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Abstract

The widely studied q-polynomial fλ(q), which specializes when q = 1 to fλ, the
number of standard Young tableaux of shape λ, has multiple combinatorial inter-
pretations. It represents the dimension of the unipotent representation Sλ

q of the
finite general linear group GLn(q), it occurs as a special case of the Kostka-Foulkes
polynomials, and it gives the generating function for the major index statistic on
standard Young tableaux. Similarly, the q-polynomial gλ(q) has combinatorial in-
terpretations as the q-multinomial coefficient, as the dimension of the permutation
representation Mλ

q of the general linear group GLn(q), and as the generating func-
tion for both the inversion statistic and the charge statistic on permutations in Wλ.
It is a well known result that for λ a partition of n, dim(Mλ

q ) = ΣµKµλdim(Sµ
q ),

where the sum is over all partitions µ of n and where the Kostka number Kµλ

gives the number of semistandard Young tableaux of shape µ and content λ. Thus
gλ(q) − fλ(q) is a q-polynomial with nonnegative coefficients. This paper gives a
combinatorial proof of this result by defining an injection f from the set of stan-
dard Young tableaux of shape λ, SY T (λ), to Wλ such that maj(T ) = ch(f(T )) for
T ∈ SY T (λ).

Key words: Young tableaux, permutation statistics, inversion statistic, charge statis-
tic, Kostka polynomials.

1 Introduction

For λ any partition of n, fλ gives the number of standard Young tableaux of shape λ. The
q-version of fλ is a polynomial that has many important combinatorial interpretations.
In particular, fλ(q) is known to give the dimension of the unipotent representation Sλ

q
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of the finite general linear group GLn(q). The polynomial fλ(q) can be computed as the
generating function for the major index maj(T ) on the set of standard Young tableaux
of shape λ, SY T (λ).

fλ(q) =
∑

T∈SY T (λ)

qmaj(T )

In addition, the q-multinomial coefficient

gλ(q) =

[
n

λ1, λ2, λ3, · · · λk

]
=

[n!]

[λ1!][λ2!][λ3!] · · · [λk!]

is known to give the dimension of the permutation representation Mλ
q of GLn(q). The

polynomial gλ(q) also has a combinatorial interpretation as

gλ(q) =
∑

π∈Wλ

qinv(π)

where Wλ is the subset of permutations in Sn of type λ and inv(π) is the inversion statistic
on π. The following is a well-known result on the representation of GLn(q):

Proposition 1. For λ a partition of n,

dim(Mλ
q ) =

∑
µ`n

Kµλdim(Sµ
q ),

where Kµλ is the Kostka number which counts the number of semi-standard tableaux of
shape µ and content λ.

Thus we have
gλ(q) =

∑
µ`n

Kµλf
µ(q)

and in particular, since Kλλ = 1 for all λ,

gλ(q) = fλ(q) +
∑
µ`n

µ6=λ

Kµλf
µ(q).

Thus
gλ(q) − fλ(q) =

∑
µ`n

µ6=λ

Kµλf
µ(q)

is a q-polynomial with non-negative coefficients. This implies that

gλ(q) − fλ(q) =
∑

π∈Wλ

qinv(π) −
∑

T∈SY T (λ)

qmaj(T )

is a q-polynomial with non-negative coefficients. It is natural, then, to seek an injection
from standard Young tableaux of shape λ to permutations in Wλ which takes the statistic
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maj(T ) to the statistic inv(π). Cho [2] has recently given such an injection for λ a two
part partition, but the given injection does not hold for general λ and finding such an
injection for all partitions λ is left as an open question. In Section 3 of this paper, we give
explicit proofs for some known but not well documented results on the charge statistic,
ch(π), namely ∑

π∈Wλ

qinv(π) =
∑

π∈Wλ

qch(π).

This implies that

gλ(q) − fλ(q) =
∑

π∈Wλ

qch(π) −
∑

T∈SY T (λ)

qmaj(T ).

The main result of this paper, in Section 4, is to answer Cho’s open questions by giving
a general injection h from SY T (λ) to Wλ which takes maj(T ) to ch(h(T )). Section 2 of
the paper contains necessary background and definitions.

2 Definitions and Background

We say λ = (λ1, λ2, . . . , λk) is a partition of n if λ1 ≥ λ2 ≥ · · · ≥ λk > 0 and
∑k

i=1 λi = n.
A partition is described pictorially by its Ferrers diagram, an array of n dots into k left-
justified rows with row i containing λi dots for 1 ≤ i ≤ k. For example, the Ferrers
diagram for the partition λ = (6, 5, 3, 3, 1) is:

• • • • • •
• • • • •

T = • • •
• • •
•

A standard Young tableau of shape λ is a filling of the Ferrers diagram for λ with the
numbers 1, 2, . . . , n such that rows are strictly increasing from left to right and columns
are strictly increasing from top to bottom. One example of a standard Young tableau for
the partition λ = 65331 is shown below:

1 2 6 7 9 14
3 5 8 15 17

T = 4 11 12
10 16 18
13

Let fλ denote the number of standard Young tableaux of shape λ.
For a standard Young tableau T , the major index of T is given by

maj(T ) =
∑

i∈D(T )

i
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where D(T ) = { i | i + 1 is in a row strictly below that of i in T}. For the tableau T
given in the previous example, D(T ) = {2, 3, 7, 9, 12, 14, 15, 17} and maj(T ) = 79.

For a permutation π = π1π2 · · ·πn ∈ Sn, define an inversion to be a pair (i, j) such
that i < j and πi > πj . Then the inversion statistic, inv(π), is the total number of
inversions in π.

For example, for π = 3 2 8 5 7 4 6 1 9 , inv(π) = 15 since each of the pairs
(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (2, 3), (4, 5), (4, 7), (4, 8), (5, 8), (6, 7), (6, 8),
(7, 8) is an inversion.

Let Wλ be the subset of Sn such that

π1 < π2 < · · · < πλ1

πλ1+1 < πλ1+2 < · · · < πλ1+λ2

· · ·
πλ1+λ2+···+λk−1+1 < πλ1+λ2+···+λk−1+2 < · · · < πn

For example, for λ = (4, 3, 3, 1),

π = 2 4 5 9 1 3 10 6 8 11 7

is an element of W4331.
We will use the definition of Wλ for λ any combination of n, not just for λ a partition

of n. Note that there is no required relationship between πλ1 and πλ1+1, between πλ1+λ2

and πλ1+λ2+1, and so on. For any Wλ = Wλ1,λ2,...,λk
, define Wλ̄i

= Wλ1,λ2,...,λi−1,...,λk
for

1 ≤ i ≤ k.
Let π be a permutation in Sn. For any i in the permutation, define the charge value

of i, chv(i), recursively as follows:

chv(1) = 0

chv(i) = chv(i − 1) if i is to the right of i − 1 in π

chv(i) = chv(i − 1) + 1 if i is to the left of i − 1 in π

Now for π ∈ Sn, define the charge of π, ch(π), to be

ch(π) =

n∑
i=1

chv(i).

In the following example of a permutation π = 328574619 with ch(π) = 25, the charge
values of each element are given below the permutation:

π = 3 2 8 5 7 4 6 1 9
2 1 5 3 4 2 3 0 5

The definition of the charge statistic was first given by Lascoux and Schützenberger [8].
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For each element i ∈ π, define the charge contribution of i, cc(i), to be zero if i = 1 or
i lies to the right of i − 1 in π and to be n − i + 1 if i lies to the left of i − 1 in π. It is
easy to check that ch(π) =

∑
i cc(i). For the previous example, the charge contribution

of each element is given below that element:

π = 3 2 8 5 7 4 6 1 9
7 8 2 5 3 0 0 0 0

3 Charge and Inv

Many of the known results on the charge statistic are implicitly given in a number of
papers or unpublished manuscripts [1] [5] [6] [7]. The goal of this section is to give
explicit proofs of those results which are used in this paper as an aid to the interested
reader.

Lascoux and Schützenberger [8] proved the following lemma:

Lemma 1. For x ∈ {2, . . . , n} and xσ ∈ Sn, ch(xσ) = ch(σx) + 1.

This result immediately gives

Lemma 2. ∑
π∈Sn

qch(π) = (1 + q + q2 + · · ·+ qn−1)
∑

σ∈Sn−1

qch(σ).

Proof. Let σ ∈ Sn−1, so σ = σ1σ2 · · ·σn−1. Rewrite σ using the numbers 2, 3, . . . , n by
letting σ̃i = σi + 1 for every i. Let π = 1σ̃1σ̃2 · · · σ̃n−1. Then π ∈ Sn and ch(π) = ch(σ).
By Lemma 1,

ch(σ̃n−11σ̃1σ̃2 · · · σ̃n−2) = ch(π) + 1

= ch(σ) + 1.

Similarly,

ch(σ̃n−2σ̃n−11σ̃1 · · · σ̃n−3) = ch(π) + 2

= ch(σ) + 2

· · ·
ch(σ̃1σ̃2 · · · σ̃n−11) = ch(π) + n − 1

= ch(σ) + n − 1

Thus ∑
π∈Sn

qch(π) = (1 + q + · · ·+ qn−1)
∑

σ∈Sn−1

qch(σ).

It is well-known that the inversion statistic satisfies the same recurrence.
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Lemma 3. ∑
π∈Sn

qinv(π) = (1 + q + q2 + · · ·+ qn−1)
∑

σ∈Sn−1

qinv(σ).

Proof. For details about the inversion statistic, one can consult [3] or [4].

The following theorem [7] follows immediately from the previous Lemmas once the
initial conditions are checked.

Theorem 1. ∑
π∈Sn

qch(π) =
∑
π∈Sn

qinv(π).

We now give details that the charge statistic and the inversion statistic not only have
the same generating function on Sn, but they in fact have the same generating function
on Wλ.

Lemma 4. For λ = (λ1, λ2, . . . λk) a combination of n for any integer n,∑
π∈Wλ1,λ2,...,λk

qinv(π) =
∑

σ∈Wλ2,λ3,...,λk,λ1

qinv(σ).

Proof. Let π = π1π2 . . . πn ∈ Wλ1,λ2,...,λk
. Create σ = σ1σ2 . . . σk ∈ Wλ2,λ3,...,λk,λ1 in the

following manner. For 1 ≤ i ≤ λ1, let σn+1−i = n + 1 − πi. Next, relabel the elements
πλ1+1 through πn with the remaining n − λ1 numbers, in the same relative order. For
example, if

π = 2 7 11 3 6 1 10 12 15 5 8 14 4 9 13

in W3,2,4,3,3, we have
σ15 = 16 − π1 = 14

σ14 = 16 − π2 = 9

σ13 = 16 − π3 = 5

and the numbers

π4 π5 · · · π15 = 3 6 1 10 12 15 5 8 14 4 9 13

are relabeled in the same relative order using the numbers [n] − {5, 9, 14} to give

σ1 σ2 · · · σn−λ1 = 2 6 1 10 11 15 4 7 13 3 8 12

and σ ∈ W2,4,3,3,3. Thus

σ = 2 6 1 10 11 15 4 7 13 3 8 12 5 9 14.
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It is easy to see that σ is unique and that one can reverse the process to take any
σ ∈ Wλ2,λ3,...,λk,λ1 to a unique π ∈ Wλ1,λ2,...,λk

, so this process gives a bijection between
Wλ1,λ2,...,λk

and Wλ2,λ3,...,λk,λ1 .
Now we prove that inv(π) = inv(σ). Since π ∈ Wλ1,λ2,...,λk

, we have π1 < π2 <
· · · < πλ1 so there are no inversions between elements π1, π2, · · · , πλ1 . Similarly, since
σn+1−i = n + 1 − πi we have σn−λ1+1 < σn−λ1+2 < · · · < σn so there are no inversions
between elements in σn−λ1+1, σn−λ1+2, · · · , σn. Since σ1σ2 · · ·σn−λ1 are in the same relative
order as πλ1+1πλ1+2 · · ·πn, the number of inversions between elements in these two parts
is the same.

Now suppose that πi = j for 1 ≤ i ≤ λ1. Then πi forms inversions with (j−1)−(i−1) =
j− i elements in πλ1+1πλ1+2 · · ·πn since there are j−1 total elements less than j and i−1
of them lie to the left of πi in π. If πi = j then σn+1−i = n + 1 − j. There are j − 1 total
elements bigger than n+1− j and i− 1 of them lie to the right of σn+1−j in σ since there
i− 1 elements to the left of πi = j in π. This means that σn+1−j, like πi, forms inversions
with (j − 1) − (i − 1) = j − i elements in σ1σ2 · · ·σn−λ1 .

Lemma 5. For λ = (λ1, λ2, . . . λk) a combination of n for any integer n,

∑
π∈Wλ

qinv(π) =


 ∑

σ∈Wλ̄1

qinv(σ)


 +


qλ1

∑
σ∈Wλ̄2

qinv(σ)


 + · · ·

+


qλ1+λ2+···+λk−1

∑
σ∈Wλ̄k

qinv(σ)


 .

Proof. Again, for the details of results on the inversion statistic, one can consult [3] or
[4].

Lemma 6. For λ = (λ1, λ2, . . . λk) a combination of n for any integer n,

∑
π∈Wλ

qch(π) =


 ∑

σ∈Wλ1−1,λ2,...,λk

qch(σ)


 +


qλ1

∑
σ∈Wλ2−1,λ3,...,λk,λ1

qch(σ)


 + · · ·

+


(qλ1+···+λk−1)

∑
σ∈Wλk−1,λ1,...,λk−1

qch(σ)


 .

Proof. Let π ∈ Wλ. Suppose the 1 in π lies in block λi, so

π = π1π2 · · ·πλ1+λ2+···+λi−1
1πλ1+λ2+···+λi−1+2 · · ·πn.

By Lemma 1,

ch(π) = ch(1πλ1+λ2+···+λi−1+2 · · ·πnπ1π2 · · ·πλ1+λ2+···+λi−1
) + λ1 + λ2 + · · ·+ λi−1.

the electronic journal of combinatorics 12 (2005), #R45 7



To form σ ∈ Wλi−1,λi+1,...,λk,λ1,...,λi−1
, we now remove the initial 1 and relabel each of the

remaining πi with πi − 1. Since we have removed an initial 1, the charge of

1πλ1+λ2+···+λi−1+2 · · ·πnπ1π2 · · ·πλ1+λ2+···+λi−1

is equal to the charge of the newly formed σ. Thus for each π ∈ Wλ with a 1 in the λi

block and σ formed in this manner,

ch(π) = ch(σ) + (λ1 + λ2 + · · ·+ λi−1).

which gives the desired result.

Theorem 2. For λ = (λ1, λ2, . . . λk) a combination of n for any integer n,∑
π∈Wλ

qinv(π) =
∑

π∈Wλ

qch(π).

Proof. This result follows immediately by induction from Lemmas 4, 5 and 6.

4 An Injection from SY T (λ) to Wλ

From Section 1, we have that gλ(q) − fλ(q) =
∑

π∈Wλ
qch(π) − ∑

π∈SY T (λ) qmaj(T ) is a

polynomial with non-negative coefficients. We will now define an injection h from SY T (λ)
to Wλ such that maj(T ) = ch(h(T )). Let T ∈ SY T (λ). Write down the elements in T
by first reading the top row of T from right to left, then the second row of T from right
to left, and so on until reaching the bottom row. Call this permutation σ. For example,
if

1 2 3 6
T = 4 8 9

5
7

then σ = 632198457. To create π ∈ Wλ, let πi = n−σi+1. In the example, π = 478912653
and π ∈ W4311. Let h(T ) = π. Note that for a given T , h(T ) is uniquely defined. Since
each row of T is strictly increasing, then the first λ1 elements of σ are strictly decreasing,
the next λ2 elements of σ are strictly decreasing, and so on. Thus when π is formed,
the first λi elements of π are strictly increasing, the next λ2 elements of π are strictly
increasing, and so on, so π ∈ Wλ.

Theorem 3. For T ∈ SY T (λ), maj(T ) = ch(h(T )).

Proof. We will prove that if i ∈ D(T ), then the charge contribution of n − i + 1 in h(T )
is equal to i. In addition, if i is not in D(T ), then the charge contribution of n − i + 1 in
h(T ) is equal to 0.

Let i ∈ D(T ). Then i lies in a row strictly above that of i + 1 in T . This implies that
i lies to the left of i + 1 in σ, and thus n − i + 1 lies to the left of n − (i + 1) + 1 = n − i

the electronic journal of combinatorics 12 (2005), #R45 8



in π. By the definition of charge contribution, we find that since n − i + 1 lies to the left
of n − i the charge contribution of n − i + 1 is equal to n − (n − i + 1) − 1 = i.

Suppose i /∈ D(T ). Then i either lies in a row below i + 1 in T or they lie in the same
row, in which case i lies to the left of i + 1. In either case, i lies to the right of i + 1 in σ
and thus n − i + 1 lies to the right of n − (i + 1) + 1 = n − i in π. By the definition of
charge contribution, we find that the charge contribution of n − i + 1 is equal to zero.

Since maj(T ) =
∑

{i∈D(T )} i and ch(π) =
∑

i cc(i), we have that maj(T ) = ch(h(T )).

In the previous example, D(T ) = {3, 4, 6} so maj(T ) = 13 and ch(h(T )) = ch(478912653)
which is also 13.
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