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Abstract

A bicoloured Dyck path is a Dyck path in which each up-step is assigned one
of two colours, say, red and green. We say that a permutation π is σ-segmented if
every occurrence o of σ in π is a segment-occurrence (i.e., o is a contiguous subword
in π).

We show combinatorially the following results: The 132-segmented permuta-
tions of length n with k occurrences of 132 are in one-to-one correspondence with
bicoloured Dyck paths of length 2n − 4k with k red up-steps. Similarly, the 123-
segmented permutations of length n with k occurrences of 123 are in one-to-one
correspondence with bicoloured Dyck paths of length 2n − 4k with k red up-steps,
each of height less than 2.

We enumerate the permutations above by enumerating the corresponding bi-
coloured Dyck paths. More generally, we present a bivariate generating function
for the number of bicoloured Dyck paths of length 2n with k red up-steps, each of
height less than h. This generating function is expressed in terms of Chebyshev
polynomials of the second kind.

1 Introduction

Let Sn be the set of permutation of [n] = {1, 2, . . . , n}. Let π ∈ Sn and σ ∈ Sk, with
k ≤ n. An occurrence of σ in π is a subword o of length k in π such that o and σ are in
same relative order. In this context σ is called a pattern. For example, an occurrence of
the pattern 132 in π is a subword π(i)π(j)π(k) such that π(i) < π(k) < π(j); so 253 is an
occurrence of 132 in 42513. A permutation π that does not contain any occurrence of σ
is said to avoid σ.
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It is relatively easy to show that number of permutations of [n] avoiding a pattern
of length 3 is the Catalan number, Cn =

(
2n
n

)
/(n + 1) (e.g., see [9] or [5]). In contrast,

to count the permutations containing r occurrences of a fixed pattern of length 3, for
a general r, is a very hard problem. The best result on this latter problem has been
achieved by Mansour and Vainshtein [7]. They presented an algorithm that computes
the generating function for the number of permutations with r occurrences of 132 for any
r ≥ 0. The algorithm has been implemented in C. It yields explicit results for 1 ≤ r ≤ 6.

We say that an occurrence o of σ in π is a segment-occurrence if o is a segment (also
called factor) of π, in other words, if o is a contiguous subword in π. Elizalde and Noy [2]
presented exponential generating functions for the distribution of the number of segment-
occurrences of any pattern of length 3. Related problems have also been studied by Kitaev
[3] and by Kitaev and Mansour [4].

We say that π is σ-segmented if every occurrence of σ in π is a segment-occurrence. For
instance, 4365172 contains 3 occurrences of 132, namely 465, 365, and 172. Of these oc-
currences, only 365 and 172 are segment-occurrences. Thus 4365172 is not 132-segmented.
Note that if π is σ-avoiding then π is also σ-segmented. In this article we try to enumerate
the σ-segmented permutations by length and by the number of occurrences of σ.

Krattenthaler [5] gave two bijections: one between 132-avoiding permutations and
Dyck paths, and one between 123-avoiding permutations and Dyck paths. We obtain two
new results by extending these bijections:

– The 132-segmented permutations of length n with k occurrences of 132 are in one-to-
one correspondence with bicoloured Dyck paths of length 2n−4k with k red up-steps.

– The 123-segmented permutations of length n with k occurrences of 123 are in one-to-
one correspondence with bicoloured Dyck paths of length 2n−4k with k red up-steps,
each of height less than 2.

Here a bicoloured Dyck path is a Dyck path in which each up-step is assigned one of
two colours, say, red and green. We enumerate the permutations above by enumerating
the corresponding bicoloured Dyck paths. To be more precise, let Bn,k be the set of
bicoloured Dyck path of length 2n with k red up-steps. Let B[h]

n,k be the subset of Bn,k

consisting of those paths where the height of each red up-step is less than h. It is plain
that |Bn,k| =

(
n
k

)
Cn. We show that

∑
n,k≥0

|B[h]
n,k|qktn =

C(t)− 2xqUh(x)Uh−1(x)

1 + q − qU2
h(x)

, x =
1

2
√

(1 + q)t
,

where C(t) = (1−
√

1− 4t)/(2t) is the generating function for the Catalan numbers, and
Un(x) is the nth Chebyshev polynomial of the second kind. We also find formulas for

|B[1]
n,k| and |B[2]

n,k|.
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2 Bicoloured Dyck paths

By a lattice path we shall mean a path in Z
2 with steps (1, 1) and (1,−1); the steps (1, 1)

and (1,−1) will be called up- and down-steps, respectively. Furthermore, a lattice path
that never falls below the x-axis will be called nonnegative.A Dyck path of length 2n is a
nonnegative lattice path from (0, 0) to (2n, 0). As an example, these are the 5 Dyck paths
of length 6:

• ??? • ??? • ???• ��� • ��� • ��� •
• ???• ??? • ��� • ???• ��� • ��� •

• ???• ��� • ??? • ???• ��� • ��� •
• ??? • ???• ��� • ��� • ???• ��� •

• ???• ��� • ???• ��� • ???• ��� •

Letting u and d represent the steps (1, 1) and (1,−1), we code a Dyck path with a
word over {u, d}. For example, the paths above are coded by

ududud uduudd uuddud uududd uuuddd

Let Dn be the language over {u, d} obtained from Dyck paths of length 2n via this
coding, and let D = ∪n≥0Dn. In general, if A is a language over some alphabet X, then
the characteristic series of A, also (by slight abuse of notation) denoted A, is the element
of C〈〈X 〉〉 defined by

A =
∑
w∈A

w.

A nonempty Dyck path β can be written uniquely as uβ1dβ2 where β1 and β2 are Dyck
paths. This decomposition is called the first return decomposition of β, because the d in
uβ1dβ2 corresponds to the first place, after (0, 0), where the path touches the x-axis. By
this decomposition, the characteristic series of D is uniquely determined by the functional
equation

D = ε + uDdD, (1)

where ε denotes the empty word.
In a similar vein, we now consider the language B over {u, ū, d} whose characteristic

series is uniquely determined by the functional equation

B = ε + (u + ū)BdB. (2)

Let Bn be the set of words in B that are of length 2n, and let Bn,k be the set of words
in Bn with k occurrences of ū. As an example, when n = 3 and k = 1 there are 15 such
words, namely

ūdudud ūduudd ūuddud ūududd ūuuddd

udūdud udūudd uūddud uūdudd uūuddd

ududūd uduūdd uuddūd uudūdd uuūddd

We may view the elements of B as bicoloured Dyck paths. The words from the previous
example are depicted below.

the electronic journal of combinatorics 12 (2005), #R39 3



• ??? • ??? • ???•
������ • ��� • ��� •

• ???• ??? • ��� • ???•
������ • ��� •

• ???• ��� • ??? • ???•
������ • ��� •

• ??? • ???• ��� • ��� • ???•
������ •

• ???• ��� • ???• ��� • ???•
������ •

• ??? • ??? • ???• ��� •
������ • ��� •

• ???• ??? • ��� • ???• ��� •
������ •

• ???•
������ • ??? • ???• ��� • ��� •

• ??? • ???•
������ • ��� • ???• ��� •

• ???• ��� • ???•
������ • ???• ��� •

• ??? • ??? • ???• ��� • ��� •
������ •

• ???• ??? •
������ • ???• ��� • ��� •

• ???• ��� • ??? • ???• ��� •
������ •

• ??? • ???• ��� •
������ • ???• ��� •

• ???•
������ • ???• ��� • ???• ��� •

Here steps represented by double edges are, say, red, and steps represented by simple
edges are, say, green.

Proposition 1 With Cn = |Dn|, we have

|Bn,k| =
(

n

k

)
Cn and |Bn| = 2nCn.

Proof A bicoloured Dyck paths β of length 2n naturally breaks up into two parts: (a)
The Dyck path obtained from β by removing colours. (b) The subset of [n] consisting of
those integers i for which the ith up-step is red. �

For h ≥ 1, let B[h] be the subset of B whose characteristic series is the solution to

B[h] = ε + (u + ū)B[h−1]dB[h], (3)

with the initial condition B[0] = D, where D is defined as above. Let

B[h]
n be the set of words in B[h] that are of length 2n, and let

B[h]
n,k be the set of words in B[h]

n with k occurrences of ū.

To translate these definitions in terms of lattice paths we define the height of a step in
a (bicoloured) lattice path as the height above the x-axis of its left point. Then B[h] is
the set of bicoloured Dyck paths whose red up-steps all are of height less than h. As an
example, there is exactly one element in B3,1 that is not in B[2], namely

• ???•
������ • ???• ��� • ???• ��� •

To count words of given length in D, B and B[h], we will study the commutative coun-
terparts of the functional equations (1), (2) and (3). Formally, we define the substitution
µ : C〈〈u, ū, d 〉〉 → C[[q, t]] by

µ = { u 7→ 1, ū 7→ q, d 7→ t }.

Let C = µ(D), B = µ(B), and B[h] = µ(B[h]). We then get

C = 1 + tC2, (4)

B = 1 + (1 + q)tB2, (5)

B[h] = 1 + (1 + q)tB[h−1]B[h], B[0] = C. (6)
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By an easy application of the Lagrange inversion formula it follows from (4) that

[tn]
(
C(t)

)i
=

i

i + n

(
2n + i− 1

n

)
. (7)

In particular, we obtain that C(t) is the familiar generating function of the Catalan
numbers, Cn = 1

n+1

(
2n
n

)
. Thus we have derived the well known fact that the number of

Dyck paths of length 2n is the nth Catalan number. Furthermore, it follows from (5) that

B(q, t) = C((1 + q)t), (8)

and it follows from (6) that

B[h](q, t) =
1

1− (1 + q)tB[h−1]
, B[0] = C. (9)

From these series we generate the first few values of |Bn,k|, |B[1]
n,k| and |B[2]

n,k|; tables with
these values are given in Section 5.

Recall that the Chebyshev polynomials of the second kind, denoted Un(x), are defined
by

Un(x) =
sin(n + 1)θ

sin θ
,

where n is an integer, x = cos θ, and 0 ≤ θ ≤ π. Equivalently, these polynomials can be
defined as the solution to the linear difference equation

Un+1(x) = 2xUn(x)− Un−1(x),

with U−1(x) = 0 and U0(x) = 1.
In 1970 Kreweras [6] showed that

C [h](t) =
Uh

(
1

2
√

t

)
√

t · Uh+1

(
1

2
√

t

) (10)

is the generating function for Dyck paths that stay below height h. Note that, since
C [0] = 1 and C [h] = (1− tC [h−1])−1, this result is also easy to prove by induction on h.

Theorem 2 With B[h] being the generating function for the number of Dyck paths whose
red up-steps all are of height less than h, and Un being the nth Chebyshev polynomial of
the second kind we have

B[h](q, t) =
4x2Uh−1(x)− 2xUh−2(x)C(t)

2xUh(x)− Uh−1(x)C(t)
=

C(t)− 2xqUh(x)Uh−1(x)

1 + q − qU2
h(x)

,

where x = 1/(2
√

(1 + q)t), and C(t) = (1−
√

1− 4t)/(2t) is the generating function for
the Catalan numbers.
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Proof We shall prove the first equality by induction. To this end, we let

F [h](q, t) =
4x2Uh−1(x)− 2xUh−2(x)C(t)

2xUh(x)− Uh−1(x)C(t)
.

From U−2(x) = −1, U−1(x) = 0, and U0(x) = 1 it readily follows that F [0](q, t) = C(t) =
B[0](q, t). If B[h] = F [h], for some fixed h ≥ 0, then

B[h+1] =
1

1− (1 + q)tB[h]

=
1

1− (1 + q)tF [h]

=
2xUh − Uh−1C

2xUh − Uh−1C − (1 + q)t
(
4x2Uh−1 − 2xUh−2C

)
=

2xUh − Uh−1C

2xUh − (1 + q)t4x2Uh−1 −
(
Uh−1 − (1 + q)t2xUh−2

)
C

=
4x2Uh − 2xUh−1C

2x
(
2xUh − (1 + q)t4x2Uh−1

)
−

(
2xUh−1 − (1 + q)t4x2Uh−2

)
C

=
4x2Uh − 2xUh−1C

2x
(
2xUh − Uh−1

)
−

(
2xUh−1 − Uh−2

)
C

=
4x2Uh − 2xUh−1C

2xUh+1 − UhC

= F [h+1],

in which Uh = Uh(x) and C = C(t). This completes the induction step, and thus the first
equality holds for all h ≥ 0. The second equality is plain algebra/trigonometry. �

Proposition 3 For n, k ≥ 0 we have

|B[1]
n,k| = b(n + k, n− k) =

2k + 1

n + k + 1

(
2n

n− k

)
,

|B[1]
n | =

(
2n

n

)
,

where b(n, k) = n−k+1
n+1

(
n+k

n

)
is a ballot number.

Proof The ballot number b(n, k) is the number of nonnegative lattice paths from (0, 0)
to (n + k, n− k). Thus, the first claim of the proposition is that |B[1]

n,k| equals the number
of nonnegative lattice paths from (0, 0) to (2n, 2k). Let An,k denote the language over
{u, d} obtained from these paths via the usual coding. In addition, let An = ∪k≥0An,k

and A = ∪n≥0An. The characteristic series of A satisfies

A = ε + uD(u + d)A.
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From (3) we also know that

B[1] = ε + (u + ū)DdB[1].

We exploit the obvious similarity between these two functional equations to define, by
recursion, a length preserving bijection f from B[1] onto A such that β ∈ B[1] has exactly
k occurrences of ū precisely when f(β) ∈ A ends at height 2k:

f(β) =


ε if β = ε,

uβ1df(β2) if β = uβ1dβ2, β1 ∈ D, β2 ∈ B[1],

uβ1uf(β2) if β = ūβ1dβ2, β1 ∈ D, β2 ∈ B[1].

For β ∈ B[1], let |β|ū denote the number of occurrences of ū in β, and for α ∈ A let
h(α) denote the height at which α ends. To prove that f is length preserving, bijective,
and that 2| · |ū = h ◦ f , we use induction on path-length: f trivially has these properties
as a function from B[1]

0 to A0. Let n be a positive integer and assume that f has the
desired properties as a function from ∪n−1

k=0B
[1]
k to ∪n−1

k=0Ak. Any β in B[1]
n can be written

as β = xβ1dβ2 for some x ∈ {u, ū}, β1 ∈ D and β2 ∈ B[1]. Therefore, using induction,

|f(β)| = 2 + |β1|+ |f(β2)| = 2 + |β1|+ |β2| = |β|
and

(h ◦ f)(β) = 2|x|ū + (h ◦ f)(β2) = 2|x|ū + 2|β2|ū = 2|β|ū

To prove that f is injective, assume that f(β) = f(β ′), where β ′ = x′β ′
1dβ ′

2 for some
x′ ∈ {u, ū}, β ′

1 ∈ D, and β ′
2 ∈ B[1]. Then

f(β) = uβ1yf(β2) = uβ ′
1y

′f(β ′
2) = f(β ′),

in which y, y′ ∈ {u, d}. Thus β1 = β ′
1, y = y′, and f(β2) = f(β ′

2). By the induction
hypothesis, f(β2) = f(β ′

2) implies that β2 = β ′
2, and hence β = β ′.

To prove that f is surjective, take any α = uα′yα′′ in An, where y ∈ {u, d}, α′ ∈ D,
and α′′ ∈ A. By the induction hypothesis, there exists β ′′ in B[1] such that f(β ′′) = α′′;
so f(uα′yβ ′′) = α. This completes the proof of the first part of the proposition.

Given the first result, the second result may be formulated as saying that the central
binomial coefficient

(
2n
n

)
is the sum of the ballot numbers b(n+k, n−k) for k = 0, 1, . . . , n.

This is a known fact (see [8, p. 79]). Indeed,

2k + 1

n + k + 1

(
2n

n− k

)
=

(
2n

n− k

)
−

(
2n

n− k − 1

)
,

and hence the sum of these numbers is telescoping.
For a bijective proof of the second part we consider the set of all lattice paths from

(0, 0) to (2n, 0). Let Pn be the language over {u, d} obtained from these
(
2n
n

)
paths via

the usual coding, and let P = ∪n≥0Pn. The characteristic series of P satisfies

P = ε + uDdP + dD̂uP,
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where D̂ is the image of D under the involution on C〈〈u, d 〉〉 defined by u 7→ d and d 7→ u;
this involution has the effect of reflecting a Dyck path in the x-axis. A length preserving
bijection g from B[1] onto P is then recursively defined by

g(β) =


ε if β = ε,

uβ1dg(β2) if β = uβ1dβ2, β1 ∈ D, β2 ∈ B[1],

dβ̂1ug(β2) if β = ūβ1dβ2, β1 ∈ D, β2 ∈ B[1].

Again, by induction on path-length it follows that g is a bijection. �
Example As an illustration of the bijections in the proof of Proposition 3, we have

• ??? • ??? • ???• ��� • ��� • ??? • ��� • ??? • ???•
������ • ��� •

������ • f7−→

• ??? •
• ��� • ??? • ���

• ??? • ??? • ��� • ���
• ��� • ��� • ���

• ���

and • ??? • ??? • ???• ��� • ��� • ??? • ��� • ??? • ???•
������ • ��� •

������ • g7−→
• ???• ��� • ???• ??? • ��� • ??? •

• ??? • ??? • ��� • ���
• ��� • ���

Proposition 4 For n, k ≥ 0 we have

|B[2]
n,k| =

∑
i≥0

2k + i + 1

n + k + i + 1

(
k − 1

k − i

)(
2n + i

n− k

)
.

Proof From (9) it follows that

B[2](q, t) =
1− t(1 + q)C(t)

1− t(1 + q)(1 + C(t))
.

Using (4) we rewrite this as

B[2](q, t) =
(1− qt(C(t))2)C(t)

1− (1 + C(t))qt(C(t))2
, (11)

and on expanding the right hand side as a geometric series we get

[qk]B[2](q, t) = tkC(t)2k+1(1 + C(t))k−1(δk,0 + C(t)), (12)

where δk,0 is 1 if k = 0, and 0 otherwise. The result is easy to check for k = 0, so let us
assume that k ≥ 1. Then

[qk]B[2](q, t) = tk
∑
i≥0

(
k − 1

i

)(
C(t)

)3k−i+1
= tk

∑
i≥0

(
k − 1

3k − i

)(
C(t)

)i+1
.

From (7) we get

[tnqk]B[2](q, t) =
∑
i≥0

i + 1

n− k + i + 1

(
k − 1

3k − i

)(
2n− 2k + i

n− k

)
=

∑
i≥0

2k + i + 1

n + k + i + 1

(
k − 1

i− 1

)(
2n + i

n− k

)
,

which completes the proof. �
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3 Segmented permutations

Let v = v1v2 · · · vn be a word over N without repeated letters. We define the reduction of
v, denoted red(v), by

red(v)(i) = |{ j : vj ≤ vi }|.
In other words, red(v) is the permutation of [n] obtained from v by replacing the smallest
letter in v with 1, the second smallest with 2, etc. For instance, red(19453) = 15342. We
will also need a map that is a kind of inverse to red. For a finite subset V of N, with
n = |V |, and a permutation π of [n], we denote by red−1

V (π) the word over V obtained
from π by replacing i in π with the ith smallest element in V , for all i. Here is an example:
If V = {1, 3, 4, 5, 9} then red−1

V (15342) = 19453.
Given π in Sn and σ in Sk (σ is often referred to as a pattern), an occurrence of σ in

π is a subword
o = π(i1)π(i2) · · ·π(ik)

of π such that red(o) = σ. If, in addition, ir +1 = ir+1 for each r = 1, 2, . . . , k−1, then o
is a segment-occurrence of σ in π. We say that π is (σ)k-segmented if there are exactly k
occurrences of σ in π, each of which is a segment-occurrence of σ in π. A (σ)0-segmented
permutation is usually called σ-avoiding, and the set of σ-avoiding permutations of [n] is
denoted Sn(σ).

If π is (σ)k-segmented for some k, then we say that π is σ-segmented. We also define

Rk
n(σ) = { π ∈ Sn : π is (σ)k-segmented }

and Rn(σ) = ∪k≥0Rk
n(σ). In other words, Rn(σ) is the set of σ-segmented permutations

of length n. Let

R(σ; q, t) =
∑

k,n≥0

|Rk
n(σ)| qktn.

The first nontrivial case is σ = 12. A permutation is 12-segmented if all its non-
inversions are rises. For instance, the permutation 7653412 is 12-segmented while 7643512
is not (45 is a non-inversion, but not a rise).

Let π ∈ Rn(12) with n ≥ 1. If the letter 1 precedes the letter b in π, then 1b is an
occurrence of 12 in π. Thus, either 1 is the last letter in π, or 1 is the penultimate letter
in π and 2 is the last letter in π. In terms of the generating function R = R(12; q, t) this
amounts to

R = 1 + tR + qt2R.

So R is a rational function in t and q. Extracting coefficients we get

|Rk
n(12)| =

(
n−k

k

)
and |Rn(12)| = Fn,

where Fn is the nth Fibonacci number (i.e., Fn+1 = Fn + Fn−1 with F0 = F1 = 1). This
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is in fact an old result:

π is 12-segmented

⇐⇒ there is no subword axb, with a < b and x 6= ε, in π

⇐⇒ π avoids all linear extensions of the poset
3

1 2

⇐⇒ π is {123, 132, 213}-avoiding

The {123, 132, 213}-avoiding permutations have been enumerated by Simion and Schmidt
[9].

In general, to every pattern σ there is a set of patterns Σ(σ) such that a permutation
is σ-segmented precisely when it is Σ(σ)-avoiding. For example,

Σ(123) = {1243, 1234, 1324, 1423, 2134, 2314};

these are the linear extensions of the two posets

4

2

1 3

and

4

3

1 2

.

Similarly, we have

Σ(132) = {1243, 1342, 1423, 1432, 2143, 2413}.

To summarize,

Rn(12) = Sn(123, 132, 213);

Rn(123) = Sn(1243, 1234, 1324, 1423, 2134, 2314);

Rn(132) = Sn(1243, 1342, 1423, 1432, 2143, 2413).

Theorem 5 Let k ≥ 0 and n ≥ 3k.

The 132-segmented permutations of length n with k occurrences of 132 are in one-
to-one correspondence with bicoloured Dyck paths of length 2n − 4k with k red up-steps.
Thus

|Rk
n(132)| = |Bn−2k,k| =

(
n− 2k

k

)
Cn−2k,

where the last equality is a consequence of Proposition 1.

The 123-segmented permutations of length n with k occurrences of 123 are in one-to-
one correspondence with bicoloured Dyck paths of length 2n−4k with k red up-steps, each
of height less than 2. Thus

|Rk
n(123)| = |B[2]

n−2k,k| =
∑
i≥0

2k + i + 1

n− k + i + 1

(
k − 1

k − i

)(
2n− 4k + i

n− 3k

)
,

where the last equality is a consequence of Proposition 4.
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First proof Let n be a positive integer, and let π be a 132-segmented permutation of
length n. If the letter n is not part of any occurrence of 132, then we can factor π as
π = π1nπ2, where π1 and π2 are 132-segmented permutations, and π2 < π1 (i.e., every
letter in π2 is smaller than every letter in π1). On the other hand, if n is part of an
occurrence of 132, then we can factor π as

π = π1anb π2, where π2 < a < b < π1,

and π1 and π2 are 132-segmented permutations. In particular, a = |π2|+ 1 and b = a + 1.
Thus the generating function R = R(132; q, t) satisfies the functional equation

R = 1 + (t + qt3)R2. (13)

It follows that R = C(t + qt3), where C(t) is the generating function for the Catalan
numbers, and hence [tnqk]R = |Bn−2k,k|, as claimed.

Let π ∈ Rk
n(123) with n ≥ 1. Then, either k = 0 and π is 123-avoiding, or k ≥ 1 and

π contains at least one occurrence of 123. Let us focus on the latter case, and let

π = π1abc π2,

where abc is the leftmost occurrence of 123 in π. Then aπ2 is (123)k−1-segmented and π1c
is 123-avoiding, with the additional restriction that aπ2 may not begin with an occurrence
of 123. Moreover,

aπ2 < b < π1c,

or else a non segment-occurrence of 123 would be present. With regard to the generating
function R = R(123; q, t) this decomposition of 123-segmented permutations amounts to
the functional equation

R = C + qt(C − 1)(R̃− 1), (14)

where C = C(t) is the generating function of the Catalan numbers, and the coefficient of
qktn in R̃ = R̃(q, t) is the number of (123)k-segmented permutations of length n that do
not begin with an occurrence of 123. Considering the decomposition above in the special
case when π1 is the empty word, we see that t2q(R̃− 1) is the generating function of the
number of 123-segmented permutations that begin with an occurrence of 123; so

R = R̃ + qt2(R̃− 1). (15)

Solving equations (14) and (15) for R, eliminating R̃, we get

R =
(1− qt3C2)C

1− (1 + C)qt3C2
. (16)

It follows from (11) that R = B[2](qt2, t), as claimed. �
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Second proof We shall define a bijection

f : R(132)→ B[2],

such that |f(π)| = 2(n− 2k) and |f(π)|ū = k whenever π ∈ Rk
n(132). Our definition of f

will be recursive and we start by defining that f(ε) = ε. Now, assume that n is a positive
integer, and let π be a 132-segmented permutation of length n. As in the first proof, if the
letter n is not part of any occurrence of 132, then we can factor π as π = π1nπ2, where
π1 and π2 are 132-segmented permutations, and π2 < π1; in this case we define

f(π) = u(f ◦ red)(π1)d(f ◦ red)(π2).

If n is part of an occurrence of 132, then we can factor π as π = π1anb π2 where π2 < a <
b < π1 and π1 and π2 are 132-segmented permutations; in this case we define

f(π) = ū(f ◦ red)(π1)d(f ◦ red)(π2).

For any β in B, let
λ(β) = 1

2
|β|+ 2|β|ū = |β|u + 3|β|ū.

Using induction, it is plain to show that the inverse of f is given by

f−1(ε) = ε;

f−1(uβ1dβ2) = (red−1
V1
◦f−1)(β1) n (red−1

V2
◦f−1)(β2),

where n = λ(β1) + λ(β2) + 1, V1 = [λ(β2) + 1, n− 1], and V2 = [1, λ(β2)];

f−1(ūβ1dβ2) = (red−1
V1
◦f−1)(β1) anb (red−1

V2
◦f−1)(β2),

where a = λ(β2) + 1, b = a + 1, n = λ(β1) + b + 1, V1 = [b + 1, n− 1], and V2 = [1, a− 1].
To find a bijective proof of the second part of Theorem 5 we will first discuss a decom-

position of paths in B[2] which is similar to the decomposition of permutations in R(123)
underlying (14). Let β ∈ B[2]. If there is a leftmost occurrence of ū in β then the height
of that ū must be either 0 or 1. Thus we have

B[2] = D +DūB[1]dB[2] +DuDūDdB[1]dB[2] (17)

whose commutative counterpart is

B[2] = C + qtCB[1]B[2] + qt2C3B[1]B[2]

= C + qt−1(tC + t2C3)tB[1]B[2]. (18)

Since C = 1+ tC2, the factor tC + t2C3 simplifies to C−1. Moreover, if we let B̃[2] denote
the set of paths in B[2] whose first step is u (i.e., not ū), then

B̃[2] = ε + uB[1]dB[2], (19)
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Figure 1: The bijection B[2] \ D
Φ∼= (D \ {ε})× (B̃[2] \ {ε}).

and, as a consequence, tB[1]B[2] = B̃[2] − 1. Thus (18) can be rewritten as

B[2] = C + qt−1(C − 1)(B̃[2] − 1),

which should be compared to (14). This suggests that we should be able to uniquely
decompose any path β in B[2] \ D into two nonempty paths β ′ ∈ D and β ′′ ∈ B̃[2] such
that |β| = |β ′|+ |β ′′| − 1 and |β|ū = |β ′′|ū + 1. Indeed, using (17), (19) and

D = ε +Dud +DuDuDdd,

such a decomposition is defined by the map

β1ūβ2dβ3 7→ 〈 β1ud, uβ2dβ3 〉,
β1uβ ′

1ūβ ′′
1dβ2dβ3 7→ 〈 β1uβ ′

1uβ ′′
1dd, uβ2dβ3 〉,

where β1, β
′
1, β

′′
1 ∈ D, β2 ∈ B[1], and β3 ∈ B[2]. We denote by Φ the inverse of this map; it

is obtained by simply reversing the arrows. See Figure 3 for a schematic diagram of Φ.
Let h be any bijection from Sn(123) to Dn. For definiteness, we can take h to be the

bijection Ψ given by Krattenthaler in [5, p. 522]. (A description of Ψ can be found in the
example following this proof.) We shall define a bijection

g : R(123)→ B[2]

such that |g(π)| = 2(n − 2k) and |g(π)|ū = k, whenever π ∈ Rk
n(123). If π avoids 123

then let g(π) = h(π). If π does not avoid 123 then, as in the first proof, we can write
π = π1abc π2, where abc is the leftmost occurrence of 123 in π; in this case, we let

g(π) = Φ
〈
(g ◦ red)(π1c), (g ◦ red)(aπ2)

〉
.

Proving that g is invertible is similar to proving that f is invertible. �
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We remark that the bijection f from the first part of the preceding proof maps 132-
avoiding permutations onto Dyck paths. In fact, the restriction of f to S(132) is a bijection
due to Krattenthaler [5, p. 512].

Example The permutation 846572931 is 132-segmented. It has two occurrences of 132,
namely 465 and 293. We illustrate the bijection f , from the first part of the preceding
proof, by finding the image of 846572931 under f :

f(846572931) = ūf(84657)df(1) = ūudf(4657)dud =

= ūuduf(465)ddud = ūuduūdddud.

For convenience we have not reduced the permutations in the intermediate steps.
To give an example of how g, from the second part of the preceding proof, is applied,

we first need to describe Krattenthaler’s [5, p. 522] bijection Ψ from Sn(123) to Dn. Let
π = a1a2 · · ·an be a 123-avoiding permutation. A right-to-left maximum is an element ai

such that ai > aj for all j > i. Let the right-to-left maxima in π be m1, m2, . . . , ms, from
right to left, so that

π = πsms · · ·π2m2π1m1,

where πi is the subword of π between mi+1 and mi. If there is an occurrence ab of 12 in
πi then abmi is an occurrence of 123 in π. Therefore, the elements in πi are in decreasing
order. Moreover, we have πi < πi+1.

The Dyck path Ψ(π) is generated from right to left: Read π from right to left. Any
right-to-left maximum mi is translated into mi − mi−1 up-steps (with the convention
m0 = 0). Any subword πi is translated into |πi|+ 1 down-steps.

We are now ready for an illustration of the bijection g. The permutation 957841362
is 123-segmented. It has two occurrences of 123, namely 578 and 136. To find the image
of 957841362 under g we proceed as follows:

g(957841362) = Φ〈(g ◦ red)(98), (g ◦ red)(541362)〉,
(g ◦ red)(98) = Ψ(21) = udud,

(g ◦ red)(541362) = Φ〈(g ◦ red)(546), (g ◦ red)(12)〉,
(g ◦ red)(546) = Ψ(213) = uuuddd,

(g ◦ red)(12) = Ψ(12) = uudd,

Φ〈uuuddd, uudd〉 = uūuddudd,

Φ〈udud, uūuddudd〉 = udūūuddudd.

Thus g(957841362) = udūūuddudd.

Corollary 6 For k ≥ 0 and n ≥ 0 we have

|Rk
n(123)| ≤ |Rk

n(132)|.

Proof The result follows immediately from B[2]
n,k ⊆ Bn,k and Theorem 5. �
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Corollary 7 The generating functions R(132; q, t) and R(123; q, t) admit the following
continued fraction expansions :

R(132; q, t) =
1

1−
t + qt3

1−
t + qt3

1−
t + qt3

. . .

, R(123; q, t) =
1

1−
t + qt3

1−
t + qt3

1−
t

1−
t

1−
t

. . .

.

Proof The first identity to prove is simply iterating the formula (13). The second identity
follows from R = B[2](qt2, t), (9), and iteration of C(t) = 1/(1− tC(t)). �

Proposition 8 The generating function

R(123, 132; p, q, t) =
∑

π∈R(123)∩R(132)

p(123) πq(132) πt|π|

counting {123, 132}-segmented permutations by occurrences of 123 and 132 is the following
rational function:

R(123, 132; p, q, t) =
1− t

1− 2t− (p + q)t3
=

1

1−
t + (p + q)t3

1− t

.

First proof Let n be a positive integer, and let π be a {123, 132}-segmented permutation
of length n. We distinguish between three cases:

(a) If the letter n is not part of any occurrence of 123 or 132, then we can factor π as
π = π1nπ2, where π1 is 12-avoiding, π2 is {123, 132}-segmented, and π2 < π1.

(b) If the letter n is part of an occurrence of 123, then we can factor π as π = π1abnπ2,
where π1 is 12-avoiding, π2 is {123, 132}-segmented, and π2 < a < b < π1.

(c) If the letter n is part of an occurrence of 132, then we can factor π as π = π1anbπ2,
where π1 is 12-avoiding, π2 is {123, 132}-segmented, and π2 < a < b < π1.

It is clear that an occurrence of 123 can not overlap with an occurrence of 132 without
creating a non-segment occurrence of 123 or 132. Therefore, the cases (b) and (c) are
mutually exclusive. Thus the generating function R = R(123, 132; p, q, t) satisfies

R = 1 + R(12; 0, t)(t + pt3 + qt3)R, (20)

where R(12; 0, t) = 1/(1 − t) is the generating function for 12-avoiding permutations.
Solving (20) for R we obtain the desired result. �
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Second proof To give a bijective proof of Proposition 8 we consider lattice paths with
three different types of up-steps: let T be the language over {u, ū, ¯̄u, d} whose character-
istic series is implicitly given by

T = ε + (u + ū + ¯̄u)(ud)∗d T ,

where (ud)∗ = ε + ud + udud + · · · . We may think of a word in the language T as a
3-coloured Dyck path whose u-steps are of height 0 or 1, and whose ū- and ¯̄u-steps are of
height 0. Applying the substitution µ : C〈〈u, ū, ¯̄u, d 〉〉 → C[[p, q, t]] defined by

µ = { u 7→ 1, ū 7→ p, ¯̄u 7→ q, d 7→ t },

we see that R(123, 132, p, q, t) = µ(T )(pt2, qt2, t). We shall give a bijection

f : R(123) ∩R(132)→ T

such that |π| = |β|u + 3(|β|ū + |β| ¯̄u), where β = f(π). Following the decomposition given
in the first proof, we recursively define f as follows:

f(ε) = ε,

f(π1nπ2) = u(f ◦ red)(π1)d(f ◦ red)(π2),

f(π1abnπ2) = ū(f ◦ red)(π1)d(f ◦ red)(π2),

f(π1anbπ2) = ¯̄u(f ◦ red)(π1)d(f ◦ red)(π2).

It is straightforward, but tedious, to give the inverse of f . �

Example The permutation 875963124 is {123, 132}-segmented. It has one occurrence of
each of the patterns 123 and 132, namely 124 and 596. To illustrate the second proof of
Proposition 8 we find the image of 875963124 under f :

f(875963124) = ¯̄uf(87)df(3124) = ¯̄uudf(7)dūf(3)d = ¯̄uududdūudd.
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5 Tables

|Bn,k| :

n\k 0 1 2 3 4 5 6 7
0 1
1 1 1
2 2 4 2
3 5 15 15 5
4 14 56 84 56 14
5 42 210 420 420 210 42
6 132 792 1980 2640 1980 792 132
7 429 3003 9009 15015 15015 9009 3003 429

|B[1]
n,k| :

n\k 0 1 2 3 4 5 6 7
0 1
1 1 1
2 2 3 1
3 5 9 5 1
4 14 28 20 7 1
5 42 90 75 35 9 1
6 132 297 275 154 54 11 1
7 429 1001 1001 637 273 77 13 1

|B[2]
n,k| :

n\k 0 1 2 3 4 5 6 7
0 1
1 1 1
2 2 4 2
3 5 14 13 4
4 14 48 62 36 8
5 42 165 264 217 92 16
6 132 572 1066 1104 670 224 32
7 429 2002 4186 5130 3965 1912 528 64
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