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Abstract

Let g(n) denote the minimum number of edges of a maximal nontraceable graph of
order n. Dudek, Katona and Wojda (2003) showed that g(n) > [25-2]—2 for n > 20
and g(n) < [22-2] for n > 54 as well as for n € I = {22,23, 30,31, 38, 39,40, 41,42,
43,46,47,48,49,50,51}. We show that g(n) = [3”—2_21 for n > 54 as well as for
n € I U{12,13} and we determine g(n) for n <9.

Keywords: maximal nontraceable, hamiltonian path, traceable, nontraceable, non-
hamiltonian

1 Introduction

We consider only simple, finite graphs G and denote the vertex set, the edge set, the order
and the size of G by V(G), E(G), v(G) and e(G), respectively. The open neighbourhood
of a vertex v in G is the set Ng(v) = {z € V(G) : vz € E(G)}. If U is a nonempty subset
of V(G) then (U) denotes the subgraph of G induced by U.

A graph G is hamiltonian if it has a hamiltonian cycle (a cycle containing all the
vertices of G), and traceable if it has a hamiltonian path (a path containing all the vertices
of G). A graph G is mazimal nonhamiltonian (MNH) if G is not hamiltonian, but G +e
is hamiltonian for each e € E(G), where G denotes the complement of G. A graph G
is mazimal nontraceable (MNT) if G is not traceable, but G + e is traceable for each

e € E(G).

*This material is based upon research for a thesis at the University of South Africa and is supported
by the National Research Foundation under Grant number 2053752.
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In 1978 Bollobés [1] posed the problem of finding the least number of edges, f(n),
in a MNH graph of order n. Bondy [2] had already shown that a MNH graph with
order n > 7 that contained m vertices of degree 2 had at least (3n + m)/2 edges, and
hence f(n) > [3n/2] for n > 7. Combined results of Clark, Entringer and Shapiro [3],
[4] and Lin, Jiang, Zhang and Yang [7] show that f(n) = [3n/2] for n > 19 and for
n = 6,10,11,12,13,17. The values of f(n) for the remaining values of n are also given
in [7].

Let g(n) denote the minimum number of edges in a MNT graph of order n. Dudek,
Katona and Wojda [5] proved that

g(n) > [32] — 2 for n > 20

and showed, by construction, that

g(n) < [2222] for n > 54

as well as for n € I = {22,23,30,31, 38,39, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51}
We prove, using a method different from that in [5], that

g(n) > [222] for n > 10.

We also construct graphs of order n = 12,13 with [2%.-2] edges and thus show that

g(n) = [2%2] for n > 54 as well as for n € 1 U {12,13}.

We also determine g(n) for n < 9.

2 Auxiliary Results

In this section we present some results concerning MNT graphs, which we shall use, in
the next section, to prove that a MNT graph of order n > 10 has at least % edges.
The first one concerns the lower bound for the number of edges of MNH graphs. It is the
combination of results proved in [2] and [7].

Theorem 1 (Bondy and Lin, Jiang, Zhang and Yang) If G is a MNH graph of order n,
then e(G) > 2 forn > 6.

The following lemma, which we proved in [6], will be used frequently.

Lemma 2 Let Q be a path in a MNT graph G. If (V(Q)) is not complete, then some
internal vertex of Q has a neighbour in G — V(Q).
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Proof. Let u and v be two nonadjacent vertices of (). Then G 4+ uv has a hamiltonian
path P. Let x and y be the two endvertices of ) and suppose no internal vertex of ()
has a neighbour in G — V(Q). Then P has a subpath R in (V(Q)) + uv and R has either
one or both endvertices in {z,y}. If R has only one endvertex in {z,y}, then P has an
endvertex in (). In either case the path obtained from P by replacing R with @ is a
hamiltonian path of G. ]

The following lemma is easy to prove.

Lemma 3 Suppose T is a cutset of a connected graph G and Ay, ..., A are components
of G—-T.

(a) If k > |T| + 2, then G is nontraceable.

(b) If G is MNT then k < |T| + 2.

(c) If G is MNT and k = |T| + 2, then (T'U A;) is complete for i =1,2,.... k.

Proof. (a) and (b) are obvious. If (c) is not true, then there is an ¢ such that (T'U A;)
has two nonadjacent vertices x and y. But then T is a cutset of the graph G + zy and
(G + xy) — T has |T| 4+ 2 components and hence G + xy is nontraceable, by (a).
u
The proof of the following lemma is similar to the previous one.

Lemma 4 Suppose B is a block of a connected graph G.

(a) If B has more than two cut-vertices, then G is nontraceable.

(b) If G is MNT, then B has at most three cut-vertices.

(¢c) If G is MNT and B has exactly three cut-vertices, then G consists of exactly four
blocks, each of which is complete.

In [6] we proved some results concerning the degrees of the neighbours of the vertices
of degree 2 in a 2-connected MNT graph, which enabled us to show that the average
degree of the vertices in a 2-connected MNT graph is at least 3. We now restate those
results in a form that is applicable also to MNT graphs which are not 2-connected. (Note
that in a 2-connected graph no two vertices of degree 2 are adjacent to one another.)

Lemma 5 If G is a connected MNT graph and v € V(G) with d(v) = 2, then the
neighbours of v are adjacent. Also, one of the neighbours has degree at least 4 and the
other neighbour has degree 2 or at least 4.

Proof. Let Ng(v) = {x1, 22} and let @ be the path zjvzy. Since Ng(v) C @, it follows
from Lemma 2 that (V(Q)) is a complete graph; hence z; and z, are adjacent.

Since G is connected and nontraceable, at least one of x; and x5 has degree bigger
that 2. Suppose d(z1) > 2 and let z € N(z1) — {v,z2}. If @ is the path zzjvzy then,
since d(v) = 2, the graph (V(Q)) is not complete and hence it follows from Lemma 2 that
d(zy) > 4. Similarily if d(xq) > 2, then d(z2) >4 . u
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Lemma 6 Suppose G is a connected MNT graph with distinct nonadjacent vertices vy
and vy such that d(vy) = d(vq) = 2.

(a) If v1 and vy have exactly one common neighbour x, then d(x) > 5.

(b) If v1 and vy have the same two neighbours xy and xs, then Ng(x1) — {z2} =

Ng(z2) — {1} and d(xy) = d(xs) > 5.

Proof. (a) Let N(v;) = {z,y;}; i = 1,2. It follows from Lemma 5 that x is adjacent to
yi; © = 1,2, Let @ be the path yyv1zv9ys. Since (V(Q)) is not complete, it follows from
Lemma 2 that x has a neighbour in G — V(Q). Hence d(x) > 5.

(b) From Lemma 5 it follows that 21 and x5 are adjacent. Let @ be the path zovyz1v,.
(V(Q)) is not complete since v; and v, are nonadjacent. Thus it follows from Lemma 2
that x; has a neighbour in G — V(Q). Now suppose p € Ng_y(g)(z1) and p ¢ Ng(x2).
Then a hamiltonian path P in G 4 pxy contains a subpath of either of the forms given in
the first column of Table 1. Note that i,j € {1,2}; i # j and that L represents a subpath
of P in G — {x1,29,v1,vs,p}. If each of the subpaths is replaced by the corresponding
subpath in the second column of the table we obtain a hamiltonian path P’ in GG, which
leads to a contradiction.

Subpath of P | Replace with

V;T10;X2P Vi ToUV;T1P
v;x1 Lpxov; V; X201 Lp
Table 1

Hence p € Ng(z2). Thus Ng(z1) — {z2} C Ng(xg) — {z1}. Similarly Ng(ze) — {z1} C
Ng(x1) — {x2}. Thus Ng(x1) — {2} = Ng(x2) — {x1} and hence d(x;) = d(z3). Now let
@ be the path pxrivizov,. Since (V(Q)) is not complete, it follows from Lemma 2 that x;
or zo has a neighbour in G — V(Q). Hence d(z1) = d(x2) > 5. n

Lemma 7 Suppose G is a connected MNT graph of order n > 6 and that vy,vy and vs
are vertices of degree 2 in G having the same neighbours, xy and xy. Then G —{vy, vy, v3}
is complete and hence e(G) = 2(n? — Tn + 24).

Proof. The set {x1,x2} is a cutset of G. Thus according to Lemma 3 G — {vy, va,v3} =

K, 5. Hence ¢(G) = 3(n — 3)(n — 4) + 6. u

By combining the previous three results we obtain

Theorem 8 Suppose G is a connected MN'T graph without vertices of degree 1 or adjacent
vertices of degree 2. If G has order n > 7 and m wvertices of degree 2, then e(G) >
s(3n+m).

Proof. If G has three vertices of degree 2 having the same two neighbours then, by
Lemma 7, m = 3 and

e(G) =1(n*—Tn+24) > 1(3n+ m) when n > 7.

1
2
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We now assume that G does not have three vertices of degree 2 that have the same two
neighbours. Let vy, ..., v, be the vertices of degree 2 in G and let H = G — {vy, ..., v, }.
Then by Lemmas 5 and 6 the minimum degree, 6(H) of H is at least 3. Hence

e(G)=e(H) +2m > 3(n—m) +2m = 3(3n+ m). n

3 The minimum size of a MINT graph

Our aim is to determine the exact value of g(n). By consulting the Atlas of Graphs [§],
one can see, by inspection, that ¢(2) = 0, ¢(3) = 1, g(4) = 2, g(5) = 4, g(6) = 6 and
g(7) = 8 (see Fig. 3).

We now give a lower bound for g(n) for n > 8.

Theorem 9 If G is a MNT graph of order n, then

10 ifn=38
e(G) > < 12 ifn=9
2 ifn > 10.

Proof. If G is not connected, then G = K U K,,_j, for some positive integer k£ < n and
then, clearly, e(G) > 3”—2_2 for n > 8. Thus we assume that G is connected.

We need to prove that the sum of the degrees of the vertices of G is at least 3n — 2.
In view of Theorem 8, we let

M = {v e V(G) | d(v) = 2 and no neighbour of v has degree 2}.

The remaining vertices of degree 2 can be dealt with simultaneously with the vertices of
degree 1. We let
S={veV(G)—M |dwv)=2ordv) =1}
1
2

If S =0, then it follows from Theorem 8 that e(G) >
that S # 0.

We observe that, if H is a component of the graph of (S), then either H = K or
H = K, and Ng(H) — V(H) consists of a single vertex, which is a cut-vertex of G.

An example of such a graph G is depicted in the figure below.

(3n +m). Thus we assume

K1

Kz

Fig. 1
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Let s = |S|. By Lemma 4 the graph (S) has at most three components. We thus have
three cases:

CASE 1. (S) has exactly three components, say Hy, Hy, Hs:

In this case the neighbourhoods of Hy, Hs, H3 are pairwise disjoint; hence G has three
cut-vertices. Hence it follows from Lemma 4 that G — S is a complete graph of order at
least 3. Futhermore, for every possible value of s, the number of edges in GG incident with
the vertices in S is 25 — 3. Thus

e(G) = <ngs)+25—3for5:3,4,50r6; s<n-—3.

An easy calculation shows that, for each possible value of s,

10 ifn=28
e(G) > {12 ifn=09

=2 if n > 10.

This case is a Zelinka Type II construction, cf. [9]. The graphs of smallest size of order
8 and 9 given by this construction are depicted in Fig. 3.

CASE 2. (S) has exactly two components, say H;, Hy:
In this case the number of edges in G incident with the vertices in S is 2s — 2.

Subcase 2.1. Ng(H;) = Ng(H»):
Then it follows from Lemma 3 that G — S is a complete graph. Hence

e(G) = (n;8)+25—2for5:2,30r4.

Thus

12 itn =28
e(G) > 16 ifn=9

=2 ifn > 10

This case is a Zelinka Type I construction, cf. [9].

Subcase 2.2. Ng(H;) # Ng(Hs):
Let No(H;) = y;, i = 1,2 and y; # yo.
If y1y2 ¢ E(G) then G + 31y, has a hamiltonian path P. But then P has one endvertex
in H; and the other in Hy and contains the edge y;y2; hence V(G — S) = {y1,92}. But
then G is disconnected. This contradiction shows that yiys € E(G).

Now G — S is not complete, otherwise GG would be traceable. Since G 4+ vw, where
v and w are nonadjacent vertices in V(G — 5), contains a hamiltonian path with one
endvertex in H; and the other in Hy and 3y, € E(G), it follows that (G — S) + vw has
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a hamiltonian cycle. Hence G — S is either hamiltonian or MNH. We consider these two
cases separately:

Subcase 2.2.1. G — S is hamiltonian:

Then no hamiltonian cycle in G — S contains v, otherwise GG would be traceable. Thus
dG,S(yi) > 3 for i = 1, 2.

It also follows from Lemma 3 that no vertex v € M can be adjacent to both y; and s
since the graph (V(H;) UT), where T' = {y1,y2} is not complete, for i = 1,2. If v € M
is adjacent to to one of the y;’s for ¢+ = 1,2, say y;, then, since the neighbours of v are
adjacent, it follows that dg_pr—s(y1) > 3.

It follows from our definition of M and S that Ng(M) NS = (. Since G — M is not a
complete graph, it follows from Lemma 7 that M does not have three vertices that have
the same neighbourhood in G. Hence, by Lemmas 5 and 6, the minimum degree of the
graph G — M — S is at least 3.

Now, forn > 8

e(G) = e(G—M—-S)+2m+2s—2

1

> 5(3(n—m—s))+2m—|—25—2
1

= 5(3n—l—m—|—s—4)
n—2

> 5 , since s > 2.

Subcase 2.2.2. (G — S is nonhamiltonian:
Then G — S is MNH (as shown above); hence it follows from Theorem 1, that
e(G—95)>3(n—s)forn—s>6.

Thus, forn —s>6 and n > 8

e(G) = e(G—95)+2s—2
> %(3(71—5))4—28—2
1
3n—2
> 5 , since s > 2.

From [7] we have

6 forn—s=5
4 forn—s=4.

e(G—8) > {

Thus

12 form=9andn—s=5
10 form=8andn—s=5o0orn—s=4.

(G) > {
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The smallest MNH graphs Fy and Fy of order 4 and 5 respectively, are depicted in
Fig. 2; cf. [7]. The graphs Gg and Gy (see Fig. 3) are obtained, respectively, by using F}
with s =4 or F5 with s = 3, and Fj with s = 4.

A X

Fig. 2

CASE 3. (S) has exactly one component, say H:

Since
ng(v) =3s—2, fors=1,2
veS

it follows that

e(G) = e(G—M)+2m

1
= 5| X dem+D deu(v) | +2m
veV(G-M)-S veS
1
> 5(3(n—m—s)+35—2)+2m
1
= 3 (3n+m —2)
3n — 2
>
- 2

|
From the previous theorem we have g(8) = 10, ¢(9) = 12 and g(n) > [¥2-2] for
n > 10. The MNT graphs G,, of order n with g(n) edges for n <9 are given in Fig. 3.

Gy Gg Go
Fig. 3
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In [5] Dudek, Katona and Wojda constructed, for every n > 54 as well as for every
n € I = {22,23,30,31,38,39,40,41,42,43,46,47,48,49,50,51}, a MNT graph of size
[22-27 in the following way: Consider a cubic MNH graph G with the property that
(
(

7
) there is an edge 312 of G, such that N(y;) N N(y2) = 0, and
| _

G + e has a hamiltonian cycle containing y,y, for every e € E(G).

Now take two graphs H; and H,, with H; = K; and Hy; = K; or Hy = K, and join
each vertex of H; to y;; ¢ = 1,2. The new graph is a MNT graph of order v(G) + 2 and
size e(G) + 2 or of order v(G) + 3 and size e(G) + 4.

It follows from results in [3] and [4] that for every even n > 52 as well as for n €
{20, 28, 36, 38,40, 44, 46, 48} there exists a cubic MNH graph of order n that satisfies (1)
and (2). Thus this construction provides MNT graphs of order n and size [22-2] for every
n > 54 as well as for every n € I.

We determined, by using the Graph Manipulation Package developed by Siginfu and
Sheng Bau*, that the Petersen graph also satisfies the above property. Hence, according
to the above construction, there are also MNT graphs of order n and size [#22] for
n =12,13.

Thus g(n) = [2%-2] for n > 54 as well as for every n € I U {12,13}.

It remains an open problem to find g(n) for n = 10,11 and those values of n between
13 and 54 which are not in [I.

1
2
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