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Abstract

ω-Periodic graphs are introduced and studied. These are graphs which arise as
the limits of periodic extensions of the nearest neighbor graph on the integers. We
observe that all bounded degree ω-periodic graphs are amenable. We also provide
examples of ω-periodic graphs which have exponential volume growth, non-linear
polynomial volume growth and intermediate volume growth.

1 Introduction

In [9] Milnor asked the following question. Does there exist a finitely generated group
G such that the volume of the ball of radius n about the identity in the Cayley graph
of G grows faster than polynomially but slower than exponentially? This question was
answered by Grigorchuk, who constructed a family of groups whose Cayley graphs have
intermediate growth [6]. See [8] for a nice description of these groups.

Graphs that have intermediate volume growth also have a connection with long range
percolation models in probability. In long range percolation on Z, a random graph is
constructed with Z as its vertex set. The measure is determined by a sequence pn. For
each pair (u, v) ∈ Z × Z there exists an edge eu,v between u and v with probability
p|u−v|. The existence of an edge between u and v is determined only by the distance
between u and v and is independent of the existence of edges between any other pairs of
vertices. Long range percolation on Z was introduced and studied in [11], [10] and [1] and
is commonly used as a model for social networks.

Given a sequence pn these papers studied the probability that an infinite connected
subgraph exists. The more recent papers [4], [3], [7] and [5] considered the case when there
is a unique infinite connected subgraph a.s. and studied the volume growth of this graph.
In particular they considered the case that p1 = 1 and pn = βn−α for n > 1. For these
sequences when α > 2 the random graph has linear volume growth a.s. When 2 > α > 1,
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the random graph has intermediate growth a.s., yet large intervals admit polynomially
small boundaries. And when α ≤ 1, all degrees are infinite. It is conjectured in [3]
that when α = 2 one gets polynomial volume growth with the degree of the polynomial
depending on β.

In this paper we present a simple and natural graph, G, that has intermediate volume
growth. Our graph is in some sense a hybrid of the Cayley graphs of the Grigorchuk
groups and the graphs from long range percolation. Like the graphs generated by long
range percolation our graph is constructed as an extension of the nearest neighbor graph
on Z. However our graph has much more regularity than a realization of long range
percolation. In particular it occurs as a Schreier graph, the analog of a Cayley graph for
a finitely generated group modulo a subgroup, in a natural way.

In addition to the study of one particular graph we also consider a broad family of
graphs that contains G.

Definition 1. A graph G with vertices labelled by Z is ω-periodic if it is a union of
periodic graphs over Z.

We show that all ω-periodic graphs are amenable and we illustrate the possible volume
growth of ω-periodic graphs. In particular we show that there are ω-periodic graphs of
(non-linear) polynomial growth as well as ones with exponential volume growth.

2 The Basic Example

The vertices of G are the integers, Z. Define the sets of edges

E0 = {(i, i + 1) : i ∈ Z}

and

Ek =

{(
2k(j − 1

2
), 2k(j +

1

2
)

)}
,

for all j ∈ Z and k > 0.
The graph G has edges

E =
⋃
k≥0

Ek.

G is ω-periodic because it is the union of Gk which has edges

k⋃
i=0

Ei.

We refer to the edges in Ek as the kth layer. The first layer E1 connects 2i−1 with 2i+1
for each i. The kth layer Ek is a copy of E1 that has been scaled by 2k−1. The degree of
every vertex of G (except for 0) is 4. A picture of a portion of G is shown below.
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Figure 1: The basic example

We now show how G is realized as a Schreier graph. First we define two maps u, t :
{0, 1}N → {0, 1}N. For all but a countable set of x ∈ {0, 1}N there exist y, z ∈ {0, 1}N and
n, p, q ≥ 0 such that

x = 1n ◦ 0 ◦ y

and
x = 0p ◦ 1q+1 ◦ 0 ◦ z.

For these x we define t and u to be the maps

t(x) = t(1n ◦ 0 ◦ y) = (0n ◦ 1 ◦ y)

and
u(x) = u(0p ◦ 1q+1 ◦ 0 ◦ z) = (0p ◦ 1 ◦ 0q ◦ 1 ◦ z).

We use the notation 0 = (0, 0, 0, . . . ) and 1 = (1, 1, 1, . . . ). For all other x we define u
and t by

t(1) = 0, u(0) = 0 and u(0n ◦ 1) = 0n ◦ 1 ◦ 0.

This group is an example of a self similar action of a group on the set {0, 1}N. A survey
of self similar group actions is given in [2].

Lemma 1. G is the Schreier graph of the group generated by t and u modulo the stabilizer
of 0.

Proof. We start by noting a sequence which is eventually constant is mapped to a sequence
which is eventually constant by all of the maps u, u−1, t, and t−1. Also note that for any
m ≥ 0, tm(0) = v where

∞∑
i=1

vi2
i = m
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and for any k > 0, t−k(0) = w where

∞∑
i=1

(1 − wi)2
i = k − 1.

Thus for all g in the group generated by t and u there exists m such that g(0) = tm(0).
Thus for all g in the group there exists s = g−1(tm) such that s(0) = 0 and m such that

g(s) = tm.

Thus every equivalence class of the group mod the stabilizer of 0 contains an element of
the form tm. As tm(0) = tn(0) implies m = n we see that each equivalence class has a
unique element of the form tm. Thus we can associate the vertex m in our graph to the
equivalence class containing tm.

We now check that our graph has the proper edge structure. From the above relations
we can check that

u
(
t2

k(j− 1
2
)(0)

)
= t2

k(j+ 1
2
)(0) (1)

and
u−1

(
t2

k(j+ 1
2
)(0)

)
= t2

k(j− 1
2
)(0). (2)

If an integer m is not zero then m is of the form 2k(j + 1
2
) for some integers j and k > 0.

Thus (1) tells us that there is an edge connecting 2k(j + 1
2
) and 2k(j + 3

2
) and (2) tells us

that there is an edge connecting 2k(j + 1
2
) and 2k(j − 1

2
). Thus (1) and (2) explain the

two edges that emanate from m in layer Ek. The two edges out of m in E0 connecting m
to m + 1 and m − 1 come from the actions of t and t−1.

In order to calculate the volume growth of G we would like to calculate the length
minimal path between any two integers and then use that to estimate the volume growth.
To find a minimal path between two integers u and v we take the following approach. We
pick an integer k and we move as quickly as possible from u to a vertex in the kth layer.
Then we move in the kth layer and finally we go from the kth layer to v. It is easy to
show that a minimal path must take such an approach.

The problem is given u and v how do we identify the optimal k. In general we do not
know how to answer that question but we are able to calculate the length minimal paths
between 0 and points of the form 2n. Our main tools are induction and the symmetries of
the graphs Gk. By knowing the distance from 0 to 2k for all k < n we can determine the
distance from 0 to 2n. The inductive relationship is given in Lemma 2 while the formula
is determined explicitly in Lemma 3.

Using this information along with the symmetries of Gk we are able to determine the
growth rate of |Bj(0)|, the number of vertices within distance j of 0. Although |Bj(0)|
does not have a simple formula we show in Lemma 5 that |Bj(0)| ≈ j.5 log j and determine
|Bj(0)| to within a factor of 16j2.

To analyze the growth rate of the ball centered at 0 we make the following definitions.
For i ≥ 1 and j ∈ Z let xi,j be the distance from 0 to (j + 1/2)2i in the graph Gi. The
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next lemma gives us an inductive relationship for xi based on xj , j < i. In Lemma 3 we
will calculate xi explicitly.

Lemma 2. For all i and j

xi,j = xi,0 + |j + 1/2| − 1/2.

Also x1 = 1, x2 = 2 and for all i > 2

xi = xi,0 = min
0<k<i

2xk + 2i−k−1 − 1.

Proof. The proof is by induction on i. It is easy to check for i = 1, 2 that the first formula
is true. Fix i and j. Assume the lemma is true for all k < i and for all j.

Fix j. Let P be an oriented path in Gi from 0 to (j+1/2)2i which has minimal length.
Let k be the largest integer such that an edge of P is in Ek. It causes no loss of generality
to assume that k < i. (This is because there is a first point of the form (j′ + 1/2)2i in P .
If the lemma is not true for i and j then it is also not true for i and j′.)

Since P has minimal length and i > 2 then it is clear that k > 0. Divide P up
into three parts, P1, P2, and P3, as follows. Let n1 be the first point in P of the form
(n1 + 1/2)2k. Let n2 be the last point in P of the form (n2 + 1/2)2k. Then P1 is the
portion of P connecting 0 to (n1 + 1/2)2k, P2 connects (n1 + 1/2)2k to (n2 + 1/2)2k, and
P3 connects (n2 + 1/2)2k to (j + 1/2)2i. Then we have that

|P | = |P1| + |P2| + |P3|
≥ xk,n1 + (n2 − n1) + xk,2i−k−1−n2−1+j2i−k

≥ xk + |n1 − 1/2| + 1/2 + (n2 − n1) + xk + |2i−k−1 − n2 + j2i−k − 1/2| − 1/2

≥ 2xk + n1 + (n2 − n1) + 2i−k−1 − n2 − 1 + j2i−k

≥ 2xk + 2i−k−1 − 1 + j2i−k

≥ min
0<k<i

2xk + 2i−k−1 − 1 + j2i−k.

The existence of a path of the minimum distance is easy to construct.

We now calculate xi exactly. Let zn = n2n + 1 and

yn =
n2 + 3n + 2

2
.

Lemma 3. xyn = zn for all n. Moreover for all i and n, if yn < i ≤ yn+1

xi = zn+1 − (yn+1 − i)2n.

Proof. The proof is by induction. It is easy to check that the lemma is true for all
i ≤ y1 = 3. Now assume that the lemma is true for all j < i. Note that this implies that
the sequence {xj − xj−1} is nondecreasing for all j, 2 ≤ j ≤ i − 1.

Let
f(k) = f(i, k) = 2xk + 2i−k−1 − 1.
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By Lemma 2 xi = mink<i f(k). Let n be the largest integer such that yn < i. We break
the proof up into two cases. The first is when i < yn+1 and the second is when i = yn+1.
Case 1: We show that the minimum of f(k) occurs at two values, i−n−1 and i−n−2.
More specifically we show that f(k) is decreasing up to i−n−1 and increasing afterwards.
Let m = i − n − 1. Since yn < i < yn+1 we have that yn−1 < m ≤ yn. Thus

xm − xm−1 = 2n−1 and xm+1 − xm ≥ 2n−1.

We now calculate for j < m

f(j) − f(j − 1) = 2(xj − xj−1) + (2i−j−1 − 2i−j)

≤ 2(xm − xm−1) − 2i−j−1

≤ 2 · 2n−1 − 2i−m

≤ 2n − 2n+1

< 0.

We also have that

f(m) − f(m − 1) = 2(xm − xm−1) + (2n − 2n+1) = 2 · 2n−1 − 2n = 0.

For l ≥ m we have

f(l + 1) − f(l) = 2(xl+1 − xl) + (2i−l−2 − 2i−l−1)

≥ 2(xm+1 − xm) − 2i−l−2

≥ 2(2n−1) − 2i−m−2

≥ 2n − 2n−1

> 0.

From these three calculations it is clear that f obtains its minimum at i = m−1 = i−n−2
and i = m = i − n − 1. By Lemma 2 we have that

xi = 2xi−n−1 + 2n − 1.

Note that yn+1 − yn = n + 2 so if i = yn+1 − l then

i − n − 1 = yn − (l − 1) ∈ (yn−1, yn]

so we can apply the induction hypothesis. Doing this we get

xi = 2xi−n−1 + 2n − 1

= 2xyn−(l−1) + 2n − 1

= 2(zn − (l − 1)2n−1) + 2n − 1

= 2zn − l2n + 2n + 2n − 1

= 2(n2n + 1) − l2n + 2n+1 − 1

= (n + 1)2n+1 + 1 − l2n

= zn+1 − l2n.
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Case 2: Now we have that i = yn+1. We claim that in this case the unique minimum of
f occurs at m = yn. By the induction hypothesis we have that

xm − xm−1 = 2n−1 and xm+1 − xm = 2n.

In exactly the same way as the previous case we calculate for j ≤ m

f(j) − f(j − 1) ≤ −2n

and for l ≥ m
f(l + 1) − f(l) ≥ 2n.

From these calculations it is clear that f obtains its minimum at m = yn. Thus

xyn+1 = 2zn + 2n+1 − 1

= 2(n2n) + 2n+1 − 1

= n2n+1 + 2n+1 − 1

= (n + 1)2n+1 + 1

= zn+1.

Thus the induction hypothesis is true for i and the lemma is proven.

Now we use Lemma 3 to estimate the growth rate of the ball around 0 in the graph
G.

Lemma 4. For any i > 0 and any m, 0 ≤ m ≤ 2i−1 we have that d(0, m) ≤ xi.

Proof. By induction we can see that the distance from any point to the nearest vertex of
layer Ek is at most xk. For any m such that 0 ≤ m ≤ 2i−1 the nearest vertex to m of
layer k will lie in the interval (0, 2i−1). Thus

d(0, m) ≤ min
k

2xk + 2i−k−1 − 1 = xi.

Lemma 5. There is a function G(j) (defined below) such that

G(j) ≤ |Bj(0)| ≤ 16j2G(j).

The function G(j) ≈ j.5 log j.

Proof. First for i > 2 let

wi = sup
k>0

2k−1 + 2k((xi − 1)/2 − xk).

(We want i > 2 because all xi are odd except x2 = 2.) Thus wi is the largest integer such
that there exists a path from 0 to wi of length (xi − 1)/2. This makes it is clear that

B(xi−1)/2(0) ⊂ (−wi, wi).
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Let P be a path of length (xi −1)/2 connecting 0 to wi and k be such that the longest
step in P is of size 2k. Suppose that wi ≥ 2i−2. The graph Gk is symmetric about any
point of the form wi ± l2k−1. Thus by combining P and the reflection of P (about some
suitably chosen point) we could construct a path from 0 to 2i−1 of length at most xi − 1.
This is a contradiction. Thus wi < 2i−2 and

B(xi−1)/2(0) ⊂ (−2i−2, 2i−2). (3)

On the other hand by Lemma 4 gives us that

[−2i−1, 2i−1] ⊂ Bxi
(0). (4)

Plugging i = yn+1 into line (3) and i = yn into line (4) gives

[−2yn−1, 2yn−1] ⊂ Bxyn
(0) ⊂ B(xyn+1−1)/2(0) ⊂ (−2yn+1−2, 2yn+1−2). (5)

If xyn ≤ j < xyn+1 then
Bxyn

(0) ⊂ Bj(0) ⊂ Byn+1(0)

and
[−2yn−1, 2yn−1] ⊂ Bj ⊂ (−2yn+2−2, 2yn+2−2). (6)

We now rewrite this equation using the following definitions. Let

f(j) = sup{n : zn ≤ j},
g(j) = 2yf(j)−1,

and
h(j) = 2yf(j)+2−2,

where was defined earlier to be yn = (n2 + 3n + 2)/2. Thus line (6) becomes

[−g(j), g(j)] ⊂ Bj ⊂ (−h(j), h(j)). (7)

Then calculating

h(j)

g(j)
= 2yf(j)+2−2−yf(j)+1

= 2.5((f(j)2+7f(j)+12)−(f(j)2+3f(j)+2))−1

= 22f(j)+4.

By the definitions of zn and fj we get the bound f(j)2f(j) ≤ j and thus f(j) < log(j).
Putting these two together we get that

h(j)

g(j)
= 22f(j)+4 < 22 log(j)+4 = 16j2.

Thus
[−g(j), g(j)] ⊂ Bj ⊂ (−16j2g(j)j2, 16j2g(j)).

Thus we can pick G(j) = 2g(j) + 1. Finally we check that

G(j) ≈ g(j) ≈ 2.5f(j)2 ≈ j.5 log j .
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3 ω-periodic graphs are amenable

Our general result about ω-periodic graphs is the following.

Proposition 1. Bounded degree ω-periodic graphs are amenable.

Proof. Let H be an ω-periodic graph such that every vertex has degree less than D. To
show that H is amenable it is enough to show that as n increases the ratio between the
size of the boundary of the set {0, . . . , n} and n is approaching 0. Let Hk consist of all
z ∈ Z such that there exists z′ ∈ Z with |z − z′| > k and there is an edge in H from z to
z′. As H is ω-periodic the sets Hk all have density. Let d(k) be the density of Hk. As H
is ω periodic we have that d(k) → 0 as k → ∞. Given ε choose k large enough so that
d(k) < ε. Then choose N large enough so that for all n > N

|Hk ∩ {0, . . . , n}| < 2εn.

Hence for all n > N
|∂([0, n])| ≤ 2k + (2εn)D.

As ε was arbitrary we get that

lim
n→∞

|∂([0, n])|
n

= 0.

4 Polynomial Growth

In this section we will use a subgraph G̃ of G in Section 2. We will show that G̃ has
nonlinear polynomial growth. Again the vertices of G̃ are the integers, Z, and we define
the sets of edges

E0 = {(i, i + 1) : i ∈ Z}
and

Ek =
{(

2k(n − 1/2), 2k(n + 1/2)
)}

,

for all n ∈ Z and k > 0. We define the graph G̃ to have edges E = E0

⋃
(∪k≥0E2k) .

The proof that the volume of B̃m(0) grows polynomially in m is almost exactly like
the proof of the volume growth of the full graph in Section 2. First we calculate the
distance x̃2i from 0 to 22i−1. Then we use this information to bound the volume growth.
The difference is that we get the formula

x̃2i = min
0<k<i

2x̃2k + 22i−2k−1 − 1.

We use the notation B̃j(0) to be the ball of radius j in G̃ and

w̃2i = max
k

22k−1 + 22k

((x̃2i − 1)/2 − x̃2k).

This gives us the following lemma.
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Lemma 6. 1. x̃2i = 2x̃2i−1 + 22i−1−1 − 1

2. 22i−1−1 ≤ x̃2i ≤ 22i−1

3. [−22i−1, 22i−1] ⊂ B̃x̃2i
(0),

4. B2x̃2i
⊂ (−w̃2i , w̃2i) and

5. w̃2i ≤ 22i
.

Proof. The proof of these facts goes exactly as the proof of the corresponding statements
in Section 2.

Lemma 7. If j = x̃2i then j2 ≤ |B̃j(0)| ≤ 8j2.

Proof. The lower bound follows from condition 3 and the lower bound in condition 2 of
Lemma 6. The upper bound follows from conditions 4, 5 and the upper bound in condition
2.

5 Exponential Growth

In this section we will construct an ω-periodic graph that contains a dyadic tree. Thus
the graph has exponential volume growth. Again we let

E0 = {(i, i + 1) : i ∈ Z}
be the graph between adjacent integers. Let pi be the ith prime,

lm =
i=2m∏
i=1

(pi)
2i

and
tm,j = (pm)j , j = 1 . . . 2m−1.

Notice that if tm,j = tm′,j′ then m = m′ and j = j′. Define the mth layer by

Em = ∪k∈Z
(
∪2m−1

j=1

(
(tm,j + klm+1, tm+1,2j−1 + klm+1) ∪ (tm,j + klm+1, tm+1,2j + klm+1)

))
.

Thus for each j the layer Em has an edge connecting tm,j to tm+1,2j−1 and an edge con-
necting tm,j to tm+1,2j . This is repeated with period lm+1.

Another way to describe Em is as follows. Let

Vm = {tm,j}2m−1

j=1 .

Also let Lm = Vm + Zlm+1 and Rm = Vm+1 + Zlm+1. Then every edge in Em has its
leftmost endpoint in Lm and its rightmost endpoint in Rm. Also every point in Lm is the
left hand end point of two edges in Em. Every point in Rm is the right hand end point of
one edge in Em.

We show that the graph contains a dyadic tree and that it has bounded degree.
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Lemma 8. There is a dyadic tree rooted at t1,1 = 2.

Proof. Note that Vm+1 ⊂ Lm+1 ∩ Rm. The 2m vertices at distance m from the root are
Vm+1.

Lemma 9. Lm ∩ (∪m−1
j=1 Lj

)
= ∅ and Rm ∩ (∪m−1

j=1 Rj

)
= ∅.

Proof. Fix an m. Every element of Lm mod lm+1 is only divisible by powers of pm. Every
element of ∪m−1

j=1 Lj mod lm+1 is divisible by at least one prime less than or equal to pm−1.
Thus the first two sets are disjoint. Every element of Rm mod lm+1 is only divisible by
powers of pm+1. Every element of ∪m−1

j=1 Rj mod lm+1 is divisible by at least one prime
less than or equal to pm. Thus the last two sets are disjoint.

Lemma 10. The degree of any vertex in E is at most five.

Proof. For any z ∈ Z the degree of z is 2 plus twice the number of m such that z ∈ Lm

plus the number of m such that z ∈ Rm. Thus by Lemma 9 the degree of a vertex is at
most five.
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