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Abstract

In this paper we consider the problem of finding the smallest number ¢ such that
any graph G of order n admits a decomposition into edge disjoint copies of a fixed
graph H and single edges with at most ¢ elements. We solve the case when H is
the 5-cycle, the 5-cycle with a chord and any connected non-bipartite non-complete
graph of order 4.

1 Introduction

Let G be a simple graph with vertex set V' and edge set E. The number of vertices of a
graph is its order. The degree of a vertex v is the number of edges that contain v and will
be denoted by deg, v or simply by degv. For A C V', deg(v, A) denotes the number of
neighbors of v in the set A. The set of neighbors of v is denoted by Ng(v) or briefly by
N(v) if it is clear which graph is being considered. Let Ng(v) =V — (Ng(v) U {v}). The
complete bipartite graph with parts of size m and n will be denoted by K, ,, and the cycle
on n vertices will be denoted by C,,. The chromatic number of G is denoted by x(G).
Let 2 be a family of graphs. An J#-decomposition of G is a set of subgraphs
G4, ...,G; such that any edge of G is an edge of exactly one of Gy,...,G; and all
Gi,...,Gy € H. Let ¢(G,#°) denote the minimum size of an 7#-decomposition of
G. The main problem related to .7-decompositions is the one of finding the smallest
number ¢(n, #) such that every graph G of order n admits an #’-decomposition with
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at most ¢(n,.#’) elements. Here we address this problem for the special case where 57
consists of a fixed graph H and the single edge graph.

Let H be a graph with m edges and let ex(n, H) denote the maximum number of
edges that a graph of order n can have without containing a copy of H. Then

ex(n, H) < p(n, #) < ((Z) — ex(n, H)) + ex(n, H).

m

Moreover, for the complete graph on n vertices, K,,, we have ¢(K,,, 7#) > % (g)
A theorem of Kovari, Sés and Turdn [6] asserts that for the complete bipartite graph
Ko, ex(n, Ky,n) = o(n?). Therefore the decomposition problem into any fixed bipartite

graph and singles edges is asymptotically solved and we have the following theorem.

Theorem 1.1. Let H be a bipartite graph with m edges. Then

d(n, H) = (% +0(1)) (Z)

Suppose now, that H is a graph with chromatic number r, where r > 3.

The unique complete r-partite graph on n vertices whose partition sets differ in size
by at most 1 is called the Turdn graph; we denoted it by T,.(n) and its number of edges
by t,(n). Then ¢(n, #) > t,_1(n) > (1 — -15) (), since T,_;(n) does not contain any
copy of H. In fact we believe that this result is asymptotically correct. We conjecture

the following.

Conjecture 1. Let H be a graph with x(H) > 3. Then

b(n, H) (1 _ ﬁ + 0(1)) <Z)

Erdos, Goodman and Pésa [4] showed that the edges of any graph on n vertices can be
decomposed into at most |n?/4] triangles and single edges. Later Bollobds [1] generalized
this result by showing that a graph of order n can be decomposed into at most ¢,_1(n)
edge disjoint cliques of order r (r > 3) and edges.

In this paper we will prove similar results to the ones obtained by Erdos, Goodman
and Pésa and by Bollobas for some special cases of graphs H of order 4 and 5 with
chromatic number 3, namely C5, C5 with a chord and the two connected non-bipartite
non-complete graphs on 4 vertices. The ideas involved in the proofs were inspired by the
ideas developed by Erdds, Goodman and Pésa [4] and Bollobés [1].

2 Decompositions

Let 7 consist of a fixed graph H and the single edge graph. In this section we will study
F-decompositions for some fixed H. In all cases considered here the exact value of the
function ¢(n, #’) will also be obtained.
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The first case that we consider is H = C5. In this case we can prove that any graph
of order n, where n > 6, can be decomposed into at most L"IQJ copies of C5 and single
edges. Furthermore, the graph K|z 21 shows that this result is, in fact, best possible. In
the special case where our graph has order n = 5 we can find a graph with no copy of Cj
having 7 edges. In a similar way will also show that the above claim still holds if instead
of C5 we take H to be C5 with a chord. This section will be concluded with similar results

for the case where H is any connected non-bipartite non-complete graph on 4 vertices.

Theorem 2.2. Any graph of order n, with n > 6, can be decomposed into at most L";j
copies of Cs and single edges. Moreover, the bound is tight for Kn ny.

Proof. This is by induction on the number of vertices in a graph. By inspection, and
using Harary’s [5] atlas of all graphs of order at most 6, we can see that the result holds
for n = 6. Assume that it is true for all graphs of order less than n and note that for any

positive integer n
n? (n—1)2 n
4 - 4 + \;_J '
4 4 2

Let G be a graph of order n, where n > 7, and let v be a vertex of minimum degree.
If degv < |%] then going from G — v to G we only need to use the edges joining v to
the other vertices of G and there are at most |7 | of these, so the induction hypothesis
implies the result.

Assume that degv > [%] and let degv = d +m where d = | 3] and m > 1. Suppose
that there are m edge disjoint C'5’s containing v, so the d + m edges incident with v can
be decomposed into at most m + (d +m — 2m) = d edge disjoint C5’s and edges, so the
induction hypothesis implies the result.

To complete the proof, it remains to show that we can always find m edge disjoint
Cs’s containing vertex v.

Assume first that G is not the complete graph and let € N(v) and y € N(v). We

have

deg(x, N(v)) > 2m — 1

deg(y, N(v)) > 2m + 1. (2.1)

Let @1, ... Tmy 215 -+, Zms1 € N(y) N N(v) and let
X =A{zy,...2pn} and Y = N(v) — X.

Using (2.1) it is easy to see that G[X,Y] has an X-perfect matching. Let M =
{zi,v;}iz1,.m be an X-perfect matching such that [{vi,..., v} N {21, ..., Zmt1}| is min-
imized. If {vy,..., o} N{z1,..., 2me1} =0, then v, v;, x;,y, 2;,v, where i = 1,...,m, are
m edge disjoint C'5’s containing v, and we are done.

Assume that [{vi,..., v} N {z1,..., 2Zm+1}| = k, for some 1 < k < m, so say v; = z;
fori=1,... k. As before, v,v;, z;,y, z;,v, for i = k+1,...,m, are m — k edge disjoint
Cy’s containing v; hence it remains to show that we can find k£ other edge disjoint C5’s
containing v.
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Our choice of M implies that, fori =1,...,k, N(z;) N N(v) C N(y) UV =V UXUZ,

where
V ={vks1,..,omtand Z ={z1,..., Z;mys1 }-

(a) If k =1 then v, 21, 21, Y, Zmi1, v is a 5-cycle and we are done.
(b) If k = 2,3 then for i = 1,2 we have deg(z;; X U {z3,...,2m1t UV) > 2m — 3 and
(X —{z;}) U{zs,..., 2ms1} UV|=3m — 2 — k. Then x; is adjacent to x5 or they must
have a common neighbor, say a, in (X — {x1,22}) U{z3,..., 2ms1} U V. Figure 1 shows
that we can always find k edge disjoint C5’s containing v.

v v
N N
N N
\\ \\
N\, N\,
\ \
\, \,
\ \
AN AN
\ \
\\ \\
® 22 \ ® 22 \
\ \
\ \
\ \
b b
/ Zm+1 / Zm+1
/ /
To o 7
/ /
/ /
/ /
// //
// a //
4 4
7 7
7 7
// ‘//

Figure 1: Case k= 2,3
(c) Let k > 4 and let
X' =X —{x1,x9, 23} and Z' = Z — {21, 29, 23}

For k = 4 andi = 1,2, 3 we have deg(z;; VUX'UZ') > 2m—6 and |VUX'UZ'| = 3m—9.
Then there exist a,b € VU X' U Z’ with a # b such that a is adjacent to x; and x5 and b
is adjacent to xy and x3 or a is adjacent to x; and x5 and b is adjacent to x5 and x3.

Assume that & > 5. Then for i = 1,2,3, deg(z;, VU Z') > m — 3, and |V U Z'| =
2m — k — 2. Thus there exist a,b € V' U Z’ with a # b such that a is adjacent to z; and x5
and b is adjacent to x; and x3 or a is adjacent to x5 and x3 and b is adjacent to x; and
x3. Without loss of generality assume the first case holds in both situations (the second
follows from symmetry). Then Figure 2 shows that we can always find three edge disjoint
Cs’s containing vertex v.

We repeat this procedure for every triple x;, ;1 1, T;y1o0, where it = 1 (mod 3),i+2 < k
and 7' = 7 — {Zi, Zi+15 ZZ‘+2}.

If k=0 (mod 3) then we are done, since we can find k edge disjoint Cy’s containing
.

If k=1 (mod 3) then we can find & — 1 C5’s as before that with v, zy, g, ¥, Zms1, v
form the required number of C5’s needed.

If k=2 (mod 3) then z;_; and z; have a common neighbor in VU (Z — {zx_1, 2 }),
say a. Therefore, the k — 2 C5’s found so far, together with v, zx_1, 1, a, xx, v and
U, 2k, Ths Y, Zmat, U, give the required number of C5’s needed.
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Figure 2: Case k > 4

Now suppose that G = K,, and let vertices v and y be fixed. An argument similar to
the one described in case (¢) gives the required number of edge disjoint C5’s incident with
v. Alternatively, using [7] we can find the exact number of edge disjoint C5’s in K,, and
then see that the theorem holds. O

Suppose that instead of a 5-cycle we consider decompositions of graphs into copies of
H and single edges, where H is a 5-cycle with a chord. Using the same argument we can
prove the following result.

Theorem 2.3. Any graph of order n, with n > 6, can be decomposed into at most L”;j
copies of H and single edges. This bound is best possible for Kinjag.

Proof. We proceed as in the proof of Theorem 2.2 and will only describe the steps that
are different.

If {vr,...;0m} N {21, ..., 2Zme1} = 0, then v, v, 2;,y, 2, v, where ¢ = 1,...,m, induce
m edge disjoint copies of H containing v, and we are done.

Assume that [{vi,..., v} N {z1,..., 2me1}| =k, for some 1 < k < m, say v; = z; for
1=1,..., k. As before, v,v;, x;,y, z;,v, for t = k+ 1,...,m, induce m — k edge disjoint

copies of H containing v. For every triple z;, x;11, ;42 where i = 1 (mod 3) and i+2 < k,
Figure 3 shows that we can always find two edge disjoint copies of H. So in total we have
2| %] copies of H.

Therefore, for k = 0 (mod 3) v is in at least m — k + 2| %] edge disjoint copies of
H, so we are left with at most d + m — 3(m — k + 2|£]) single edges incident with
v. Consequently, the edges incident with v can be decomposed with at most m — k +
2 \_%j +d+m—3 (m —k+2 [gj) < d edge disjoint copies of H and single edges. Let
k =1,2 (mod 3) and assume m > 2. The vertices v, 2, Tk, ¥, Zm+1, v induce another copy
of H. So, in total, the d + m edges incident with v can be decomposed into at most
m—k+2 ng +1+d+m—3(m—k+2L§J +1) < d edge disjoint copies of H and
edges. If m = 1 then we can easily find a copy of H and the proof is complete. O
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Figure 3: 2 copies of H

We conclude with the following result on decompositions of graphs into connected non-
bipartite non-complete graphs of order 4 and single edges. Let H be one of the following

graphs.

Theorem 2.4. Any graph of order n, with n > 4, can be decomposed into at most L”;j
copies of H and single edges. Furthermore, the bound is sharp for Kz o

To prove the theorem we will need the following result .

Theorem 2.5. [2] Let G be a graph of order n with minimum degree k. Then G contains
a path of length k.

Proof of Theorem 2.4. We proceed by induction on the number of vertices. The result
clearly holds for every graph with 4 vertices. Let GG be a graph of order n, where n > 5,
and let v be a vertex of minimum degree. If degv < [%] then the result follows by
induction as before. Suppose that degv > [ 5] and let degv = d + m where d = | %] and
m > 1.

Assume first that m > 2 and let G, := G[N(v)]. Since degg x > 2m — 1 for every
vertex of GG,, Theorem 2.5 implies that G, contains a path of length 2m — 1, say P. Then
every 3 vertices of P give rise to one copy of H, so the edges incident with v can be
decomposed into at most | 2*] + (d+m—3|%"|) < d edge disjoint copies of H and single
edges, so the result follows by induction.

To complete the proof it remains to show that for m = 1 we can always find a copy of
H containing vertex v. If we can find a path of length 2 in N(v) then we are done. If not
then N(v) contains only independent edges. Hence all vertices in N(v) must be adjacent
to all vertices in N(v). Let {a,b} be an independent edge in N(v) and let y € N(v); then

the vertices v, a, b, y induce a copy of H and we are done. O
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Remark: The graph K\|»| n1 shows that the number L”ffj mentioned in previous theo-

rems is best possible. So K|z 27 is an extremal graph for these decompositions. However,
we do not know if it is the only one.
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