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Abstract

The detour order of a graph G, denoted by τ (G) , is the order of a longest path in
G. A partition of the vertex set of G into two sets, A and B, such that τ(〈A〉) ≤ a
and τ(〈B〉) ≤ b is called an (a, b)-partition of G. If G has an (a, b)-partition for
every pair (a, b) of positive integers such that a + b = τ(G), then we say that G
is τ -partitionable. The Path Partition Conjecture (PPC), which was discussed by
Lovász and Mihók in 1981 in Szeged, is that every graph is τ -partitionable. It is
known that a graph G of order n and detour order τ = n − p is τ -partitionable if
p = 0, 1. We show that this is also true for p = 2, 3, and for all p ≥ 4 provided that
n ≥ p(10p − 3).

1 Introduction

The vertex set and edge set of a graph G is denoted by V (G) and E (G), respectively.
The degree of a vertex v in G will be denoted by dG (v) . If H is a subgraph of G, the open
H-neighbourhood of v is the set NH (v) = {u ∈ V (H)− v | uv ∈ E (G)} . If S is a subset
of V (G), we write NH (S) =

⋃
v∈S

NH (v) . The subgraph of G induced by S is denoted

by 〈S〉.
A longest path in a graph G is called a detour of G. The number of vertices in a

detour of G is called the detour order of G and denoted by τ(G). The number of vertices
in a longest cycle of G is called the circumference of G and denoted by c (G). A graph
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of order n will be called hamiltonian or traceable, if c(G) = n or τ(G) = n, respectively.
The vertex independence number of a graph G is denoted by α (G) .

A partition of the vertex set of G into two sets, A and B, such that τ(〈A〉) ≤ a and
τ(〈B〉) ≤ b is called an (a, b)-partition of G. If G has an (a, b)-partition for every pair (a, b)
of positive integers such that a + b = τ(G), then we say that G is τ -partitionable. The
following conjecture is known as the Path Partition Conjecture (or the PPC, for short).

Conjecture 1 Every graph is τ -partitionable.

The PPC was discussed by Lovász and Mihók in 1981 in Szeged and treated in the
theses [10] and [15]. The PPC first appeared in the literature in 1983, in a paper by
Laborde, Payan and Xuong [11]. Although that paper dealt mainly with directed graphs,
they stated the PPC only for undirected graphs. In 1995 Bondy [2] stated a directed
version of the PPC. In [3] the PPC is stated in the language of the theory of hereditary
properties of graphs. It is also mentioned in [5]. Results on the PPC and its relationship
with other conjectures appear in [4], [6], [7], [8] and [9] . A summary of the conjecture
status is given in [7].

A subset S of V (G) is called a Pn-kernel of G if τ (〈S〉) ≤ n − 1 and every vertex
v ∈ V (G) − S is adjacent to an end-vertex of a path of order n − 1 in 〈S〉 (cf. [5] and
[13]). If τ (G) = a+b and G has a Pa+1-kernel S, then (S, V (G)− S) is an (a, b)-partition
of G. It is shown in [6] that every graph has a Pn-kernel for every n ≤ 7, and in [14] it
is shown that every graph has a P8-kernel. These results imply that the PPC holds for
a ≤ 7. However, Aldred and Thomassen [1] have recently constructed a graph that has
no P364-kernel.

2 Main Results

In this section we state our two main theorems, together with the main lemmas and the
partition strategy used in the proofs. The proofs are presented in Section 4.

The Partition Strategy

Let G be a graph of order n and detour order τ = n− p. Our main strategy is to find
a subset A1 ⊂ V (G) such that |A1| = p and |NG−A1 (A1) | ≤ τ+1

2
.

If τ = a + b; 1 ≤ a ≤ b, and we can find such a set A1, then we choose B to be a
subset of V (G) − A1, consisting of exactly b vertices and containing NG−A1 (A1) (since
b ≥ τ+1

2
, this is possible). Then we set A2 = V (G) − A1 − B and put A = A1 ∪ A2.

Since |A2| = n − p − b = a, it follows that τ (A) ≤ max {a, p}. Thus (A, B) will be an
(a, b)-partition if a ≥ p.

Since we know that the PPC holds for a ≤ 7, our partition strategy will yield all the
necessary partitions if τ (A1) ≤ 8.

The following two lemmas will enable us to find all the necessary partitions when
p = 3, by applying our partition strategy.
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Lemma 2.1

(a) Let P be a longest path in a nontraceable graph G and let H = G − V (P ). If H

consists of k ≥ 1 components, then |NP (H)| ≤ τ(G)−1
2

+
(

k
2

)
.

(b) Let C be a longest cycle in a nonhamiltonian graph G and H = G − V (C). If H

consists of k ≥ 1 components, then |NC(H)| ≤ c(G)
2

+
(

k
2

)
.

Lemma 2.2 Let G be a graph of order n and detour order τ = n − p with p ≥ 2, and
let P be a detour of G with vertices labeled v1, v2, . . . , vτ such that dP (v1) ≤ dP (vτ ). If
H = G − V (P ) consists of k ≥ 2 components H1, H2, . . . , Hk, then |N(v1) ∪ NP (Hi) ∪
NP (Hj)| ≤ τ+1

2
, for 1 ≤ i < j ≤ k.

Our first theorem follows from Lemma 2.1(a) and Lemma 2.2.

Theorem 2.3 Let G be a graph of order n and detour order τ = n− p, with 0 ≤ p ≤ 3.
Then G is τ -partitionable.

When n ≥ p (10p− 3) the next lemma allows us to apply our partition strategy when
p ≥ 4, thus yielding (a, b)-partitions when a ≤ p.

Lemma 2.4 Let G be a graph of order n and detour order τ = n−p, with p ≥ 4. Let P be
a detour of G and let H = G− V (P ). If |NP (H)| > τ+1

2
then there exists an independent

set Y ⊂ V (P ) with |Y | = p such that |NP−Y (Y )| ≤ τ−1
2

, provided n ≥ p (10p− 3) .

The next lemma enables us to find (a, b)-partitions when a > p, provided n ≥ 4p2 −
6p− 4.

Lemma 2.5 Let G be a graph of order n and detour order τ = n−p, with p ≥ 1. Suppose
τ = a + b; 1 ≤ a ≤ b. If a ≤ α(G)− p, then G has an (a, b)-partition.

Our second theorem uses Lemmas 2.1, 2.4 and 2.5, together with Lemmas 3.3 and 3.4.

Theorem 2.6 Let G be a graph of order n and detour order τ = n − p, with p ≥ 4.
Suppose τ = a + b; 1 ≤ a ≤ b. Then the following hold:

(a) If a ≥ p, then G has an (a, b)-partition, provided n ≥ p (10p− 3) .

(b) If a < p, then G has an (a, b)-partition, provided n ≥ 4p2 − 6p− 4.

Since p (10p− 3) ≥ 4p2 − 6p− 4 for all p ≥ 4, we have

Corollary 2.7 Let G be a graph of order n and detour order τ = n−p, with p ≥ 4. Then
G is τ -partitionable, provided n ≥ p (10p− 3) .
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3 Auxiliary Results

If P is a path in G with a fixed orientation and u, v ∈ V (P ), then v− and v+ denote the
immediate predecessor and immediate successor of v on P, respectively. We denote the

segment of P from u to v by u
−→
P v and the reverse segment from v to u by v

←−
P u. We

shall refer to the vertices in the segment u
−→
P v as the interval [u, v].

Lemma 3.1 Let G be a connected nontraceable graph with detour order τ and let P be a
detour of G, with vertices labelled v1 . . . vτ . Let H = G− V (P ) and let H1, . . . , Hk be the
components of H. Then the following hold:

(a) If u ∈ V (P ) , then NHi
(u) ∩NHi

(u+) = ∅, for i = 1, . . . , k.

(b) If {u, v} ⊆ NP (Hi) for some i, then {u+, v+} 6⊆ NP (Hj) for any j.

(c) If u ∈ NP (v1), then u− /∈ NP (vτ ).

(d) If u ∈ NP (H) , then u+ /∈ NP (v1) and u− /∈ NP (vτ ).

Proof.

(a) Suppose u and u+ both have neighbours in some component Hi of H. Then a path
of order greater than τ is obtained from P by replacing the edge uu+ with a u−u+

path whose internal vertices are in Hi.

(b) Suppose, to the contrary, that {u+, v+} ⊆ NP (Hj) for some j. Then it follows from
(a) that i 6= j. Let Q be a path in Hi from a neighbour of u to a neighbour of v and
let R be a path in Hj from a neighbour of u+ to a neighbour of v+. Then the path

v1
−→
P u
−→
Q v
←−
P u+Rv+−→P vτ is longer than P .

(c) If u− ∈ N (vτ ) , then v1
−→
P u−1vτ

←−
P uv1 is a cycle of order τ in G. But then there is a

path of order τ + 1 in G consisting of this cycle together with a vertex in NH (P ) .

(d) Let h be a neighbour of u in H. If u+ ∈ N (v1) , then the path hu
←−
P v1u

+−→P vτ is
longer than P . Thus u+ /∈ N (v1) . Similarly, u− /∈ N (vτ ).

Lemma 3.2 Let G be a nontraceable graph with detour order τ and let P be a detour of
G, with vertices labelled v1 . . . vτ . Let Hk be a component of H = G−V (P ) and denote the
neighbours of Hk on P by u1, . . . , us, labelled according to the order in which they appear
on P . Then:

(a) N+
P (Hk) = {u+

1 , . . . , u+
s } is an independent set.

(b) Consider any pair i, j, with 1 ≤ i < j ≤ s and suppose x ∈ NP (u+
i ). Then:

(i) If x ∈ [v1, ui] or x ∈ [u+
j , vτ ], then x+ /∈ NP (u+

j ).

(ii) If x ∈ [u++
i , uj], then x− /∈ NP (u+

j ).
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Proof.

(a) Suppose two vertices, u+
i , u+

j ∈ N+
P (Hk) are adjacent to one another. Let Q

be a path in Hk from a neighbour of ui to a neighbour of uj. Then the path

v1
−→
P uiQ uj

←−
P u+

i u+
j

−→
P vτ is longer than P . This contradiction proves that N+

P (H1)
is an independent set.

(b) (i) Let Q be a path in Hk from a neighbour of ui to a neighbour of uj. Suppose x+ ∈
NP

(
u+

j

)
. If x ∈ [v1, ui] , then the path

v1
−→
P xu+

i

−→
P uj
←−
Q ui
←−
P x+u+

j

−→
P vτ is longer than P . If x ∈

[
u+

j , vτ

]
, then the

path v1
−→
P uiQuj

←−
P u+

i x
←−
P u+

j x+−→P vτ is longer than P .

(ii) If x ∈
[
u++

i , uj

]
and x− ∈ NP

(
u+

j

)
then v1

−→
P uiQuj

←−
P xu+

i

−→
P x−u+

j

−→
P vτ is a

path with more vertices than P .

The following result is proved in [8]

Lemma 3.3 Let G be a graph and (a, b) any pair of positive integers such that τ (G) =
a + b. If c (G) ≤ b + 2, then G has an (a, b)-partition.

The following Lemma was proved in [7].

Lemma 3.4 Let G be a graph with τ (G) = a+ b; 1 ≤ a ≤ b. If G has a cycle C of order
greater than b such that |NC (G− V (C))| ≤ b, then G has an (a, b)-partition.

Corollary 3.5 Let C be a longest cycle in a graph G. If |NC (G− V (C))| ≤
⌈

τ(G)
2

⌉
, then

G is τ -partitionable.

Corollary 3.6 Let C be a longest cycle in a graph G. If τ (G) ≤ c(G) + 1, then G is
τ -partitionable.

Proof. Two consecutive vertices of C cannot both have neighbours in G−V (C), otherwise

G would have a path of order c (G) + 2. Thus |NC (G− V (C))| ≤
⌈

τ(G)
2

⌉
and hence G is

τ -partitionable, by Corollary 3.5.

4 Proofs of the Main Results

Proof of Lemma 2.1.

(a) If H is connected, then |NP (H)| ≤ τ(G)−1
2

. So let k ≥ 2. Suppose for two components
of H, say H1, H2, the neighbourhood of H1 ∪H2 contains three pairs of consecutive
vertices {u, u+}, {v, v+} and {w, w+} on P . Assume u ∈ NP (H1) . Then, by Lemma
3.1(a) and (b), we must have {u, v+} ⊆ NP (H1) and {u+, v} ⊆ NP (H2) . Now,
by Lemma 3.1(a), either we have w ∈ NP (H1) and w+ ∈ NP (H2) , or we have
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w ∈ NP (H2) ,and w+ ∈ NP (H1) . By Lemma 3.1(b) the first case cannot occur,
since we cannot have {u, w} ⊆ NP (H1) and {u+, w+} ⊆ NP (H2) . Also, the second
case cannot occur, since we cannot have {v, w} ⊆ NP (H2) and {v+, w+} ⊆ NP (H1) .

This proves that each of the
(

k
2

)
pairs of components of H has at most two pairs of

consecutive vertices on P in their neighbourhood union. Thus, for each neighbour
of H on P , the next vertex is a non-neighbour, except in at most 2

(
k
2

)
cases.

Since v1, vτ /∈ NP (H) and P has τ vertices, we conclude that

1 + 2|NP (H)| − 2

(
k

2

)
≤ τ (G) ,

and hence |NP (H)| ≤ τ(G)−1
2

+
(

k
2

)
.

(b) By the same arguments as above we conclude that

2|NC(H)| − 2

(
k

2

)
≤ c(G),

which gives |NC(H)| ≤ c(G)
2

+
(

k
2

)
.

Proof of Lemma 2.2. If dP (v1) + dP (vτ ) ≥ τ, then there is a cycle containing
v1, v2, . . . , vτ , by Ore’s Lemma. Since some vertex of H is adjacent to some vertex on
this cycle, we would have a path of order at least τ + 1 in G, a contradiction. Hence we
may assume that dP (v1) + dP (vτ ) ≤ τ − 1.

We shall call the case where dP (v1) + dP (vτ ) = τ − 1 the saturated case.
Let Hi and Hj be two components of H. If NP (Hi)∪NP (Hj) ⊆ N (v1)∪N (vτ ), then

it follows from Lemma 3.1 that |NP (Hi) ∪NP (Hj) ∪N(v1)| ≤ τ−1
2

. We may therefore
assume that q ≥ 1 vertices in NP (Hi) ∪NP (Hj) are not neighbours of v1 or vτ .

Suppose NP (Hi)∪NP (Hj) has d pairs of consecutive vertices. As shown in the proof
of Lemma 2.1, d = 0, 1, or 2.

We call an interval I = [vr, vs] a t-hole if t = s − r + 1 and no vertex in I is in
N(v1)∪N(vτ ) but vr−1, vs+1 ∈ N(v1)∪N(vτ ). We now compare the number of neighbours
that H can have in the holes of P with the value that dI (v1) + dI (vτ ) would have had in
the saturated case. We need to consider three types of t-holes:
T1: vr−1 ∈ N(vτ ), vs+1 ∈ N(v1):
Since vr+1, vs−1 /∈ NP (H), it follows that |NI (Hi) ∪NI (Hj)| ≤ t−1+d

2
. In the saturated

case, dI (v1) + dI (vτ ) would have been equal to t− 1.
T2: vr−1 ∈ N(v1)−N(vτ ), vs+1 ∈ N(vτ )−N(v1):
In this case |NI (Hi) ∪NI (Hj)| ≤ t+1+d

2
, and in the saturated case dI (v1) + dI (vτ ) would

have been equal to t + 1.
T3:vr−1, vs+1 ∈ N(v1), vr−1 /∈ N(vτ ) (vr−1, vs+1 ∈ N(vτ ), vs+1 /∈ N(v1)):
Since vr−1 /∈ N(vτ ) (vs+1) /∈ N(v1), it follows that |NI (Hi) ∪NI (Hj)| ≤ t+d

2
. In the

saturated case dI (v1) + dI (vτ ) would have been equal to t.
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Thus, in each hole I, the value that dI(v1) + dI (vτ ) would have had in the saturated
case is greater than or equal to 2 |NI (Hi) ∪NI (Hj)| − d. Since Hi ∪Hj has altogether q
neighbours in the holes of P , we have

dP (v1) + dP (vτ ) ≤ τ − 1− (2q − d)

≤ τ + 1− 2q, since d ≤ 2.

Hence d(v1) ≤ τ+1
2
− q and therefore

|N(v1) ∪NP (Hi) ∪NP (Hj)| ≤ (
τ + 1

2
− q) + q

=
τ + 1

2
.

Proof of Theorem 2.3. If p = 0, 1, then G is τ -partitionable (cf. [4]).
Now suppose p ≥ 2 and P is a detour of G with vertices labelled v1, . . . , vτ , with

d (v1) ≤ d (vτ ) . Put H = G− V (P ) . Then |V (H)| = p.
If H has at most two components, put A1 = H. Then it follows from Lemma 2.1 that

|NG−A1(A1)| ≤ τ+1
2

, so we get all the necessary partitions by applying our Partition
Strategy.

If H has three components, H1, H2, H3, put A1 = H1 ∪ H2 ∪ {v1} . Then it follows
from Lemma 2.2 that |NG−A1(A1)| ≤ τ+1

2
, so again we get all the necessary partitions by

applying our Partition Strategy.

Proof of Lemma 2.4. Let u ∈ V (H) be a vertex which has a maximum number of
neighbours on P. Then

|NP (u)| > τ + 1

2p
=

n− p + 1

2p
≥ 10p2 − 4p + 1

2p
> 5p− 2.

By Lemma 3.1(a) no vertex in N+
P (u) is adjacent to u and by Lemma 3.1(b) no two

vertices in N+
P (u) have a common neighbour in H . Hence at most p−1 vertices of N+

P (u)
have neighbours in H. Let

W =
{
w ∈ N+

P (u) : NH (w) = ∅
}

.

Then
|W | ≥ |NP (u)| − (p− 1) ≥ 4p.

Let the vertices of W be w1, . . . , wr, labelled according to the order in which they appear
on P . By Lemma 3.2(a), W is an independent set.

Now let I be an interval on P such that all the vertices of I except the first one is in
N(W ). From Lemma 3.2 we deduce the following:

(1) The set NI(wi) consists of consecutive vertices.
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(2) |NI(wi) ∩NI(wj)| ≤ 1, for 1 ≤ i < j ≤ r.

(3) If I ⊆ [v1, w
−
1 ], then the I-neighbourhoods of the vertices of W appear in the order

NI(wr), NI(wr−1), . . . , NI(w1). Moreover, if 1 ≤ i < j ≤ r and |NI(wi) ∩N (wk)| = 1,
then NI (wk) ⊆ NI(wi) ∩N (wj) for all k such that i ≤ k ≤ j.

(4) If I ⊆ V [ws, w
−
s+1] for some s ∈ {1, . . . , r − 1}, then the I-neighbourhoods of the

vertices in W appear in the order NI(ws), NI(ws−1), . . . , NI(w1), NI(wr), NI(wr−1), . . . ,
NI(ws+1). Now suppose 1 ≤ i < j ≤ r and
|NI(wi) ∩N (wj)| = 1. Then the following hold:
If j ≤ s or i ≥ s + 1, then NI (wk) ⊆ NI(wi) ∩N (wj) for all k such that i ≤ k ≤ j.
If i ≤ s and j ≥ s + 1, then NI (wk) ⊆ NI(wi)∩N (wj) for all k such that k ≤ i or k ≥ j.

Let q = b |W |
p
c and put

Wi = {w(i−1)p+1, . . . , wip} for 1 ≤ i ≤ q.

Then |Wi| = p, for i = 1, . . . , q.
We now partition P −vτ into consecutive intervals I1, . . . Ir such that the initial vertex

of each of the intervals is not in NP (W ) , while all the others are. It now follows from the
structure of the Ij-neighbourhoods of the vertices in W (as explained in (1)-(4) above)
that

q∑
i=1

|NIj
(Wi)| ≤ |Ij | − 1 + q for j = 1, . . . , r.

If |Ij| ≥ 3, then |Ij | − 1 + q ≤ |Ij |q
2

, since q ≥ 4. Furthermore, for each i ∈ {1, . . . , q}, we

have
∣∣∣NIj

(Wi)
∣∣∣ = 0 if |Ij | = 1 and

∣∣∣NIj
(Wi)

∣∣∣ ≤ 1 if |Ij | = 2. Thus

q∑
i=1

|NIj
(Wi)| ≤ |Ij| q

2
for j = 1, . . . , r.

Hence
q∑

i=1

|NP (Wi) ≤
r∑

j=1

|Ij| q
2

=
(τ − 1) q

2

and hence

min
1≤i≤q

|NP (Wi)| ≤ τ − 1

2
.

Now let Y be a subset Wi achieving this minimum. Then |NG−Y (Y )| = |NP−Y (Y )| ≤ τ−1
2

.

Proof of Lemma 2.5. Let A ⊂ V (G) be an independent set with |A| = α(G) and set
B = V (G)−A. Then τ(〈A〉) = 1 ≤ a and τ(〈B〉) ≤ n− α(G) ≤ τ + p− (a + p) = b.

Proof of Theorem 2.6. Let P be a detour of G and H = G− V (P ).
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(a) If |NP (H)| ≤ τ+1
2

then, since τ (H) ≤ p ≤ a, we can apply the Partition Strategy
with A1 = V (H).

If |NP (H)| > τ+1
2

, then by Lemma 2.5 there exists an independent set Y ⊂ V (P )
such that N(Y ) = NP (Y ) and |NP (Y )−Y | ≤ τ−1

2
. Now we can apply the Partition

Strategy with A1 = Y.

(b) We distinguish two cases.
Case 1: c(G) ≤ n− 2p + 3 :
In this case

b = τ − a = n− p− a ≥ n− p− (p− 1) = n− 2p + 1.

Thus we have b ≥ c(G)− 2. Hence G has an (a, b)-partition by Lemma 3.3.
Case 2: n− 2p + 3 < c(G) :
If α (G) ≥ 2p− 1, then G has an (a, b)-partition by Lemma 2.5, so we may assume
that α (G) ≤ 2p− 2. Let C be a longest cycle of G. Let H = G−V (C) and suppose
H has k components. Then k ≤ α ≤ 2p− 2. Let |NC (H)| = t. By Lemma 3.4 we

may assume that b ≤ t− 1 and by Lemma 3.3, t ≤ c(G)
2

+
(

k
2

)
. Thus

b ≤ c (G)

2
+

(
2p− 2

2

)
− 1.

By Corollary 3.6 we may assume that τ ≥ c (G) + 2. Now

b = τ − a ≥ c (G) + 2− (p− 1) .

It follows that

c (G)− p + 3 ≤ c (G)

2
+

(
2p− 2

2

)
− 1;

i.e. c (G) ≤ 4p2 − 8p− 2.

But by our assumption, c (G) ≥ n− 2p + 3; hence

n− 2p + 3 ≤ 4p2 − 8p− 2,

i.e. n ≤ 4p2 − 6p− 5,

contradicting our assumption.

Acknowledgement: We thank the referee for some helpful comments.
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