

We consider topological aspects of decision trees on simplicial complexes, con-
centrating on how to use decision trees as a tool in topological combinatorics. By
Robin Forman’s discrete Morse theory, the number of evasive faces of a given di-
mension i with respect to a decision tree on a simplicial complex is greater than
or equal to the ith reduced Betti number (over any field) of the complex. Under
certain favorable circumstances, a simplicial complex admits an “optimal” decision
tree such that equality holds for each i; we may hence read off the homology directly
from the tree. We provide a recursive definition of the class of semi-nonevasive sim-
plicial complexes with this property. A certain generalization turns out to yield the
class of semi-collapsible simplicial complexes that admit an optimal discrete Morse
function in the analogous sense. In addition, we develop some elementary theory
about semi-nonevasive and semi-collapsible complexes. Finally, we provide explicit
optimal decision trees for several well-known simplicial complexes.

Introduction

We examine topological properties of decision trees on simplicial complexes, the emphasis
being on how one may apply decision trees to problems in topological combinatorics. Our
work is to a great extent based on Forman’s seminal papers [14, 15].

Let ∆ be an abstract simplicial complex consisting of subsets of a finite set E. One
may view a decision tree on the pair (∆, E) as a deterministic algorithm A that on input
a secret set σ ⊆ E asks repeated questions of the form “Is the element x contained in σ?”
until all questions but one have been asked. A is allowed to be adaptive in the sense that
each question may depend on responses to earlier questions. Let xσ be the one element
that A never queries. σ is nonevasive (and A successful) if σ − xσ and σ + xσ are either
both in ∆ or both outside ∆. Otherwise, σ is evasive.
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In this paper, we adopt an “intrinsic” approach, meaning that we restrict our attention
to the faces in ∆; whether or not a given subset of E outside ∆ is evasive is of no interest
to us. We may thus interpret A as an algorithm that takes as input a secret face σ ∈ ∆
and tries to save a query xσ with the property that σ − xσ and σ + xσ are both in ∆.
Clearly, a face σ is evasive if and only if σ+xσ /∈ ∆. Aligning with this intrinsic approach,
we will always assume that the underlying set E is exactly the set of 0-cells (vertices) in
∆.

Given a simplicial complex ∆, a natural goal is to find a decision tree with as few
evasive faces as possible. In general, there is no decision tree such that all faces are
nonevasive. Specifically, if ∆ is not contractible, then such a decision tree cannot exist;
Kahn, Saks, and Sturtevant [21] were the first to observe this. More generally, Forman
[15] has demonstrated that a decision tree on ∆ gives rise to an acyclic matching on ∆
(corresponding to a discrete Morse function [14]) such that a face is unmatched (critical)
if and only if the face is evasive. One defines the matching by pairing σ − xσ with σ + xσ

for each nonevasive face σ, where xσ is the element not queried for σ. As a consequence of
discrete Morse theory [14], there are at least dim H̃i(∆; F) evasive faces in ∆ of dimension
i for any given field F.

The goal of this paper is three-fold:

• The first goal is to develop some elementary theory about “optimal” decision trees.
For a given field F, a decision tree on a complex ∆ is F-optimal if the number of
evasive faces of dimension i is equal to the Betti number dim H̃i(∆; F) for each i. We
give a recursive definition of the class of semi-nonevasive simplicial complexes that
admit an F-optimal decision tree. We also generalize the concept of decision trees
to allow questions of the form “Is the set τ a subset of σ?” This turns out to yield
an alternative characterization of discrete Morse theory on simplicial complexes. As
a consequence, we may characterize F-optimal acyclic matchings – defined in the
natural manner – in terms of generalized decision trees. We will refer to complexes
admitting F-optimal acyclic matchings as semi-collapsible complexes, aligning with
the fact that collapsible complexes are those admitting a perfect acyclic match-
ing. Vertex-decomposable and shellable complexes constitute important examples
of semi-nonevasive and semi-collapsible complexes, respectively.

• The second goal is to investigate under what conditions the properties of being semi-
nonevasive and semi-collapsible are preserved under standard operations such as
taking the join of two complexes or forming the barycentric subdivision or Alexander
dual of a complex. The results and proofs are similar in nature to those Welker [38]
provided for nonevasive and collapsible complexes.

• The third goal is to provide a number of examples demonstrating how one may use
optimal decision trees to compute the homotopy type of explicit simplicial com-
plexes. We will concentrate on complexes for which the homotopy type is already
known. Yet, our decision trees will give new proofs for the homotopy type, and in
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most cases the proofs are not more complicated – sometimes even simpler – than
earlier proofs.

Optimal decision trees appeared in the work of Charalambous [11], Forman [15], and Soll
[35]. Recently, Hersh [17] developed powerful techniques for optimizing acyclic matchings;
see Hersh and Welker [18] for an application. The complexity-theoretic aspect of opti-
mization is considered in the work of Lewiner, Lopes, and Tavares [23, 24, 25]. For more
information about the connection between evasiveness and topology, there are several
papers [31, 32, 22, 21, 10] and surveys [3, 8] to consult.

All topological and homological concepts and results in this paper are defined and
stated in terms of simplicial complexes. There are potential generalizations of these
concepts and results, either in a topological direction – allowing for a more general class
of CW complexes – or in a homological direction – allowing for a more general class
of chain complexes. For simplicity and clarity, we restrict our attention to simplicial
complexes.

For basic definitions and results about decision trees, see Section 1. Fundamental
results about optimal decision trees appear in Section 2; see Section 4 for some operations
that preserve optimality. In Section 3, we present some useful constructions that we will
use in Section 5, where we examine some concrete examples.

Remark. This paper is a revised version of a preprint from 1999 titled “The decision tree
method”.

0.1 Basic concepts

For n ≥ 1, define [n] = {1, . . . , n}. For a set σ and an element x, write σ + x = σ ∪ {x}
and σ − x = σ \ {x}. We let |σ| denote the size of σ.

A (simple) graph G = (V, E) consists of a finite set V of vertices and a set E ⊆ (
V
2

)
of edges in G. The edge between a and b is denoted ab or {a, b}. A (simple and loopless)
digraph D = (V, A) consists of a vertex set V and a set A ⊆ V × V \ {(v, v) : v ∈ V } of
directed edges. The edge (v, w) is directed from v to w.

An (abstract) simplicial complex on a finite set X is a family of subsets of X closed
under deletion of elements. We refer to the elements in X as 0-cells. For the purposes
of this paper, we adopt the convention that the empty family – the void complex – is a
simplicial complex. Members of a simplicial complex Σ are called faces. The dimension
of a face σ is defined as |σ| − 1. The dimension of a nonempty complex Σ is the maximal
dimension of any face in Σ. A complex is pure if all maximal faces have the same dimen-
sion. For d ≥ −1, the d-simplex is the simplicial complex of all subsets of a set of size
d + 1. Note that the (−1)-simplex (not to be confused with the void complex) contains
the empty set and nothing else.

A simplicial complex ∆ is obtained from another simplicial complex ∆′ via an ele-
mentary collapse if ∆′ \ ∆ = {σ, τ} and σ $ τ . This means that τ is the only face in
∆′ properly containing σ. If ∆ can be obtained from ∆′ via a sequence of elementary
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collapses, then ∆′ is collapsible to ∆. If ∆ is void or a 0-simplex {∅, {v}}, then ∆′ is
collapsible (to a point); see also Section 2.1.

For a family ∆ of sets and a set σ, the link link∆(σ) is the family of all τ ∈ ∆ such
that τ ∩ σ = ∅ and τ ∪ σ ∈ ∆. The deletion del∆(σ) is the family of all τ ∈ ∆ such
that τ ∩ σ = ∅. We define the face-deletion fdel∆(σ) as the family of all τ ∈ ∆ such
that σ 6⊆ τ . The link, deletion, and face-deletion of a simplicial complex are all simplicial
complexes. For a family ∆ of sets and disjoint sets I and E, define ∆(I, E) = {σ :
σ ∩ (E ∪ I) = ∅, I ∪ σ ∈ ∆} = linkdel∆(E)(I). Viewing a graph G = (V, E) as a simplicial
complex, we may define the induced subgraph of G on the vertex set W ⊆ V as the graph
G(∅, V \ W ) = (W, E ∩ (

W
2

)
).

The join of two complexes ∆ and Γ, assumed to be defined on disjoint sets of 0-cells,
is the simplicial complex ∆ ∗ Γ = {σ ∪ τ : σ ∈ ∆, τ ∈ Γ}. Note that ∆ ∗ ∅ = ∅ and
∆ ∗ {∅} = ∆. The cone of ∆ is the join of ∆ with a 0-simplex {∅, {v}}. Cones are
collapsible.

For a simplicial complex ∆ on a set X of size n, the Alexander dual of ∆ with respect
to X is the simplicial complex ∆∗

X = {σ ⊆ X : X \ σ /∈ ∆}. It is well-known that

H̃d(∆; F) ∼= H̃n−d−3(∆∗
X ; F) ∼= H̃n−d−3(∆

∗
X ; F) (1)

for any field F; see Munkres [28]. Note that the second isomorphism is not true in general
for non-fields such as Z.

The order complex ∆(P ) of a partially ordered set (poset) P = (X,≤) is the simplicial
complex of all chains in P ; a set A ⊆ X belongs to ∆(P ) if and only if a ≤ b or b ≤ a
for all a, b ∈ A. The direct product of two posets P = (X,≤P ) and Q = (Y,≤Q) is the
poset P × Q = (X × Y,≤P×Q), where (x, y) ≤P×Q (x′, y′) if and only if x ≤P x′ and
y ≤Q y′. The face poset P (∆) of a simplicial complex ∆ is the poset of nonempty faces
in ∆ ordered by inclusion. sd(∆) = ∆(P (∆)) is the (first) barycentric subdivision of ∆;
it is well-known that ∆ and sd(∆) are homeomorphic.

0.2 Discrete Morse theory

In this section, we give a brief review of Forman’s discrete Morse theory [14]. More elabo-
rate combinatorial interpretations can be found in the work of Chari [12] and Shareshian
[33].

Let X be a set and let ∆ be a finite family of finite subsets of X. A matching on ∆ is
a family M of pairs {σ, τ} with σ, τ ∈ ∆ such that no set is contained in more than one
pair in M. A set σ in ∆ is critical or unmatched with respect to M if σ is not contained
in any pair in M.

We say that a matching M on ∆ is an element matching if every pair in M is of the
form {σ − x, σ + x} for some x ∈ X and σ ⊆ X. All matchings considered in this paper
are element matchings.

Consider an element matching M on a family ∆. Let D = D(∆,M) be the digraph
with vertex set ∆ and with a directed edge from σ to τ if and only if either of the following
holds:
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1. {σ, τ} ∈ M and τ = σ + x for some x /∈ σ.

2. {σ, τ} /∈ M and σ = τ + x for some x /∈ τ .

Thus every edge in D corresponds to an edge in the Hasse diagram of ∆ ordered by set
inclusion; edges corresponding to pairs of matched sets are directed from the smaller set
to the larger set, whereas the remaining edges are directed the other way around. An
element matching M is an acyclic matching if D is acyclic: If there is a directed path
from σ to τ and a directed path from τ to σ in D, then σ = τ .

Given an acyclic matching M on a simplicial complex ∆ % {∅}, we may without loss
of generality assume that the empty set ∅ is contained in some pair in M. Namely, if all
0-cells are matched with larger faces, then there is a cycle in the digraph D(∆,M). In
the following results, ∆ is a simplicial complex and M is an acyclic matching on ∆ such
that the empty set is not critical.

Theorem 0.1 (Forman [14]) ∆ is homotopy equivalent to a CW complex with one cell
of dimension p ≥ 0 for each critical face of dimension p in ∆ plus one additional 0-cell.
�

Corollary 0.2 If all critical faces have the same dimension d, then ∆ is homotopy equiv-
alent to a wedge of k spheres of dimension d, where k is the number of critical faces in
∆. �

Theorem 0.3 (Forman [14]) If all critical faces are maximal faces in ∆, then ∆ is
homotopy equivalent to a wedge of spheres with one sphere of dimension d for each critical
face of dimension d. �

Theorem 0.4 (Forman [14]) Let F be a field. Then the number of critical faces of
dimension d is at least dim H̃d(∆; F) for each d ≥ −1. �

Lemma 0.5 Let ∆0 and ∆1 be disjoint families of subsets of a finite set such that τ 6⊂ σ
if σ ∈ ∆0 and τ ∈ ∆1. If Mi is an acyclic matching on ∆i for i = 0, 1, then M0 ∪M1

is an acyclic matching on ∆0 ∪ ∆1.

Proof. This is obvious; there are no arrows directed from ∆0 to ∆1 in the underlying
digraph. �

1 Basic properties of decision trees

We discuss elementary properties of decision trees and introduce the generalized concept of
set-decision trees, the generalization being that arbitrary sets rather than single elements
are queried. To distinguish between the two notions, we will refer to ordinary decision
trees as “element-decision trees”.
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Figure 1: The element-decision tree (1, (2, (3, Win, Win), (4, Win, Lose)), Win) on the com-
plex ∆. “Win(v)” means that the complex corresponding to the given leaf is {∅, {v}};
“Lose” means that the complex is {∅}.

1.1 Element-decision trees

First, we give a recursive definition, suitable for our purposes, of element-decision trees.
We are mainly interested in trees on simplicial complexes, but it is convenient to have
the concept defined for arbitrary families of sets. Below, the terms “elements” and “sets”
always refer to elements and finite subsets of some fixed ground set such as the set of
integers.

Definition 1.1 The class of element-decision trees, each associated to a finite family of
finite sets, is defined recursively as follows:

(i) T = Win is an element-decision tree on ∅ and on any 0-simplex {∅, {v}}.
(ii) T = Lose is an element-decision tree on {∅} and on any singleton set {{v}}.
(iii) If ∆ is a family of sets, if x is an element, if T0 is an element-decision tree on

del∆(x), and if T1 is an element-decision tree on link∆(x), then the triple (x, T0, T1)
is an element-decision tree on ∆.

Return to the discussion in the introduction. One may interpret the triple (x, T0, T1) as
follows for a given set σ to be examined: The element being queried is x. If x /∈ σ,
then proceed with del∆(x), the family of sets not containing x. Otherwise, proceed with
link∆(x), the family with one set τ −x for each set τ containing x. Proceeding recursively,
we finally arrive at a leaf, either Win or Lose. The underlying family being a 0-simplex
{∅, {v}} means that σ + v ∈ ∆ and σ − v ∈ ∆; we win as v remains to be queried. The
family being {∅} or {{v}} means that we cannot tell whether σ ∈ ∆ without querying all
elements; we lose.

Note that we allow for the “stupid” decision tree (v, Lose, Lose) on {∅, {v}}; this tree
queries the element v while it should not. Also, we allow the element x in (iii) to have
the property that no set in ∆ contains x, which means that link∆(x) = ∅, or that all sets
in ∆ contain x, which means that del∆(x) = ∅.

A set τ ∈ ∆ is nonevasive with respect to an element-decision tree T on ∆ if either of
the following holds:
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1. T = Win.

2. T = (x, T0, T1) for some x not in τ and τ is nonevasive with respect to T0.

3. T = (x, T0, T1) for some x in τ and τ − x is nonevasive with respect to T1.

This means that T – viewed as an algorithm – ends up on a Win leaf on input τ ; use
induction. If a set τ ∈ ∆ is not nonevasive, then τ is evasive. For example, the edge 24 is
the only evasive face with respect to the element-decision tree in Figure 1. The following
simple but powerful theorem is a generalization by Forman [15] of an observation by Kahn,
Saks, and Sturtevant [21].

Theorem 1.2 (Forman [15]) Let ∆ be a finite family of finite sets and let T be an
element-decision tree on ∆. Then there is an acyclic matching on ∆ such that the critical
sets are precisely the evasive sets in ∆ with respect to T . In particular, if ∆ is a sim-
plicial complex, then ∆ is homotopy equivalent to a CW complex with exactly one cell of
dimension p for each evasive set in ∆ of dimension p and one addition 0-cell.

Proof. Use induction on the size of T . It is easy to check that the theorem holds if T = Win
or T = Lose; match ∅ and v if ∆ = {∅, v} and T = Win. Suppose that T = (x, T0, T1).
By induction, there is an acyclic matching on del∆(x) with critical sets exactly those σ
in del∆(x) that are evasive with respect to T0. Also, there is an acyclic matching on
link∆(x) with critical sets exactly those τ in link∆(x) that are evasive with respect to T1.
Combining these two matchings in the obvious manner, we have a matching with critical
sets exactly the evasive sets with respect to T ; by Lemma 0.5, the matching is acyclic. �

1.2 Set-decision trees

We provide a natural generalization of the concept of element-decision trees.

Definition 1.3 The class of set-decision trees, each associated to a finite family of finite
sets, is defined recursively as follows:

(i) T = Win is a set-decision tree on ∅ and on any 0-simplex {∅, {v}}.
(ii) T = Lose is a set-decision tree on {∅} and on any singleton set {{v}}.
(iii) If ∆ is a family of sets, if σ is a nonempty set, if T0 is a set-decision tree on fdel∆(σ),

and if T1 is a set-decision tree on link∆(σ), then the triple (σ, T0, T1) is a set-decision
tree on ∆.

A simple example is provided in Figure 2. A set τ ∈ ∆ is nonevasive with respect to a
set-decision tree T on ∆ if either of the following holds:

1. T = Win.

2. T = (σ, T0, T1) for some σ 6⊆ τ and τ is nonevasive with respect to T0.
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Figure 2: A set-decision tree on the simplicial complex with maximal faces 123, 124, 134,
and 234.

3. T = (σ, T0, T1) for some σ ⊆ τ and τ \ σ is nonevasive with respect to T1.

If a set τ ∈ ∆ is not nonevasive, then τ is evasive.

Theorem 1.4 Let ∆ be a finite family of finite sets and let T be a set-decision tree on
∆. Then there is an acyclic matching on ∆ such that the critical sets are precisely the
evasive sets in ∆ with respect to T . Conversely, given an acyclic matching M on ∆, there
is a set-decision tree T on ∆ such that the evasive sets are precisely the critical sets with
respect to M.

Proof. For the first part, the proof is identical to the proof of Theorem 1.2. For the second
part, first consider the case that ∆ is a complex as in (i) or (ii) in Definition 1.3. If ∆ = ∅,
then T = Win is a set-decision tree with the desired properties, whereas T = Lose is the
desired tree if ∆ = {∅} or ∆ = {{v}}. For ∆ = {∅, {v}}, T = Win does the trick if ∅ and
{v} are matched, whereas T = (v, Lose, Lose) is the tree we are looking for if ∅ and {v}
are not matched.

Now, assume that ∆ is some other family. Pick an arbitrary set ρ ∈ ∆ of maximal
size and go backwards in the digraph D of the matching M until a source σ in D is
found; there are no edges directed to σ. Such a σ exists as D is acyclic. It is obvious
that |ρ| − 1 ≤ |σ| ≤ |ρ|; in any directed path in D, a step up is always followed by and
preceded by a step down (unless the step is the first or the last in the path). In particular,
σ is adjacent in D to any set τ containing σ. Since σ is matched with at most one such
τ and since σ is a source in D, there is at most one set containing σ.

First, suppose that σ is contained in a set τ and hence matched with τ in M. By
induction, there is a set-decision tree T0 on fdel∆(σ) = ∆ \ {σ, τ} with evasive sets
exactly the critical sets with respect to the restriction of M to fdel∆(σ). Moreover,
link∆(σ) = {∅, τ \ σ}. Since T1 = Win is a set-decision tree on link∆(σ) with no evasive
sets, it follows that (σ, T0, T1) is a tree with the desired properties. Next, suppose that
σ is maximal in ∆ and hence critical. By induction, there is a set-decision tree T0 on
fdel∆(σ) = ∆\{σ} with evasive sets exactly the critical sets with respect to the restriction
of M to fdel∆(σ). Moreover, link∆(σ) = {∅}; since T1 = Lose is a set-decision tree on
link∆(σ) with one evasive set, (σ, T0, T1) is a tree with the desired properties. �
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2 Hierarchy of nearly nonevasive complexes

The purpose of this section is to introduce two families of complexes related to the concept
of decision trees:

• Semi-nonevasive complexes admit an element-decision tree with evasive faces enu-
merated by the reduced Betti numbers over a given field.

• Semi-collapsible complexes admit a set-decision tree with evasive faces enumerated
by the reduced Betti numbers over a given field. Equivalently, such complexes admit
an acyclic matching with critical faces enumerated by reduced Betti numbers.

One may view these families as generalizations of the well-known families of nonevasive
and collapsible complexes:

• Nonevasive complexes admit an element-decision tree with no evasive faces.

• Collapsible complexes admit a set-decision tree with no evasive faces. Equivalently,
such complexes admit a perfect acyclic matching.

In Section 2.3, we discuss how all these classes relate to well-known properties such as
being shellable and vertex-decomposable. The main conclusion is that the families of semi-
nonevasive and semi-collapsible complexes contain the families of vertex-decomposable
and shellable complexes, respectively.

Remark. One may characterize semi-collapsible complexes as follows. Given an acyclic
matching on a simplicial complex ∆, we may order the critical faces as σ1, . . . , σn and
form a sequence ∅ = ∆0 ⊂ ∆1 ⊂ . . . ⊂ ∆n−1 ⊂ ∆n ⊆ ∆ of simplicial complexes such that
the following is achieved: ∆ is collapsible to ∆n, σi is a maximal face in ∆i, and ∆i \ {σi}
is collapsible to ∆i−1 for i ∈ [n]; compare to the induction proof of Theorem 1.4 (see also
Forman [14, Th. 3.3-3.4]). A matching being optimal means that σi is contained in a
nonvanishing cycle in the homology of ∆i for each i ∈ [n]; otherwise the removal of σi

would introduce new homology, rather than kill existing homology. With an “elementary
semi-collapse” defined either as an ordinary elementary collapse or as the removal of a
maximal face contained in a cycle, semi-collapsible complexes are exactly those complexes
that can be transformed into the void complex via a sequence of elementary semi-collapses.

2.1 Nonevasive and collapsible complexes

It is well-known and easy to see that one may characterize nonevasive and collapsible
complexes recursively in the following manner:

Definition 2.1 We define the class of nonevasive simplicial complexes recursively as
follows:

(i) The void complex ∅ and any 0-simplex {∅, {v}} are nonevasive.
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(ii) If ∆ contains a 0-cell x such that del∆(x) and link∆(x) are nonevasive, then ∆ is
nonevasive.

Definition 2.2 We define the class of collapsible simplicial complexes recursively as fol-
lows:

(i) The void complex ∅ and any 0-simplex {∅, {v}} are collapsible.

(ii) If ∆ contains a nonempty face σ such that the face-deletion fdel∆(σ) and link∆(σ)
are collapsible, then ∆ is collapsible.

Clearly, nonevasive complexes are collapsible; this was first observed by Kahn, Saks, and
Sturtevant [21]. The converse is not true in general; see Proposition 2.13 in Section 2.3.
It is also clear that all cones are nonevasive.

2.2 Semi-nonevasive and semi-collapsible complexes

Let F be a field or Z. A set-decision tree (equivalently, an acyclic matching) on a simplicial
complex ∆ is F-optimal if, for each integer i, dim H̃i(∆; F) is the number of evasive
(critical) faces of dimension i; dim H̃i(∆; Z) is the rank of the torsion-free part of H̃i(∆; Z).
We define F-optimal element-decision trees analogously. In this section, we define the
classes of simplicial complexes that admit F-optimal element-decision or set-decision trees.
Our approach is similar to that of Charalambous [11]. See Forman [15] and Soll [35] for
more discussion on optimal decision trees.

Definition 2.3 We define the class of semi-nonevasive simplicial complexes over F re-
cursively as follows:

(i) The void complex ∅, the (−1)-simplex {∅}, and any 0-simplex {∅, {v}} are semi-
nonevasive over F.

(ii) Suppose ∆ contains a 0-cell x – a shedding vertex (notation borrowed from Provan
and Billera [30]) – such that del∆(x) and link∆(x) are semi-nonevasive over F and
such that

H̃d(∆; F) ∼= H̃d(del∆(x); F) ⊕ H̃d−1(link∆(x); F) (2)

for each d. Then ∆ is semi-nonevasive over F.

Definition 2.4 We define the class of semi-collapsible simplicial complexes over F recur-
sively as follows:

(i) The void complex ∅, the (−1)-simplex {∅}, and any 0-simplex {∅, {v}} are semi-
collapsible over F.
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(ii) Suppose that ∆ contains a nonempty face σ – a shedding face – such that fdel∆(σ)
and link∆(σ) are semi-collapsible over F and such that

H̃d(∆; F) ∼= H̃d(fdel∆(σ); F) ⊕ H̃d−|σ|(link∆(σ); F) (3)

for each d. Then ∆ is semi-collapsible over F.

Clearly, a semi-nonevasive complex over F is also semi-collapsible over F.

Remark. Let us discuss the identity (3); the discussion also applies to the special case (2).
Let ∆0 = fdel∆(σ). Note that the relative homology group H̃d(∆, ∆0) = H̃d(∆, ∆0; F) is
isomorphic to H̃d−|σ|(link∆(σ)) for each d. By the long exact sequence

. . . −→ H̃d(∆0) −→ H̃d(∆) −→ H̃d(∆, ∆0) −→ H̃d−1(∆0) −→ . . . (4)

for the pair (∆, ∆0), (3) is equivalent to the induced map ∂∗
d : H̃d(∆, ∆0) −→ H̃d−1(∆0)

being zero for each d, where ∂d(z) is computed in C̃(∆). This is the case if and only if
for every cycle z ∈ C̃(∆, ∆0), there is a c ∈ C̃(∆0) with the same boundary as z in C̃(∆).
As an important special case, we have the following observation:

Proposition 2.5 If H̃d(fdel∆(σ); F) = 0 whenever H̃d−|σ|+1(link∆(σ); F) 6= 0, then (3)

holds. Hence if H̃d(del∆(x); F) = 0 whenever H̃d(link∆(x); F) 6= 0, then (2) holds. �

The main result of this section is as follows; we postpone the case F = Z until the end of
the section.

Theorem 2.6 Let F be a field. A complex ∆ is semi-collapsible over F if and only if ∆
admits an F-optimal set-decision tree (equivalently, an F-optimal acyclic matching). ∆ is
semi-nonevasive over F if and only if ∆ admits an F-optimal element-decision tree.

Proof. First, we show that every semi-collapsible complex ∆ over F admits an F-optimal
set-decision tree. This is clear if ∆ is as in (i) in Definition 2.4. Use induction and consider
a complex derived as in (ii) in Definition 2.4. By induction, fdel∆(σ) and link∆(σ) admit
F-optimal set-decision trees T0 and T1, respectively. Combining these two trees, we obtain
a set-decision tree T = (σ, T0, T1) on ∆. (3) immediately yields that the evasive faces in
∆ are enumerated by the Betti numbers of ∆, and we are done.

Next, suppose that we have an F-optimal set-decision tree T = (σ, T0, T1); T0 is a tree
on fdel∆(σ), whereas T1 is a tree on link∆(σ). We have that dim H̃d(∆) = ed, where ed is
the number of evasive faces of dimension d with respect to T . Let ad and bd be the number
of evasive faces of dimension d with respect to the set-decision trees T0 and T1, respectively;
clearly, ed = ad + bd−|σ|. By Theorem 0.4, we must have ad ≥ dim H̃d(fdel∆(σ)) and

bd−|σ| ≥ dim H̃d−|σ|(link∆(σ)). We want to prove that equality holds for both ad and
bd−|σ|. Namely, this will imply (3) and yield that T0 and T1 are F-optimal set-decision
trees; by induction, we will obtain that each of fdel∆(σ) and link∆(σ) is semi-collapsible
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Figure 3: An acyclic matching on a triangulated projective plane with critical faces 23
and 456; 1 is matched with ∅. This matching is Z2-optimal but not Q-optimal.

and hence that ∆ is semi-collapsible. Now, the long exact sequence (4) immediately yields
that

ed = dim H̃d(∆) ≤ dim H̃d(fdel∆(σ)) + dim H̃d−|σ|(link∆(σ)).

Since the right-hand side is bounded by ad+bd−|σ| = ed, the inequality must be an equality;
thus (3) holds, and we are done.

The last statement in the theorem is proved in exactly the same manner. �

Proposition 2.7 If a simplicial complex ∆ is semi-collapsible over Q, then the Z-homo-
logy of ∆ is torsion-free. In particular, H̃d(∆; Z) = Zβd, where βd = dim H̃d(∆; Q). Hence
semi-nonevasive complexes over Q have torsion-free Z-homology.

Proof. This is obvious if (i) in Definition 2.4 holds. Suppose (ii) holds. By induction,
the proposition is true for fdel∆(σ) and link∆(σ). By the remark after Definition 2.4, for
every cycle z ∈ C̃(∆, fdel∆(σ); Q), there is a c ∈ C̃(fdel∆(σ); Q) with the same boundary
as z in C̃(∆; Q). As a consequence, for every cycle z ∈ C̃(∆, fdel∆(σ); Z), there is a
c ∈ C̃(fdel∆(σ); Z) and an integer λ such that ∂(c) = λ∂(z) (computed in C̃(∆; Z)).
However, since fdel∆(σ) is torsion-free, λ∂(z) is a boundary in C̃(fdel∆(σ); Z) if and only
if ∂(z) is a boundary, which implies that there exists a c′ ∈ C̃(fdel∆(σ); Z) such that
∂(c′) = ∂(z). It follows that ∂∗

d : H̃d(∆, fdel∆(σ); Z) −→ H̃d−|σ|(fdel∆(σ); Z) is the zero
map. Hence (3) holds for F = Z, and we are done. �

Corollary 2.8 A simplicial complex ∆ is semi-collapsible (semi-nonevasive) over Q if
and only if ∆ is semi-collapsible (semi-nonevasive) over Z. If this is the case, then ∆ is
semi-collapsible (semi-nonevasive) over every field. �

Remark. While the universal coefficient theorem implies that Proposition 2.7 is true for
any field of characteristic 0, the proposition does not remain true for coefficient fields of
nonzero characteristic. For example, the triangulated projective plane RP2 in Figure 3
is not semi-collapsible over Q, as the homology has torsion. However, the given acyclic
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matching is Z2-optimal; H̃1(RP2; Z2) = H̃2(RP2; Z2) = Z2. In fact, the acyclic matching
corresponds to a Z2-optimal element-decision tree in which we first use 4, 5, and 6 as shed-
ding vertices; thus the complex is semi-nonevasive over Z2. A semi-nonevasive complex
over Z3 with 3-torsion is provided in Theorem 5.6.

2.3 Relations between certain classes of simplicial complexes

We show how semi-collapsible and semi-nonevasive complexes over Z relate to vertex-
decomposable, shellable, and constructible complexes.

Definition 2.9 We define the class of semipure vertex-decomposable simplicial complexes
recursively as follows:

(i) Every simplex (including ∅ and {∅}) is semipure vertex-decomposable.

(ii) If ∆ contains a 0-cell x – a shedding vertex – such that del∆(x) and link∆(x) are
semipure vertex-decomposable and such that every maximal face in del∆(x) is a
maximal face in ∆, then ∆ is also semipure vertex-decomposable.

One may refer to semipure vertex-decomposable complexes that are not pure as nonpure
vertex-decomposable. Pure vertex-decomposable complexes were introduced by Provan
and Billera [30]. Björner and Wachs [7] extended the concept to nonpure complexes.

Definition 2.10 We define the class of semipure shellable simplicial complexes recur-
sively as follows:

(i) Every simplex (including ∅ and {∅}) is semipure shellable.

(ii) If ∆ contains a nonempty face σ – a shedding face – such that fdel∆(σ) and link∆(σ)
are semipure shellable and such that every maximal face in fdel∆(σ) is a maximal
face in ∆, then ∆ is also semipure shellable.

One may refer to semipure shellable complexes that are not pure as nonpure shellable.
Again, the extension to nonpure complexes is due to Björner and Wachs [6]. To see that
Definition 2.10 is equivalent to the original definition [6, Def. 2.1], adapt the proof of
Björner and Wachs [7, Th. 11.3].

Chari [12] proved that shellable complexes are semi-collapsible over Z. Let us extend
his result to semipure shellable complexes.

Proposition 2.11 Let ∆ be a semipure shellable complex. Then ∆ admits an acyclic
matching in which all unmatched faces are maximal faces in ∆. In particular, any
semipure shellable complex is semi-collapsible over Z.
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Proof. The proposition is clearly true if (i) in Definition 2.10 is satisfied. Suppose (ii)
is satisfied. By induction, fdel∆(σ) and link∆(σ) admit acyclic matchings such that all
unmatched faces are maximal faces. Combining these matchings, we obtain an acyclic
matching on ∆. Since maximal faces in fdel∆(σ) are maximal faces in ∆, the desired
result follows. By Theorem 0.3, ∆ is homotopy equivalent to a wedge of spheres with one
sphere of dimension dim σ for each unmatched face σ; hence ∆ is semi-collapsible. �

Soll [35] proved the following result in the pure case.

Proposition 2.12 Semipure vertex-decomposable complexes are semi-nonevasive over Z.

Proof. Use exactly the same approach as in the proof of Proposition 2.11. �

Proposition 2.13 Not all shellable complexes are semi-nonevasive.

Proof. The complex with maximal faces 012, 023, 034, 045, 051, 123, 234, 345, 451, 512 is
well-known to be shellable and collapsible but not nonevasive or vertex-decomposable.
This complex is originally due to Björner (personal communication); see Moriyama and
Takeuchi [27, Ex. V6F10-6] and Soll [35, Ex. 5.5.5]. �

Definition 2.14 We define the class of constructible simplicial complexes recursively as
follows:

(i) Every simplex (including ∅ and {∅}) is constructible.

(ii) If ∆1 and ∆2 are constructible complexes of dimension d and ∆1 ∩ ∆2 is a con-
structible complex of dimension d − 1, then ∆1 ∪ ∆2 is constructible.

Constructible complexes were introduced by Hochster [19]. Every pure shellable complex
is constructible, but the converse is not always true; see Björner [3].

Proposition 2.15 Not all constructible complexes are semi-collapsible. Yet, there exist
constructible complexes that are nonevasive but not shellable.

Proof. For the first statement, Hachimori [16] has found a two-dimensional contractible
and constructible complex without boundary; a complex with no boundary cannot be
collapsible. For the second statement, a cone over a constructible complex is constructible
and nonevasive but not shellable unless the original complex is shellable. �

The results in this section combined with earlier results (see Björner [3]) yield the diagram
in Figure 4 of strict implications; “torsion-free” refers to the Z-homology. We refer to
Stanley [36] for more information about Cohen-Macaulay (CM) and sequentially Cohen-
Macaulay complexes. Two properties being incomparable in the diagram means that
neither of the properties implies the other. We list the nontrivial cases:
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Z-acyclic =⇒ Torsion-free ⇐=
Sequentially

CM/Z
⇐= CM/Z

⇑ ⇑ ⇑
Contractible

Sequentially
homotopy-CM

⇐=
Homotopically

CM
⇑ ⇑

⇑ ⇑ Constructible
⇑

Collapsible =⇒ Semi-
collapsible

⇐=
Semipure
shellable

⇐= Shellable

⇑ ⇑ ⇑ ⇑
Nonevasive =⇒ Semi-

nonevasive
⇐=

Semipure
vertex-decomp.

⇐=
Vertex-

decomposable

Figure 4: Implications between different classes of simplicial complexes.

• Collapsible or shellable complexes are not necessarily semi-nonevasive. This is
Proposition 2.13.

• Contractible or constructible complexes are not necessarily semi-collapsible. This is
Proposition 2.15.

3 Some useful constructions

Before proceeding, let us introduce some simple but useful constructions that will be
used frequently in later sections. For a family ∆ of sets, write ∆ ∼ ∑

i≥−1 ait
i if there

is an element-decision tree on ∆ with exactly ai evasive sets of dimension i for each
i ≥ −1. This notation has the following basic properties; recall from Section 0.1 that
∆(I, E) = linkdel∆(E)(I):

Lemma 3.1 Let ∆ be a finite family of finite sets. Then the following hold:

(1) ∆ is nonevasive if and only if ∆ ∼ 0.

(2) Assume that ∆ is a simplicial complex and let F be a field. Then ∆ is semi-nonevasive
over F if and only if ∆ ∼ ∑

i≥−1 dim H̃i(∆; F)ti; ∆ is semi-nonevasive over Z if and

only if ∆ ∼ ∑
i≥−1 dim H̃i(∆; Q)ti.

(3) Let v be a 0-cell. If del∆(v) ∼ f∅(t) and link∆(v) ∼ fv(t), then ∆ ∼ f∅(t) + fv(t)t.

(4) Let B be a set of 0-cells. If ∆(A, B \ A) ∼ fA(t) for each A ⊆ B, then ∆ ∼∑
A⊆B fA(t)t|A|.
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(5) Assume that ∆ is a simplicial complex such that ∆ ∼ ctd. Then ∆ is semi-nonevasive
and homotopy equivalent to a wedge of c spheres of dimension d.

Proof. (1) is obvious. To prove (2), use Theorem 2.6 and Corollary 2.8. (3) is obvious,
whereas (4) follows from (3) by induction on |B|. Finally, by Theorem 1.4, (5) is a
consequence of Corollary 0.2. �

One may give analogous definitions and results for semi-collapsible complexes, but we will
not need them.

Definition 3.2 Let ∆ be a finite family of finite sets. Let W = (w1, . . . , wm) be a
sequence of distinct elements. The first-hit decomposition of ∆ with respect to W is
the sequence consisting of the families ∆(wj , {w1, . . . , wj−1}) for j ∈ [m] and the family
∆(∅, {w1, . . . , wm}).
The term “first-hit” refers to the natural interpretation of the concept in terms of decision
trees; for a given set to be checked, query elements in the sequence until some element
from the set is found (a first hit).

Lemma 3.3 Let ∆ be a finite family of finite sets and consider the first-hit decomposition
of ∆ with respect to a given sequence (w1, . . . , wm) of elements. Suppose that

∆(wj, {w1, . . . , wj−1}) ∼ fj(t) (j ∈ [m]);

∆(∅, {w1, . . . , wm}) ∼ g(t).

Then ∆ ∼ g(t) +
m∑

j=1

fj(t)t.

Proof. We claim that ∆(∅, {w1, . . . , wi}) ∼ g(t)+
∑m

j=i+1 fj(t)t for 0 ≤ i ≤ m; for i = 0, we
obtain the lemma. The claim is obvious for i = m. For i < m, we may assume by induction
that ∆(∅, {w1, . . . , wi+1}) ∼ g(t) +

∑m
j=i+2 fj(t)t. Since ∆(wi+1, {w1, . . . , wi}) ∼ fi+1(t),

the claim follows by Lemma 3.1. �

4 Further properties of semi-nonevasive and semi-

collapsible complexes

We examine to what extent semi-nonevasiveness and semi-collapsibility are preserved
under join, barycentric subdivision, direct product, and Alexander duality. The results
are either generalizations of results due to Welker [38] or generalizations of weaker results.
Open problems are listed at the end of the section.

Theorem 4.1 (Welker [38]) If at least one of ∆ and Γ is collapsible (nonevasive), then
the join ∆ ∗ Γ is collapsible (nonevasive). If ∆ ∗ Γ is nonevasive, then at least one of ∆
and Γ is nonevasive. �
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Theorem 4.2 If ∆ and Γ are both semi-collapsible (semi-nonevasive) over F, then the
join ∆ ∗ Γ is semi-collapsible (semi-nonevasive) over F. If ∆ ∗ Γ is semi-nonevasive over
F and evasive, then each of ∆ and Γ is semi-nonevasive over F and evasive.

Proof. First, consider semi-collapsibility. If ∆ satisfies (i) in Definition 2.4, then ∆ ∗ Γ is
either ∅, Γ, or a cone over Γ. Each of these complexes is semi-collapsible by assumption.
Suppose ∆ satisfies (ii) in Definition 2.4 with shedding face σ. By assumption, fdel∆(σ)
and link∆(σ) are both semi-collapsible, which implies by induction that fdel∆∗Γ(σ) and
link∆∗Γ(σ) are semi-collapsible. For any complex Σ, let β̃Σ(t) =

∑
i≥−1 dim H̃i(Σ, F)ti. By

well-known properties of the join operator (see Björner [3]), we have that

β̃∆∗Γ(t)/t = β̃∆(t)β̃Γ(t) = (β̃∆(∅,σ)(t) + t|σ|β̃∆(σ,∅)(t))β̃Γ(t)

= (β̃∆(∅,σ)∗Γ(t) + t|σ|β̃∆(σ,∅)∗Γ(t))/t,

where the second identity follows from the fact that (3) holds for ∆ and σ. Thus (3)
holds for ∆ ∗ Γ and σ, and we are done with the first statement. Join preserving semi-
nonevasiveness is proved in exactly the same manner.

For the second statement, suppose that ∆ ∗ Γ is semi-nonevasive and evasive. If
∆ ∗ Γ = {∅}, then we are done. Otherwise, let x be the first shedding vertex; we may
assume that {x} ∈ ∆. Since ∆∗Γ is evasive, either the link or the deletion (or both) with
respect to x is evasive. By induction, del∆(x)∗Γ (link∆(x)∗Γ) being semi-nonevasive and
evasive implies that the same holds for both del∆(x) (link∆(x)) and Γ. Also, del∆(x) ∗ Γ
(link∆(x) ∗ Γ) being nonevasive implies that del∆(x) (link∆(x)) must be nonevasive by
Theorem 4.1; Γ is evasive by assumption. As a consequence, del∆(x) and link∆(x) are
both semi-nonevasive. Since ∆ ∗ Γ and x satisfy (2), we obtain that

tβ̃∆(t)β̃Γ(t) = β̃∆∗Γ(t) = β̃∆(∅,x)∗Γ(t) + tβ̃∆(x,∅)∗Γ(t)

= t(β̃∆(∅,x)(t) + tβ̃∆(x,∅)(t))β̃Γ(t).

Γ being semi-nonevasive and evasive implies that β̃Γ(t) is nonzero and hence cancels out
in this equation. As a consequence, β̃∆(t) = β̃∆(∅,x)(t) + tβ̃∆(x,∅)(t), which means exactly
that (2) holds for ∆ and x. We are thus done by induction. �

Using exactly the same technique as in the proof of Theorem 4.2, one obtains the following
more general result.

Theorem 4.3 With notation as in Section 3, if ∆ ∼ f(t) and Γ ∼ g(t), then ∆ ∗ Γ ∼
tg(t)f(t). The analogous property holds for set-decision trees (i.e., acyclic matchings). �

Theorem 4.4 (Welker [38]) If ∆ is a collapsible simplicial complex, then the barycen-
tric subdivision sd(∆) of ∆ is nonevasive. �

Theorem 4.5 If ∆ is semi-collapsible over F, then the barycentric subdivision sd(∆) of
∆ is semi-nonevasive over F.
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Remark. Theorems 4.4 and 4.5 are closely related to a theorem of Provan and Billera [30,
Cor. 3.3.2] stating that sd(∆) is vertex-decomposable whenever ∆ is shellable.

Proof. Throughout this proof, we will freely use the fact that homology is preserved
under barycentric subdivision. Write Σ = sd(∆). If ∆ satisfies (i) in Definition 2.4, then
Σ satisfies (i) in Definition 2.3. Suppose that ∆ satisfies (ii) in Definition 2.4 with σ as
the shedding face. Note that

linkΣ(σ) ∼= sd(2σ \ {σ}) ∗ sd(link∆(σ)),

where 2σ is the full simplex on the set σ. Namely, each chain in linkΣ(σ) consists of
nonempty faces that are either proper subsets of σ (i.e., contained in 2σ \{σ, ∅}) or proper
supersets of σ (i.e., of the form σ ∪ τ for some τ ∈ link∆(σ) \ {∅}). Since 2σ \ {σ} and
link∆(σ) are both semi-collapsible, the corresponding barycentric subdivisions are semi-
nonevasive by induction on the size of ∆. By Theorem 4.2, this implies that linkΣ(σ) is
semi-nonevasive. By properties of join, we have that

H̃i(linkΣ(σ)) ∼=
⊕

a+b=i−1

H̃a(2
σ \ {σ}) ⊗ H̃b(link∆(σ)) ∼= H̃i+1−|σ|(link∆(σ)). (5)

For the deletion delΣ(σ), let τ1, . . . , τr be the faces in ∆ that properly contain σ,
arranged in increasing order (|τi| < |τj | ⇒ i < j). Consider the first-hit decomposition of
delΣ(σ) with respect to (τ1, . . . , τr); see Definition 3.2.

We have that

Σ(τi, {σ, τ1, . . . , τi−1}) ∼= sd(fdel2τi (σ)) ∗ sd(link∆(τi)).

Namely, all faces ρ such that σ ⊂ ρ ⊂ τi are among the faces τ1, . . . , τi−1 and hence
deleted, whereas all faces ρ such that τi ⊂ ρ are among the faces τi+1, . . . , τr and hence
not yet deleted. It is clear that any element in τi \ σ is a cone point in fdel2τi (σ), which
implies by induction that the corresponding barycentric subdivision is nonevasive. By
Theorem 4.1, it follows that Σ(τi, {σ, τ1, . . . , τi−1}) is nonevasive.

Finally, Σ(∅, {σ, τ1, . . . , τr}) = sd(fdel∆(σ)), which is semi-nonevasive by induction.
By Lemma 3.3 (and Proposition 2.5), delΣ(σ) is semi-nonevasive with the same homology
as fdel∆(σ). By assumption, (3) holds for ∆ and σ, which implies by (5) that (2) holds
for Σ and σ, and we are done. �

Before proceeding with direct products, we prove a lemma that may also be of some use
in other situations. Let ∆ and Γ be families of sets. Say that a map ϕ : Γ → ∆ is
order-preserving if γ1 ⊆ γ2 implies that ϕ(γ1) ⊆ ϕ(γ2). For σ ∈ ∆, let Γσ = ϕ−1(σ).

Lemma 4.6 For nonempty finite families ∆ and Γ of finite sets, let M∆ be an acyclic
matching on ∆ and let ϕ : Γ → ∆ be an order-preserving map. For each critical set ρ
with respect to M∆, let Mρ be an acyclic matching on Γρ. For each matched pair {σ, τ}
with respect to M∆, let Mσ,τ be an acyclic matching on Γσ ∪ Γτ . Then the union MΓ of
all matchings Mρ and Mσ,τ is an acyclic matching on Γ.
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Remark. When M∆ is empty, Lemma 4.6 reduces to the Cluster Lemma; see Jonsson
[20, Sec. 2].

Proof. Consider a set-decision tree T corresponding to M∆; use Theorem 1.4. If ∆ = {∅}
or ∆ = {∅, {v}} with ∅ and {v} matched, then the lemma is trivial since we consider
the union of one single matching. Otherwise, suppose that T = (σ, T0, T1). Let ΓD =⋃

τ∈fdel∆(σ) Γτ and ΓL =
⋃

τ∈link∆(σ) Γσ∪τ . By induction, the union of all matchings Mρ

and Mσ,τ for ρ, σ, τ ∈ fdel∆(σ) is an acyclic matching on ΓD; the analogous property also
holds for ΓL. Now, there are no edges directed from ΓD to ΓL in the digraph of MΓ.
Namely, that would imply either that some γ0 ∈ ΓD is matched with some γ1 ∈ ΓL (which
is impossible) or that some γ0 ∈ ΓD contains some γ1 ∈ ΓL (which contradicts the fact
that ϕ is order-preserving). As a consequence, MΓ is acyclic. �

Theorem 4.7 (Welker [38]) If P and Q are posets such that ∆(P ) and ∆(Q) are both
collapsible (nonevasive), then ∆(P ×Q) is collapsible (nonevasive). The converse is false
for collapsible complexes. �

Remark. One easily adapts Welker’s proof of Theorem 4.7 to a proof that ∆(P × Q) is
semi-nonevasive whenever ∆(P ) is nonevasive and ∆(Q) is semi-nonevasive.

Theorem 4.8 If P and Q are posets such that ∆(P ) and ∆(Q) are both semi-collapsible
over F, then ∆(P × Q) is semi-collapsible over F. The converse is false.

Proof. Our goal is to construct an optimal acyclic matching on Γ = ∆(P × Q) given
optimal acyclic matchings MP and MQ on ∆(P ) and ∆(Q), respectively. For technical
reasons, we leave the empty set unmatched in both matchings (hence the matchings
are only almost optimal). For any complex Σ, let βΣ(t) =

∑
i≥0 dim Hi(Σ, F)ti (unreduced

homology). Since Γ is homotopy equivalent to the product of ∆(P ) and ∆(Q) (see Björner
[3]), we have that βΓ(t) = β∆(P )(t)β∆(Q)(t). In particular, we want to find an acyclic
matching with one critical face of size i + j − 1 for each pair of nonempty critical faces
σ ∈ ∆(P ) and τ ∈ ∆(Q) of size i and j, respectively.

Let ΠP : ∆(P × Q) → ∆(P ) be the projection map; ΠP ({(xi, yi) : i ∈ I}) = {xi : i ∈
I}. For σ ∈ ∆(P ), let Γσ = Π−1

P (σ). It is clear that ΠP is order-preserving. Specifically,
given an acyclic matching on Γσ1 ∪ Γσ2 for each pair {σ1, σ2} ∈ MP and an acyclic
matching on Γρ for each critical face ρ with respect to MP , Lemma 4.6 yields that the
union of all these matchings is an acyclic matching on Γ.

First, let us use a construction from Welker’s proof [38] of Theorem 4.7 to obtain a
perfect matching on Γσ1 ∪ Γσ2 for each {σ1, σ2} ∈ MP ; σ2 = σ1 + x. Since σ2 contains at
least two elements, x is either not maximal or not minimal in σ2; by symmetry, we may
assume that x is not maximal. Let x′ be the smallest element in σ2 that is larger than x.
For a given element γ in Γσ1 ∪ Γσ2 let bγ be minimal such that (x′, bγ) ∈ Γ. We obtain a
perfect matching by matching γ − (x, bγ) with γ + (x, bγ). Namely, adding or removing
(x, bγ) does not affect bγ , and adding (x, bγ) leads to a new chain due to the minimality of
bγ . The matching is acyclic, as it corresponds to an element-decision tree in which we first
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query all elements (a, b) such that a 6= x and then query all remaining elements except
(x, bγ) (which only depends on elements queried in the first round).

Next, we want to find a matching on Γρ for each critical face ρ in ∆(P ). Consider the
order-preserving projection map ΠQ : Γρ → ∆(Q) and let Γρ,τ = Π−1

Q (τ). By Lemma 4.6,
given acyclic matchings on Γρ,τ1 ∪ Γρ,τ2 for {τ1, τ2} ∈ MQ and acyclic matchings on Γρ,τ

for τ critical, the union of all matchings is an acyclic matching on Γρ. We easily obtain a
perfect acyclic matching on Γρ,τ1 ∪ Γρ,τ2 in exactly the same manner as we obtained the
matching on Γσ1 ∪ Γσ2 above. What remains is the family Γρ,τ for each pair of nonempty
critical faces ρ ∈ ∆(P ) and τ ∈ ∆(Q). Write ρ = x1x2 . . . xk and τ = y1y2 . . . yr; xi < xi+1

and yj < yj+1. It is clear that every face in Γρ,τ contains (x1, y1). We use induction on
k = |ρ| to show that there is an element-decision tree on Γρ,τ with exactly one critical
face of size |ρ| + |τ | − 1; this will yield the theorem.

For |ρ| = 1, Γρ,τ consists of one single face of size |τ | = |ρ| + |τ | − 1. For |ρ| > 1,
note that the deletion Γρ,τ (∅, (x1, y1)) is empty; (x1, y1) is present in every face in Γρ,τ .
Write Λ = Γρ,τ ((x1, y1), ∅) and proceed with the first-hit decomposition of Λ with respect
to ((x2, y1), (x2, y2), . . . , (x2, yk)); see Definition 3.2. We have that

Λ((x2, y1), ∅) = Γρ−x1,τ((x2, y1), ∅).
By induction, Γρ−x1,τ((x2, y1), ∅) admits an element-decision tree with one critical face of
size |ρ|−1+|τ |−2. Adding (x1, y1) and (x2, y1) yields a face of the desired size |ρ|+|τ |−1.
In Λi = Λ((x2, yi), {(x2, yj) : j < i}), (x1, yi) is a cone point. Namely, we may add the
element without destroying the chain structure, and we may delete it, because both x1

and yi are already contained in (x1, y1) and (x2, yi), respectively. Thus Λi is nonevasive,
and we are done by Lemma 3.3.

The final statement is an immediate consequence of Theorem 4.7. �

Proposition 4.9 (Welker [38]) A simplicial complex ∆ on a set X is nonevasive if and
only if the Alexander dual ∆∗

X is nonevasive. However, the Alexander dual of a collapsible
complex is not necessarily collapsible. �

Proposition 4.10 A simplicial complex ∆ on a set X is semi-nonevasive over F if and
only if the Alexander dual ∆∗

X is semi-nonevasive over F. However, the Alexander dual
of a semi-collapsible complex is not necessarily semi-collapsible.

Proof. Use induction on the size of X; del∆∗
X
(x) = (link∆(x))∗X−x and link∆∗

X
(x) =

(del∆(x))∗X−x. By (1), (2) holds for ∆∗
X if and only if it holds for ∆. In the base case, we

have the Alexander dual of ∅, {∅}, or {∅, {v}}; all three duals are easily seen to be semi-
nonevasive over any field. For the final statement, a contractible complex is collapsible
if and only if the complex is semi-collapsible. This implies by Proposition 4.9 that the
Alexander dual of a semi-collapsible complex is not necessarily semi-collapsible. �

Finally, we present a few important open problems; some of them are due to Welker [38].

• Is at least one of ∆ and Γ collapsible whenever ∆ ∗ Γ is collapsible? Is each of ∆
and Γ semi-collapsible whenever ∆ ∗ Γ is semi-collapsible but not collapsible?
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• Is ∆ collapsible (semi-collapsible) whenever the barycentric subdivision of ∆ is
nonevasive (semi-nonevasive)? Is there a complex ∆ such that the barycentric sub-
division of ∆ is collapsible or semi-collapsible but not semi-nonevasive?

• Are ∆(P ) and ∆(Q) both nonevasive whenever ∆(P×Q) is nonevasive? Is ∆(P×Q)
semi-nonevasive whenever both ∆(P ) and ∆(Q) are semi-nonevasive and evasive?

5 Examples

This section contains a list of well-known complexes. For each complex, we show how to
use decision trees to determine the homotopy type and homology; earlier proofs can be
found in the literature [30, 5, 4, 2, 37, 33]. As a byproduct, we obtain that the complexes
under consideration are semi-nonevasive over Z. The matching complex in Proposition 5.5
constitutes an exception, as we can only determine partial information about its topology.

In most cases, we consider complexes of graphs or digraphs. Fixing the underlying
vertex set V , we may identify a graph or a digraph with its edge set. In particular, if a
family of graphs or digraphs on the vertex set V is closed under deletion of edges, then we
may view the family as a simplicial complex. Some of our complexes are invariant under
the natural action of the symmetric group on V . We refer to such complexes as monotone
(di-)graph properties.

Our initial examples in Section 5.1 are quite simple; the purpose is to present some
approaches for defining decision trees. Section 5.2 is devoted to more complicated com-
plexes defined in terms of cycles in digraphs. In Sections 5.3 and 5.4, we proceed with
complexes of graphs containing small connected components such as isolated edges and
vertices. Theorem 5.7 in Section 5.4 – to our knowledge a new result – unifies the prop-
erties of being disconnected and containing isolated vertices. The exhibition is concluded
in Section 5.5, where we examine not 2-connected graphs.

We concentrate on element-decision trees and do not consider more general set-decision
trees. An interesting question is whether set-decision trees may provide a fruitful tool
for proving semi-collapsibility analogously to the way we use element-decision trees to
prove semi-nonevasiveness. An important difference between the two notions is that
there are other powerful methods available (e.g., explicit acyclic matchings) to obtain
semi-collapsibility, whereas it seems that any proof of semi-nonevasiveness must go, in
one way or another, via element-decision trees.

5.1 Warming up

Our first example is a proof of the well-known fact that (Alexander duals of) matroid
complexes have a nice homotopy type. For more information about matroids, see Oxley
[29] and Welsh [39].

Proposition 5.1 Let k ≥ 0, let M be a matroid on a nonempty set X, and let ΣM,k be
the complex of all sets of rank at most k. Then ΣM,k ∼ ctk−1 for some c ≥ 0 (notation as
in Section 3). Hence ΣM,k is homotopy equivalent to a wedge of (k − 1)-spheres.
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Proof. The statement is easy to check if X consists of one single element. Suppose that
|X| ≥ 2 and let x be any element in X. If the rank of x is 0 or the rank of M is at most k,
then x is a cone point, which implies that ΣM,k ∼ 0. Otherwise, ΣM,k(∅, x) = ΣM−x,k and
ΣM,k(x, ∅) = ΣM/x,k−1, where M/x denotes contraction with respect to x; rankM/x(S) =
rankM(S + x)− 1. Note that ΣM/x,k−1 is void if k = 0. By induction, ΣM,k(∅, x) ∼ c∅tk−1

and ΣM,k(x, ∅) ∼ cxt
k−2 for some c∅, cx ≥ 0; thus we are done by Lemma 3.1. �

Remark. The Alexander dual of ΣM,k is vertex-decomposable; see Provan and Billera [30].
Proposition 5.1 is hence a consequence of Propositions 4.10 and 2.12.

In our second example, we consider simple graphs, i.e., 1-dimensional complexes.

Proposition 5.2 Let G = (V, E) be a simple connected graph with e edges and n vertices.
Then G ∼ (e − n + 1)t.

Proof. G is clearly nonevasive if G has one vertex. Suppose that G has at least two
vertices. Let v be a vertex such that the induced subgraph G′ = G(∅, v) = delG(v)
obtained by removing v is connected; let v be a leaf in a spanning tree. By induction, we
obtain that G(∅, v) ∼ (e − |Nv| − (n − 1) + 1)t. Moreover, linkG(v) = G(v, ∅) consists of
the empty set and the vertices in Nv = {w : vw ∈ G}; clearly, linkG(v) ∼ (|Nv| − 1). By
Lemma 3.1, G ∼ (|Nv| − 1)t + (e − |Nv| − n + 2)t = (e − n + 1)t as desired. �

5.2 Directed cycles

A digraph D is strongly connected if every pair of vertices in D is contained in a directed
cycle. Recall that D is acyclic if D contains no directed cycles. Let ∆NSC

n be the complex
of not strongly connected digraphs on the vertex set [n], and let ∆ACY

n be the complex of
acyclic digraphs on [n]. The homotopy type of ∆NSC

n and ∆ACY
n was first determined by

Björner and Welker [5].

Theorem 5.3 For n ≥ 2, ∆NSC
n ∼ (n − 1)! · t2n−4. Hence ∆NSC

n is homotopy equivalent
to a wedge of (n − 1)! spheres of dimension 2n − 4.

Proof. We use induction on n. The case n = 2 is easy to check; assume that n > 2.
Let A =

⋃
i∈[n−1]{(i, n), (n, i)}, and consider the complex ΣY = ∆NSC

n (Y, A \ Y ) for each

Y ⊆ A. If Y does not contain any edge (i, n), then ΣY is nonevasive; any element in
ΣY is a cone point, as the underlying digraph cannot be strongly connected. The similar
property holds if Y does not contain any edge (n, i). Moreover, if (i, n), (n, j) ∈ Y for
some distinct i, j, then the edge (i, j) is a cone point in ΣY ; we already have a directed
path from i to j via n.

The remaining sets Y are of the form {(i, n), (n, i)}. We claim that ΣY = ∆NSC
n−1

for each such Y . Namely, a digraph D containing Y but not A \ Y is clearly strongly
connected if and only if the digraph obtained from D by removing the vertex n along with
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the edges (n, i) and (i, n) is strongly connected. By induction, ∆NSC
n−1 ∼ (n − 2)! · t2n−6,

which by Lemma 3.1 implies that

∆NSC
n ∼

n−1∑
i=1

(n − 2)! · t2n−6 · t2 = (n − 1)! · t2n−4,

and we are done. �

Theorem 5.4 For n ≥ 1, ∆ACY
n ∼ tn−2. Hence ∆ACY

n is homotopy equivalent to the
(n − 2)-sphere.

Proof. We use induction on n. For n = 1, we have that ∆ACY
1 = {∅}; assume that

n > 1. Consider the first-hit decomposition of ∆ACY
n with respect to ((1, n), (2, n), . . . , (n−

1, n)); see Definition 3.2. For r ∈ [n − 1], let Ar = {(i, n) : i ∈ [r]}. Let Σr =
∆ACY

n ({(r, n)}, Ar−1) and Σn = ∆ACY
n (∅, An−1). We want to show that Σr is nonevasive for

r 6= n−1 and that Σn−1 ∼ tn−3. By Lemma 3.3, it then follows that ∆ACY
n ∼ tn−3·t = tn−2.

Clearly, (n, i) is a cone point in Σn for any i; if no edges are directed to n, then n
cannot be contained in a cycle. For r ≤ n − 1, let B = {(n, i) : i ∈ [n − 1]}. For each
Z ⊆ B, consider the complex Σr,Z = Σr(Z, B \ Z). If (n, r) ∈ Z, then Σr,Z is void;
((n, r), (r, n)) is a cycle. If (n, i) ∈ Z for some i 6= r, then (r, i) is a cone point in Σr,Z ; we
already have a directed path from r to i via n.

What remains is to consider Z = ∅. If r 6= n − 1, then (r + 1, n) is a cone point in
Σr,∅; n cannot be contained in a cycle since there are no edges directed from n. As a
consequence, Σr ∼ 0 if r 6= n − 1 by Lemma 3.1; Σr,Z ∼ 0 for all Z. For r = n − 1, we
have that Σn−1,∅ = ∆ACY

n−1 . Namely, a digraph D containing (n − 1, n) but no other edges
incident to n is clearly acyclic if and only if the digraph obtained from D by removing
the vertex n along with the edge (n− 1, n) is acyclic. By induction, ∆ACY

n−1 ∼ tn−3, which
by Lemma 3.1 implies that Σn−1 ∼ tn−3, and we are done. �

5.3 Matching complexes

The matching complex Mn is the family of all graphs G on the vertex set [n] with pairwise
disjoint edges. The rational homology of Mn was completely determined by Bouc [9].
Athanasiadis [1] proved that the νn-skeleton of Mn is vertex-decomposable, where νn =
dn−4

3
e. By Proposition 2.12, this implies that there is an element-decision tree on Mn

such that the dimension of each evasive face is at least νn. Indeed, such a tree is easy to
define:

Proposition 5.5 Let n ≥ 1. Then Mn ∼ ∑
j≥0 cjt

j, where cj = 0 unless

⌈
n − 4

3

⌉
≤ j ≤

⌊
n − 3

2

⌋
. (6)

Hence Mn is homotopy equivalent to a CW complex in which all cells (except one 0-cell)
have dimensions in the interval (6).
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Proof. For n ≤ 3, Mn consists of the empty set and all singleton sets. Assume that
n ≥ 4 and consider the first-hit decomposition of Mn with respect to the sequence
(13, 14, . . . , 1n, 23, 24, . . . , 2n). We immediately note that Mn(∅, E) ∼ 0, where E =
{1i, 2i : i ∈ {3, . . . , n}}. Namely, 12 is a cone point, as E contains all edges intersecting
12.

Now, consider Σr = Mn({er}, {e1, . . . , er−1}), where er = ab is the rth element in the
sequence under consideration; a = 1 if r ≤ n − 2 and a = 2 otherwise. We have that Σr

is isomorphic to Mn−a−1. Namely, if a = 1, then all edges contained in [n] \ {1} remain
to be checked. If a = 2, then all edges contained in [n] \ {1, 2} remain to be checked and
all edges containing 1 have been deleted (except 12, but this edge intersects 2k).

By induction, Mn−a−1 ∼
∑

i≥0 c′it
i, where c′i = 0 unless dn−a−5

3
e ≤ i ≤ bn−a−4

2
c. Since

⌈
n − a − 5

3

⌉
≥

⌈
n − 7

3

⌉
=

⌈
n − 4

3

⌉
− 1

⌊
n − a − 4

2

⌋
≤

⌊
n − 5

2

⌋
=

⌊
n − 3

2

⌋
− 1,

we are done by Lemma 3.3. �

The second half of Proposition 5.5 was first proved by Björner, Lovász, Vrećica, and
Živaljević [4]. Using results of Bouc [9], Shareshian and Wachs [34] proved that the
homology group H̃νn(Mn; Z) is nonzero for all n ≥ 3. In particular, there is no decision
tree such that the dimension of each evasive face is strictly greater than νn.

Nevertheless, it is not hard to prove that the element-decision tree presented above is
not optimal in general. Yet, we have at least achieved the following:

Theorem 5.6 Mn is semi-nonevasive over Z for n ≤ 6 and n = 8. Moreover, M7 is
semi-nonevasive over Z3, but not over Z.

Proof. The first part of the theorem is straightforward from the bounds in (6); the two
bounds coincide for 3 ≤ n ≤ 6 and for n = 8.

For the second part of the theorem, the nonvanishing homology groups of M7 are
H̃1(M7; Z) ∼= Z3 and H̃2(M7; Z) ∼= Z20; see Bouc [9]. This means that H̃1(M7; Z3) ∼= Z3

and H̃2(M7; Z3) ∼= Z21
3 . We want to find an element-decision tree with 1+21 evasive faces.

For this, consider the first-hit decomposition with respect to the sequence

(13, 14, 35, 46, 56, 12, 57, 67, 23, 24, 37, 47, 16, 25, 17, 27, 34, 36, 45, 15);

all edges but 26 are contained in the sequence. Let bi be the ith edge in the sequence
and let Bk = {bi : i ≤ k}. It is easy to check that M7(bi, Bi−1) ∼ cit for 1 ≤ i ≤ 6,
where c1 = c2 = 6, c3 = 4, c4 = c5 = 2, and c6 = 1; all these links are connected graphs,
so optimal element-decision trees exist by Proposition 5.2. Moreover, M7(b18, B17) ∼ 1,
whereas M7(∅, B20) ∼ 0 and M7(bi, Bi−1) ∼ 0 for i ∈ {7, . . . , 17} ∪ {19, 20}. Applying
Lemma 3.3, we obtain that M7 ∼ t + 21t2 as desired. �
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For p 6= 3, nobody has been able to detect p-torsion in the homology of any matching
complex Mn. A related question is whether Mn is semi-nonevasive over Z3 when n ≥ 9;
an affirmative answer for general n would be a striking result. An obvious consequence
of such a result would be that

H̃d(Mn; Z3) ∼= H̃d(delMn(e); Z3) ⊕ H̃d−1(linkMn(e); Z3)

for all d, n and any edge e. Since linkMn(e) ∼= Mn−2, we would thus obtain an embedding
of the Z3-homology of Mn−2 into the Z3-homology of Mn. One may also ask whether

H̃d(Mn; Z) ∼= H̃d(delMn(e); Z) ⊕ H̃d−1(linkMn(e); Z)

for all d, n and any edge e. Using computer [13, 26], we have verified this to be true for
n ≤ 11.

5.4 Graphs with small components

In this section, we consider graphs with connected components of restricted size. One
special case is the complex of graphs on the vertex set [n] with at least s isolated vertices.
Another special case is the complex of disconnected graphs on [n].

For weakly increasing sequences λ = (λ1, . . . , λl) and µ = (µ1, . . . , µm) (i.e., λ1 ≤
. . . ≤ λl and µ1 ≤ . . . ≤ µm), say that λ ≤ µ if l ≥ m and λi ≤ µi for 1 ≤ i ≤ m. Let
ω = (ω1, . . . , ωn) be a sequence of positive integers; for S ⊆ [n], let

ωS =
∑
s∈S

ωs.

For a graph G on the vertex set [n] consisting of k connected components, let the corre-
sponding vertex sets V1, . . . , Vk be ordered such that ωV1 ≤ . . . ≤ ωVk

. Define

ω(G) = (ωV1 , . . . , ωVk
).

Let µ = (µ1, . . . , µm) be a (not necessarily nonempty) weakly increasing sequence of
positive integers such that

∑
i µi <

∑
j ωj; we say that (µ, ω) is a permitted pair on n

vertices if this condition is satisfied. Let Λµ
ω be the family of graphs G on the vertex set

[n] satisfying ω(G) ≤ µ. The family Λµ
ω is a simplicial complex, but Λµ

ω need not be a

graph property unless all ωi are the same. Note that Λ
(n−1)
1n is the complex of disconnected

graphs, where 1n is the sequence of n ones. Moreover, the complex of graphs with s isolated
vertices coincides with Λ1s

1n . Let L(µ) be the length of the sequence µ; L(µ1, . . . , µm) = m.

Theorem 5.7 Let (µ, ω) be a permitted pair. Then Λµ
ω ∼ ctn−2−L(µ) for some c ≥ 0.

Hence Λµ
ω is homotopy equivalent to a wedge of spheres of dimension n − 2 − L(µ) (or

void).
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Proof. Use double induction over n and µ. If µ is the empty sequence ∅, then Λ∅
ω is

the full simplex on
(

n
2

)
elements and hence nonevasive unless n = 1. If n = 1, then

Λ∅
ω ∼ t−1 = tn−2−L(µ) as desired. Now, consider n ≥ 2 and µ nonempty. Take a vertex k

such that ωk is as small as possible; we may assume that k = n. If ωn > µ1, then Λµ
ω is

void. Otherwise, let A = {in : i ∈ [n − 1]} and consider the complex ΣY = Λµ
ω(Y, A \ Y )

for each Y ⊆ A.
If Y contains two edges in and jn, then ij is a cone point in ΣY ; i and j are contained

in the same component. Hence ΣY ∼ 0. If Y = ∅, then Σ∅ = Λµ′
ω′, where µ′ = (µ2, . . . , µm)

and ω′ = (ω1, . . . , ωn−1). Namely, a graph G with the vertex n isolated is contained in Λµ
ω

if and only if ωn ≤ µ1 and ω(G(∅, n)) ≤ µ′. Since µ1 ≥ ωn, (µ′, ω′) is a permitted pair.

By induction, Σ∅ = Λµ′
ω′ ∼ c∅tn−3−L(µ′) = c∅tn−2−L(µ) for some c∅ ≥ 0.

The case remaining is Σ{kn} for each k ∈ [n − 1]. Modify ω by removing ωn and by
replacing ωk with ωk + ωn. This new ω′ has the property that a graph G in which k is
the only neighbor of n is in Λµ

ω if and only if G(∅, n) ∈ Λµ
ω′. Clearly, (µ, ω′) is a permitted

pair. By induction, Σ{kn} ∼ ckt
(n−1)−2−L(µ) for some ck ≥ 0. By Lemma 3.1, we obtain

that

Λµ
ω ∼ c∅tn−2−L(µ) +

n−1∑
k=1

ckt
(n−1)−2−L(µ) · t = ctn−2−L(µ),

where c = c∅ +
∑n−1

k=1 ck. �

Corollary 5.8 For 1 ≤ s ≤ n − 1, the complex Λ1s

1n of graphs on n vertices with at least
s isolated vertices satisfies Λ1s

1n ∼ (
n
(

n−2
s−1

) − (
n−1
s−1

))
tn−s−2.

Proof. By Theorem 5.7, it suffices to show that the reduced Euler characteristic χ̃(Λ1s

1n)
equals

(
n
(

n−2
s−1

) − (
n−1
s−1

))
(−1)n−s. By Quillen’s Fiber Lemma (see Björner [3, Theorem

10.5]), Λ1s

1n has the same homotopy type as ∆(P
[n]
2,n−s), where P X

a,b is the poset of all
subsets of the set X of size between a and b inclusively. Namely, map a given nonempty
graph to the set of vertices that are not isolated in the graph; this map clearly satisfies
the conditions of Quillen’s lemma. We claim that

χ̃(∆(P
[n]
2,n−s)) = χ̃(∆(P

[n]
1,n−s)) +

n∑
i=1

χ̃(∆(P
[n]\{i}
1,n−s−1)).

Namely, ∆(P
[n]
1,n−s) \∆(P

[n]
2,n−s) contains all chains in P

[n]
1,n−s with a singleton set {i} at the

bottom for some i ∈ [n]; it is easy to see for each i that we have one such chain of length

k + 1 for each chain in P
[n]\{i}
1,n−s−1 of length k. Now, χ̃(∆(P

[n]
1,n−s)) = (−1)n−s−1

(
n−1
s−1

)
and

χ̃(∆(P
[n]\{i}
1,n−s−1)) = (−1)n−s−2

(
n−2
s−1

)
; ∆(P X

1,b) is the barycentric subdivision of the (b − 1)-
skeleton of the full simplex on the set X. The desired result follows. �

Corollary 5.9 For n ≥ 2, the complex ∆1
n = Λ

(n−1)
1n of disconnected graphs on n vertices

satisfies ∆1
n ∼ (n − 1)! · tn−3.
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Proof. The corollary is clearly true for n = 2; assume that n ≥ 3. We have that
∆1

n ∼ ctn−3, where c = c∅ +
∑n−1

k=1 ck (notation as in the proof of Theorem 5.7). Now, c∅
equals the Euler characteristic (up to sign) of Λ∅

1n , which is the full simplex and hence

collapsible. Moreover, ck equals the Euler characteristic (up to sign) of Λ
(n−1)

(1n−2,2). However,

Λ
(n−1)
(1n−2,2) is clearly equal to Λ

(n−2)
1n−1 = ∆1

n−1. By induction on n, ∆1
n−1 ∼ (n − 2)! · tn−4.

Thus ck = (n − 2)! and c =
∑n−1

i=1 (n − 2)! = (n − 1)!, which concludes the proof. �

Remark. There are plenty of other methods for computing the homotopy type of ∆1
n; see

Babson et al. [2] for references.

5.5 Complexes of not 2-connected graphs

As a final application, we consider complexes of not 2-connected graphs. For 1 ≤ k ≤ n−1,
a graph G on the vertex set [n] is k-connected if the induced subgraph G(∅, W ) is connected
for each set W ⊂ [n] with at most k − 1 elements. Let ∆k

n be the simplicial complex of
not k-connected graphs on the vertex set [n]. We considered ∆1

n in the preceding section;
see Corollary 5.9

The homotopy type of ∆2
n was discovered by Babson, Björner, Linusson, Shareshian,

and Welker [2] and by Turchin [37]. Shareshian [33] gave a third proof using discrete
Morse theory. Our proof is quite short, but it should be noticed that previous proofs
contain much more information about the complex than just the homotopy type. For
example, Shareshian [33] was able to construct an explicit basis for the homology of the
quotient complex of 2-connected graphs.

Theorem 5.10 For n ≥ 3, ∆2
n ∼ (n − 2)! · t2n−5. Hence ∆2

n is homotopy equivalent to a
wedge of (n − 2)! spheres of dimension 2n − 5.

Proof. Let En = {in : i ∈ [n− 1]} and consider the complex ΣY = ∆2
n(Y, En \ Y ) for each

Y ⊆ En. If |Y | ≤ 1, then the degree of the vertex n is at most one. In particular, any
edge ij such that i, j 6= n is a cone point in ΣY , which implies that ΣY is nonevasive.

From now on, assume that |Y | ≥ 2. First, we claim that ΣEn coincides with the
complex ∆1

n−1 of disconnected graphs on n−1 vertices. Namely, since n is adjacent to all
other vertices in a graph G containing En, n is the only possible cut point; clearly, n is a
cut point if and only if G(∅, n) is disconnected. By Corollary 5.9, ∆1

n−1 ∼ (n − 2)! · tn−4.
As a consequence, if we can prove that ΣY is nonevasive whenever Y $ En, then it follows
that ∆2

n ∼ (n − 2)! · t|En| · tn−4 = (n − 2)! · t2n−5 by Lemma 3.1.
Now, for a given set Y $ En such that |Y | ≥ 2, define π(Y ) = {i : in ∈ Y } and

BY =
(
[n−1]

2

) \ (
π(Y )

2

)
. Consider the complex ΣY,Z = ΣY (Z, BY \ Z) for each possible edge

set Z ⊆ BY . Adding the edge set Y ∪ Z to every graph in ΣY,Z , we obtain the family
of graphs containing the edge set E = Y ∪ Z but not any edges from En \ Y or BY \ Z.
There are three possibilities for the graph G = ([n], E).

• G is disconnected. Since any two vertices w1, w2 ∈ π(Y ) already belong to the same
component in G, w1w2 is a cone point in ΣY,Z .
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• G is connected, and some cycle contains the vertex n. Let w1, w2 ∈ π(Y ) be the
neighbors of n in this cycle. It is clear that adding or deleting w1w2 to or from a face
in ΣY,Z does not affect the 2-connectivity of the corresponding graph; thus w1w2 is
a cone point.

• G is connected, and no cycle contains the vertex n. Let w1 ∈ π(Y ) be such that n
is not the only neighbor of w1 in G; such a w1 exists since G is connected and fewer
than n − 1 vertices are adjacent to n. Let v 6= n be a neighbor of w1 in G. We
claim that w1 is a cut point in G separating v from {n} ∪ (π(Y ) \ {w1}). Namely,
if there were a path from v to n not using w1, then this path would form a cycle
together with w1. Since we may extend a path ending in π(Y ) \ {w1} to a path
ending in n, the claim follows. In particular, w1w2 is a cone point in ΣY,Z for any
w2 ∈ π(Y ) \ {w1}.

As a consequence, ΣY,Z is always nonevasive, which by Lemma 3.1 implies that ΣY is
nonevasive; thus we are done. �

Remark. In an earlier paper [20], we demonstrated that the complex ∆3
n of not 3-connected

graphs is semi-collapsible and homotopy equivalent to a wedge of (n − 3) · (n − 2)!/2
spheres of dimension 2n − 4. We conjecture that ∆3

n is semi-nonevasive, i.e., ∆3
n ∼

(n − 3) · (n − 2)!/2 · t2n−4.

6 Concluding remarks

A potential generalization of the concept of semi-collapsibility might be as follows:

Definition 6.1 Let C be a family of simplicial complexes. The class of C-collapsible
simplicial complexes over the field F is defined recursively as follows:

(i) The void complex ∅ and any complex isomorphic to a complex in C are C-collapsible
over F.

(ii) If ∆ contains a nonempty face σ such that link∆(σ) and fdel∆(σ) are C-collapsible
over F and such that

H̃d(∆; F) ∼= H̃d(fdel∆(σ); F) ⊕ H̃d−|σ|(link∆(σ); F)

for each d, then ∆ is C-collapsible over F.

C-nonevasive complexes are defined analogously. Note that if C consists of {∅, {v}}, then
we obtain the collapsible complexes, whereas the family containing {∅} and {∅, {v}} yields
the semi-collapsible complexes. We do not know whether the given generalization leads
to anything useful.

For a given family of simplicial complexes, a natural problem is to characterize those
complexes in the family that are semi-collapsible or semi-nonevasive, say over Z. For

the electronic journal of combinatorics 12 (2005), #R3 28
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5

6

Figure 5: The graph with edge set {12, 23, 34, 45, 46}.

example, let us consider monotone graph properties. Karp’s famous evasiveness conjecture
states that there are no nonevasive monotone graph properties except the void complex
and the full simplex. The conjecture was partially settled by Kahn, Saks, and Sturtevant
[21]; see the work of Chakrabarti, Khot, and Shi [10] for some recent progress. An
interesting question related to the evasiveness conjecture is whether there are collapsible
monotone graph properties that are not nonevasive. More generally, one may ask whether
there are semi-collapsible monotone graph properties that are not semi-nonevasive. Not
surprisingly, the answer to the second question is yes:

Let ∆ be the complex of all graphs on the vertex set {1, 2, 3, 4, 5} that are contained
in a copy of {12, 34, 35}. This complex is collapsible to the matching complex M5 on
five vertices (see Section 5.3); collapse all pairs ({cd, ce}, {ab, cd, ce}). Since M5 is semi-
collapsible by Theorem 5.6, the same is true for ∆. However, ∆ is not semi-nonevasive.
Namely, the three 1-cells {34, 35}, {34, 45}, {35, 45} form a cycle in link∆(12), which
implies that link∆(12) has nonvanishing homology in its top dimension; by symmetry, the
same is true for link∆(x) for any x. Since ∆ has no homology in its top dimension, it
follows that ∆ cannot be semi-nonevasive.

Again related to the evasiveness conjecture, the proof of Theorem 5.10 implies that
the deletion of the complex ∆2

n with respect to any 0-cell is nonevasive. An interesting
but probably very hard problem is to characterize all monotone graph properties with
this property.

It may also be worth mentioning that there exists a Q-acyclic graph property that is not
Z-acyclic: Let ∆ be the complex of all bipartite graphs on the vertex set {1, 2, 3, 4, 5, 6}
that do not contain a subgraph isomorphic to the graph in Figure 5. Using the com-
puter program homology [13], one may conclude that the only nonzero homology group
is H̃3(∆; Z) ∼= Z16

2 ⊕ Z4
3 ⊕ Z9. We have not found a simple proof of this fact.
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vol. 41, Birkhäuser, Boston/Basel/Stuttgart, 1996.

[37] V. Turchin, Homologies of complexes of doubly connected graphs, Russian Math. Surveys (Uspekhi
Mat. Nauk) 52 (1997), 426–427.

[38] V. Welker, Constructions preserving evasiveness and collapsibility, Discrete Math. 207 (1999) 243–
255.

[39] D.J.A. Welsh, Matroid Theory, Academic Press, 1976.

the electronic journal of combinatorics 12 (2005), #R3 31


