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Abstract

In this paper we consider the problem of finding the smallest number q such that
any graph G of order n admits a decomposition into edge disjoint copies of a fixed
graph H and single edges with at most q elements. We solve the case when H is
the 5-cycle, the 5-cycle with a chord and any connected non-bipartite non-complete
graph of order 4.

1 Introduction

Let G be a simple graph with vertex set V and edge set E. The number of vertices of a
graph is its order. The degree of a vertex v is the number of edges that contain v and will
be denoted by degG v or simply by deg v. For A ⊆ V , deg(v, A) denotes the number of
neighbors of v in the set A. The set of neighbors of v is denoted by NG(v) or briefly by
N(v) if it is clear which graph is being considered. Let NG(v) = V − (NG(v)∪ {v}). The
complete bipartite graph with parts of size m and n will be denoted by Km,n and the cycle
on n vertices will be denoted by Cn. The chromatic number of G is denoted by χ(G).

Let H be a family of graphs. An H -decomposition of G is a set of subgraphs
G1, . . . , Gt such that any edge of G is an edge of exactly one of G1, . . . , Gt and all
G1, . . . , Gt ∈ H . Let φ(G,H ) denote the minimum size of an H -decomposition of
G. The main problem related to H -decompositions is the one of finding the smallest
number φ(n,H ) such that every graph G of order n admits an H -decomposition with
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at most φ(n,H ) elements. Here we address this problem for the special case where H
consists of a fixed graph H and the single edge graph.

Let H be a graph with m edges and let ex(n, H) denote the maximum number of
edges that a graph of order n can have without containing a copy of H . Then

ex(n, H) ≤ φ(n,H ) ≤ 1

m

((
n

2

)
− ex(n, H)

)
+ ex(n, H).

Moreover, for the complete graph on n vertices, Kn, we have φ(Kn,H ) ≥ 1
m

(
n
2

)
.

A theorem of Kövari, Sós and Turán [6] asserts that for the complete bipartite graph
Km,m, ex(n, Km,m) = o(n2). Therefore the decomposition problem into any fixed bipartite
graph and singles edges is asymptotically solved and we have the following theorem.

Theorem 1.1. Let H be a bipartite graph with m edges. Then

φ(n,H ) =

(
1

m
+ o(1)

) (
n

2

)
.

Suppose now, that H is a graph with chromatic number r, where r ≥ 3.
The unique complete r-partite graph on n vertices whose partition sets differ in size

by at most 1 is called the Turán graph; we denoted it by Tr(n) and its number of edges
by tr(n). Then φ(n,H ) ≥ tr−1(n) ≥ (

1 − 1
r−1

) (
n
2

)
, since Tr−1(n) does not contain any

copy of H . In fact we believe that this result is asymptotically correct. We conjecture
the following.

Conjecture 1. Let H be a graph with χ(H) ≥ 3. Then

φ(n,H ) =

(
1 − 1

χ(H) − 1
+ o(1)

)(
n

2

)
.

Erdös, Goodman and Pósa [4] showed that the edges of any graph on n vertices can be
decomposed into at most bn2/4c triangles and single edges. Later Bollobás [1] generalized
this result by showing that a graph of order n can be decomposed into at most tr−1(n)
edge disjoint cliques of order r (r ≥ 3) and edges.

In this paper we will prove similar results to the ones obtained by Erdös, Goodman
and Pósa and by Bollobás for some special cases of graphs H of order 4 and 5 with
chromatic number 3, namely C5, C5 with a chord and the two connected non-bipartite
non-complete graphs on 4 vertices. The ideas involved in the proofs were inspired by the
ideas developed by Erdös, Goodman and Pósa [4] and Bollobás [1].

2 Decompositions

Let H consist of a fixed graph H and the single edge graph. In this section we will study
H -decompositions for some fixed H . In all cases considered here the exact value of the
function φ(n,H ) will also be obtained.
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The first case that we consider is H = C5. In this case we can prove that any graph
of order n, where n ≥ 6, can be decomposed into at most bn2

4
c copies of C5 and single

edges. Furthermore, the graph Kbn
2
c,dn

2
e shows that this result is, in fact, best possible. In

the special case where our graph has order n = 5 we can find a graph with no copy of C5

having 7 edges. In a similar way will also show that the above claim still holds if instead
of C5 we take H to be C5 with a chord. This section will be concluded with similar results
for the case where H is any connected non-bipartite non-complete graph on 4 vertices.

Theorem 2.2. Any graph of order n, with n ≥ 6, can be decomposed into at most bn2

4
c

copies of C5 and single edges. Moreover, the bound is tight for Kbn
2
c,dn

2
e.

Proof. This is by induction on the number of vertices in a graph. By inspection, and
using Harary’s [5] atlas of all graphs of order at most 6, we can see that the result holds
for n = 6. Assume that it is true for all graphs of order less than n and note that for any
positive integer n ⌊

n2

4

⌋
=

⌊
(n − 1)2

4

⌋
+

⌊n

2

⌋
.

Let G be a graph of order n, where n ≥ 7, and let v be a vertex of minimum degree.
If deg v ≤ bn

2
c then going from G − v to G we only need to use the edges joining v to

the other vertices of G and there are at most bn
2
c of these, so the induction hypothesis

implies the result.
Assume that deg v > bn

2
c and let deg v = d + m where d = bn

2
c and m ≥ 1. Suppose

that there are m edge disjoint C5’s containing v, so the d + m edges incident with v can
be decomposed into at most m + (d + m − 2m) = d edge disjoint C5’s and edges, so the
induction hypothesis implies the result.

To complete the proof, it remains to show that we can always find m edge disjoint
C5’s containing vertex v.

Assume first that G is not the complete graph and let x ∈ N(v) and y ∈ N(v). We
have

deg(x, N(v)) ≥ 2m − 1

deg(y, N(v)) ≥ 2m + 1.
(2.1)

Let x1, . . . xm, z1, . . . , zm+1 ∈ N(y) ∩ N(v) and let

X = {x1, . . . xm} and Y = N(v) − X.

Using (2.1) it is easy to see that G[X, Y ] has an X-perfect matching. Let M =
{xi, vi}i=1,...,m be an X-perfect matching such that |{v1, . . . , vm} ∩ {z1, . . . , zm+1}| is min-
imized. If {v1, . . . , vm} ∩ {z1, . . . , zm+1} = ∅, then v, vi, xi, y, zi, v, where i = 1, . . . , m, are
m edge disjoint C5’s containing v, and we are done.

Assume that |{v1, . . . , vm} ∩ {z1, . . . , zm+1}| = k, for some 1 ≤ k ≤ m, so say vi = zi

for i = 1, . . . , k. As before, v, vi, xi, y, zi, v, for i = k + 1, . . . , m, are m − k edge disjoint
C5’s containing v; hence it remains to show that we can find k other edge disjoint C5’s
containing v.
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Our choice of M implies that, for i = 1, . . . , k, N(xi) ∩ N(v) ⊆ N(y) ∪ V = V ∪ X ∪ Z,
where

V = {vk+1, . . . , vm} and Z = {z1, . . . , zm+1}.
(a) If k = 1 then v, z1, x1, y, zm+1, v is a 5-cycle and we are done.
(b) If k = 2, 3 then for i = 1, 2 we have deg(xi; X ∪ {z3, . . . , zm+1} ∪ V ) ≥ 2m − 3 and
|(X − {xi}) ∪ {z3, . . . , zm+1} ∪ V | = 3m − 2 − k. Then x1 is adjacent to x2 or they must
have a common neighbor, say a, in (X − {x1, x2}) ∪ {z3, . . . , zm+1} ∪ V . Figure 1 shows
that we can always find k edge disjoint C5’s containing v.

v

z1

z2

zm+1x1
x2

y

v

z1 z2

zm+1
x1 x2

y

a

v

z1 z2 z3

zm+1
x1 x2 x3

y

a

Figure 1: Case k = 2, 3

(c) Let k ≥ 4 and let

X ′ = X − {x1, x2, x3} and Z ′ = Z − {z1, z2, z3}.
For k = 4 and i = 1, 2, 3 we have deg(xi; V ∪X ′∪Z ′) ≥ 2m−6 and |V ∪X ′∪Z ′| = 3m−9.

Then there exist a, b ∈ V ∪X ′ ∪Z ′ with a 6= b such that a is adjacent to x1 and x2 and b
is adjacent to x1 and x3 or a is adjacent to x1 and x2 and b is adjacent to x2 and x3.

Assume that k ≥ 5. Then for i = 1, 2, 3, deg(xi, V ∪ Z ′) ≥ m − 3, and |V ∪ Z ′| =
2m−k−2. Thus there exist a, b ∈ V ∪Z ′ with a 6= b such that a is adjacent to x1 and x2

and b is adjacent to x1 and x3 or a is adjacent to x2 and x3 and b is adjacent to x1 and
x3. Without loss of generality assume the first case holds in both situations (the second
follows from symmetry). Then Figure 2 shows that we can always find three edge disjoint
C5’s containing vertex v.

We repeat this procedure for every triple xi, xi+1, xi+2, where i ≡ 1 (mod 3), i+2 ≤ k
and Z ′ = Z − {zi, zi+1, zi+2}.

If k ≡ 0 (mod 3) then we are done, since we can find k edge disjoint C5’s containing
v.

If k ≡ 1 (mod 3) then we can find k − 1 C5’s as before that with v, zk, xk, y, zm+1, v
form the required number of C5’s needed.

If k ≡ 2 (mod 3) then xk−1 and xk have a common neighbor in V ∪ (Z − {zk−1, zk}),
say a. Therefore, the k − 2 C5’s found so far, together with v, zk−1, xk−1, a, xk, v and
v, zk, xk, y, zm+1, v, give the required number of C5’s needed.
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v

x1 x2 x3

y

z1 z2 z3

a b

Figure 2: Case k ≥ 4

Now suppose that G = Kn and let vertices v and y be fixed. An argument similar to
the one described in case (c) gives the required number of edge disjoint C5’s incident with
v. Alternatively, using [7] we can find the exact number of edge disjoint C5’s in Kn and
then see that the theorem holds.

Suppose that instead of a 5-cycle we consider decompositions of graphs into copies of
H and single edges, where H is a 5-cycle with a chord. Using the same argument we can
prove the following result.

Theorem 2.3. Any graph of order n, with n ≥ 6, can be decomposed into at most bn2

4
c

copies of H and single edges. This bound is best possible for Kbn
2
c,dn

2
e.

Proof. We proceed as in the proof of Theorem 2.2 and will only describe the steps that
are different.

If {v1, . . . , vm} ∩ {z1, . . . , zm+1} = ∅, then v, vi, xi, y, zi, v, where i = 1, . . . , m, induce
m edge disjoint copies of H containing v, and we are done.

Assume that |{v1, . . . , vm} ∩ {z1, . . . , zm+1}| = k, for some 1 ≤ k ≤ m, say vi = zi for
i = 1, . . . , k. As before, v, vi, xi, y, zi, v, for i = k + 1, . . . , m, induce m − k edge disjoint
copies of H containing v. For every triple xi, xi+1, xi+2 where i ≡ 1 (mod 3) and i+2 ≤ k,
Figure 3 shows that we can always find two edge disjoint copies of H . So in total we have
2bk

3
c copies of H .
Therefore, for k ≡ 0 (mod 3) v is in at least m − k + 2bk

3
c edge disjoint copies of

H , so we are left with at most d + m − 3(m − k + 2bk
3
c) single edges incident with

v. Consequently, the edges incident with v can be decomposed with at most m − k +
2
⌊

k
3

⌋
+ d + m − 3

(
m − k + 2

⌊
k
3

⌋)
< d edge disjoint copies of H and single edges. Let

k ≡ 1, 2 (mod 3) and assume m ≥ 2. The vertices v, zk, xk, y, zm+1, v induce another copy
of H . So, in total, the d + m edges incident with v can be decomposed into at most
m − k + 2

⌊
k
3

⌋
+ 1 + d + m − 3

(
m − k + 2

⌊
k
3

⌋
+ 1

) ≤ d edge disjoint copies of H and
edges. If m = 1 then we can easily find a copy of H and the proof is complete.
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v

xi xi+1 xi+2

y

zi zi+1 zi+2

Figure 3: 2 copies of H

We conclude with the following result on decompositions of graphs into connected non-
bipartite non-complete graphs of order 4 and single edges. Let H be one of the following
graphs.

Theorem 2.4. Any graph of order n, with n ≥ 4, can be decomposed into at most bn2

4
c

copies of H and single edges. Furthermore, the bound is sharp for Kbn
2
c,dn

2
e.

To prove the theorem we will need the following result .

Theorem 2.5. [2] Let G be a graph of order n with minimum degree k. Then G contains
a path of length k.

Proof of Theorem 2.4. We proceed by induction on the number of vertices. The result
clearly holds for every graph with 4 vertices. Let G be a graph of order n, where n ≥ 5,
and let v be a vertex of minimum degree. If deg v ≤ bn

2
c then the result follows by

induction as before. Suppose that deg v > bn
2
c and let deg v = d + m where d = bn

2
c and

m ≥ 1.
Assume first that m ≥ 2 and let Gv := G[N(v)]. Since degGv

x ≥ 2m − 1 for every
vertex of Gv, Theorem 2.5 implies that Gv contains a path of length 2m−1, say P . Then
every 3 vertices of P give rise to one copy of H , so the edges incident with v can be
decomposed into at most b2m

3
c+(d+m−3b2m

3
c) ≤ d edge disjoint copies of H and single

edges, so the result follows by induction.
To complete the proof it remains to show that for m = 1 we can always find a copy of

H containing vertex v. If we can find a path of length 2 in N(v) then we are done. If not
then N(v) contains only independent edges. Hence all vertices in N(v) must be adjacent
to all vertices in N(v). Let {a, b} be an independent edge in N(v) and let y ∈ N(v); then
the vertices v, a, b, y induce a copy of H and we are done.
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Remark: The graph Kbn
2
c,dn

2
e shows that the number bn2

4
c mentioned in previous theo-

rems is best possible. So Kbn
2
c,dn

2
e is an extremal graph for these decompositions. However,

we do not know if it is the only one.

Acknowledgement. The author thanks Oleg Pikhurko for helpful discussions and com-
ments.

References

[1] B. Bollobás. On complete subgraphs of different orders. Math. Proc. Cambridge Philos.
Soc., 79(1):19–24, 1976.

[2] B. Bollobás. Modern Graph Theory. Springer–Verlag, 2002.

[3] R. Diestel. Graph Theory. Springer–Verlag, 2nd edition, 2000.
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