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Abstract

Let G1 be the acyclic tournament with the topological sort 0 < 1 < 2 < · · · <
n < n + 1 defined on node set N ∪ {0, n + 1}, where N = {1, 2, . . . , n}. For integer
k ≥ 2, let Gk be the graph obtained by taking k copies of every arc in G1 and
colouring every copy with one of k different colours. A k-colour partition of N is a
set of k paths from 0 to n + 1 such that all arcs of each path have the same colour,
different paths have different colours, and every node of N is included in exactly
one path. If there are costs associated with the arcs of Gk, the cost of a k-colour
partition is the sum of the costs of its arcs. For determining minimum cost k-colour
partitions we describe an O(k2n2k) algorithm, and show this is an NP-hard problem.
We also study the convex hull of the incidence vectors of k-colour partitions. We
derive the dimension, and establish a minimal equality set. For k > 2 we identify a
class of facet inducing inequalities. For k = 2 we show that these inequalities turn
out to be equations, and that no other facet defining inequalities exists besides the
trivial nonnegativity constraints.

1 Introduction

Let G1 be the acyclic tournament with the topological sort 0 < 1 < 2 < · · · < n < n + 1
defined on node set N ∪ {0, n+ 1}, where N = {1, 2, . . . , n}. The arcs of G1 are therefore
the pairs (i, j), with i < j. Given an integer k ≥ 2, consider the (di)graph Gk obtained by
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taking k copies of every arc in G1 and colouring every copy with one of k different colours.
A k-colour partition of N (k-CP, for short) is a set of k paths from 0 to n+1 such that all
arcs of each path have the same colour, different paths have different colours, and every
node of N is included in exactly one path.

The k-CPs are related with path partitions of digraphs [2]. A k path partition (also
called k-path factor) of a digraph D is a set of k pairwise node disjoint paths spanning D.
The path covering number of D is the minimum integer k > 0 for which D has a k path
partition. The path covering number of an acyclic digraph can be easily determined by
means of network flows, see chapter 5 of [1], where some applications of path partitions
for acyclic digraphs are also discussed. The k-CPs generalize path partitions for acyclic
graphs having different colour arcs. k-CPs are k path partitions in which all arcs of each
path are required to have the same colour. Some questions regarding graphs with different
colour arcs are addressed in chapter 11 of [1]. However, there is no direct relation between
those questions and k-CPs.

If each arc of Gk has a real cost, the cost of a k-CP is the sum of the costs of the arcs
of its k paths. Minimum cost k-CPs may be found by means of shortest path techniques.
In section 2 we describe an O(k2n2k) algorithm, and show that determining minimum
cost k-CPs is NP-hard. Minimum cost k-CPs can be used to model scheduling problems
in which k different machines are to be assigned to process n jobs having precedence
requirements. Hence, k-CPs generalize k path partitions on acyclic digraphs, for the case
of nonidentical machines.

The knowledge of the polytope associated with a combinatorial optimization problem
allows the use of linear programming techniques to solve the problem. Even when only
some of its facets are known, that information often helps to design successful branch
and cut algorithms. (See for example [5] for the use of polyhedra in the context of
combinatorial optimization.)

We study the convex hull of the incidence vectors (in R
k(n+2)(n+1)/2) of k-CPs. In

section 3 we consider the case k = 2. We give the dimension of the polytope, a complete
minimal equality set, and we show that no other facet exists besides the trivial nonnega-
tivity constraints. A minimal equality set for k > 2 is obtained generalizing some of the
equations described for k = 2. All other equations generalize as valid inequalities, each
defining a facet of the convex hull of the incidence vectors (in R

k(n+2)(n+1)/2) of k-CPs.
This is discussed in section 4.

2 Minimum cost k-CPs

We describe a procedure for the minimum cost k-CP similar to the one suggested by
Dell’Amico, Fischetti and Toth [3] for the multiple depot vehicle scheduling problem.

From Gk a graph G is constructed in which the nodes are settled by stages. In stage 0
there is a unique node which is the k-tuple (0, 0, . . . , 0). The nodes of stage j = 1, 2, . . . , n
are all the different k-tuples (sj

1, s
j
2, . . . , s

j
k) obtained from every node (sj−1

1 , sj−1
2 , . . . , sj−1

k ),
of stage j − 1, by replacing exactly one of its components by j. Thus, the nodes of stage
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j are all the k-tuples consisting of integers 0, 1, .., j where j occurs exactly once, and in
which only 0 may occur more than once. The number of nodes of stage j is O(kjk−1).

There is an arc from the j − 1 stage node (sj−1
1 , . . . , sj−1

l , . . . , sj−1
k ) to node (sj−1

1 , . . . ,
sj−1

l−1 , j, sj−1
l+1 , . . . , sj−1

k ), of stage j. Define the length of this arc of G as equal to the cost

of the l colour arc (sj−1
l , j) of Gk.

Graph G also has the k-tuple (n + 1, n + 1, . . . , n + 1) as a node. There is an arc from
each node (sn

1 , s
n
2 , . . . , s

n
k), of stage n, to (n+1, n+1, . . . , n+1). The length of this arc is

defined as the sum of the costs of the arcs (sn
l , n + 1) of Gk in each of the k colours. No

further nodes and arcs exist.
Paths in G from (0, 0, . . . , 0) to (n + 1, n + 1, . . . , n + 1) and k-CPs of Gk are in a 1

to 1 correspondence. Thus, obtaining a minimum cost k-CP in Gk amounts to look for a
shortest path from (0, . . . , 0) to (n + 1, . . . , n + 1) in graph G, which has O(knk) nodes.
This gives an O(k2n2k) time algorithm, hence polynomial for any fixed k.

We illustrate the construction of G from the graph G2 of Figure 1 where n = 3, colour
1 is blue, colour 2 is red, and the costs of the arcs are displayed in the figure. The missing
arcs have costs equal to +∞.

3

1

2

3

1

20 4
1 3

2
1

0

0
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Figure 1: The graph G2

The resulting graph G and the lengths of its arcs are shown in Figure 2. The path
((0, 0), (1, 0), (1, 2), (3, 2), (4, 4)), of length 3, is the shortest path from (0, 0) to (4, 4). The
corresponding 2-CP consists of the blue path (0, 1, 3, 4) and the red path (0, 2, 4).

To show that finding k-CPs of minimum cost is NP-hard, consider the k-CP decision
problem which asks whether a spanning subgraph G′

k of Gk includes a k-CP. We use the
NP-completeness of the satisfiability problem (SAT) to prove the following lemma. (We
follow the terminology from the description of SAT given in Garey and Johnson [4].)

Theorem 1 The k-CP decision problem is NP-complete.

Proof. The problem is clearly in NP. We transform SAT in to the k-CP decision problem.
Consider an instance of SAT, i.e., a set X = {x1, . . . , xm} of boolean variables and a
collection C = {c1, . . . , ct} of clauses over X. The corresponding instance of the k-CP
decision problem is k := 2m and graph G′

k defined as follows. The node set of G′
k is
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Figure 2: The graph G

{0, 1, . . . , n, n + 1}, with n = m + t. The node j = 1, . . . , m corresponds to variable xj .
The node j = m + 1, . . . , m + t corresponds to clause cj−m. There are two arcs from
0 to each node j = 1, . . . , m. One has colour j and the other the colour m + j. For
j = 1, . . . , m, if cj1, cj2, . . . , cjs, with j1 < j2 < · · · < js, are the clauses in which literal xj

(x̄j) occurs, G′
k includes every arc from m + i to m + l, i < l = j, j1, . . . , js, n + 1, with

colour j (m + j). Finally, G′
k also has 2m different colour arcs connecting 0 to n + 1. No

further arcs exist.
Given any k-CP of G′

k the following procedure defines a satisfying truth assignment T
on X. Note that node j = 1, . . . , m can only be covered by either the j colour arc (0, j),
or the m+j colour arc (0, j). If colour j is used to cover node j, then define T (xj) :=true.
If colour m+j is used, define T (xj) :=false. Since any k-CP covers all nodes j = 1, . . . , m,
T is a well defined truth assignment.

If node j is reached with colour j, the k-CP includes a colour j path from j to n + 1
in which all interior nodes correspond to clauses where literal xj occurs, and hence every
such clause is satisfied by T (xj) =true. If node j is reached with colour m + j, the k-CP
includes a colour m + j path from j to n + 1 in which all interior nodes correspond to
clauses where literal x̄j occurs, and every such clause is satisfied by T (xj) =false. Since
any k-CP covers all nodes corresponding to clauses, all are satisfied showing that T is a
satisfying truth assignment.

Given any satisfying truth assignment T the following procedure finds a pair of paths
in G′

k, of colours j and m + j, for j = 1, . . . , m.
If T (xj) =true (T (xj) =false) the colour j (m + j) path from 0 to n + 1 includes node

j and every node corresponding to clauses where literal xj (x̄j) occurs and which is not
yet in any of the previously defined paths 1, . . . , j − 1. The m + j (j) colour path from
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0 to n + 1 consists of the single arc (0, n + 1). Since T is a satisfying truth assignment,
these 2m paths define a k-CP. 2

We illustrate the above proof using the instance of SAT consisting of the set X =
{x1, x3, x3} of variables, and clauses c1 = (x1x2x̄3), c2 = (x1x̄2x3), c3 = (x̄1x2). The
corresponding graph is G′

6 of Figure 3, where the 6 colours are continuous and hatched
blue, red and green.

1 2 c3x2

+1n0
x1 x3 c c

Figure 3: The graph G′
6

3 The 2-CP polytope

In this section we make a polyhedral study of 2-CPs. For simplicity colours 1 and 2 will
be referred to as blue and red respectively.

Let xb, xr ∈ R
(n+2)(n+1)/2 denote, respectively, the incidence vectors of a set of blue

and a set of red arcs of G2. The incidence vectors of 2-CPs are the pairs (xb, xr) which
satisfy the following equations:

j−1∑
i=0

(xb
ij + xr

ij) = 1, j = 1, . . . , n (1)

j−1∑
i=0

xb
ij −

n+1∑
i=j+1

xb
ji = 0, j = 1, . . . , n (2)

n+1∑
i=1

xb
0i = 1 (3)

j−1∑
i=0

xr
ij −

n+1∑
i=j+1

xr
ji = 0, j = 1, . . . , n (4)
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n+1∑
i=1

xr
0i = 1 (5)

Equations (2) and (4) are the usual flow conservation constraints. Thus, (2) and (3)
((4) and (5)) define xb (xr) to be a blue (red) path from 0 to n + 1. Equalities (1) ensure
that each node of N = {1, 2, . . . , n} is included either in the blue or in the red path.

Note that given any xb fulfilling (2) and (3), equations (1),(4) and (5) produce a unique
vector xr, which we call the red counterpart of xb, and denote by R(xb).

Let C2−CP ⊆ R
(n+2)(n+1) be the set of incidence vectors of 2-CPs, and consider L ⊆

C2−CP consisting of all pairs (xb, R(xb)), where xb is the incidence vector of a blue path
from 0 to n + 1 which

(i) includes no more than two nodes from N ;

(ii) includes one path of at least three consecutive nodes from N and no other arc with
both nodes in N , i.e., (0, i, i + 1, . . . , i + k, n + 1) with k ≥ 2.

It is easy to verify the following result.

Lemma 2 The incidence vector of every path from 0 to n + 1 is an affine combination
of incidence vectors of paths of type (i).

Proof. Let x be the incidence vector of path (0, i1, i2, . . . , ik, n + 1), with at least three
nodes in N . Then x =

∑k−1
l=1 yl −

∑k−1
l=2 zl, in which yl is the incidence vector of path

(0, il, il+1, n + 1) and zl the incidence vector of path (0, il, n + 1). Moreover, the above
combination is unique, since the set of incidence vectors of paths of type (i) is clearly
linearly independent. 2

Yet there are 2-CPs whose incidence vectors are not linear combinations of the inci-
dence vectors of 2-CPs of type (i). Indeed we have the following.

Lemma 3 The set L is linearly independent.

Proof. The set of incidence vectors of 2-CPs of type (i) is obviously linearly independent.
The following observation completes the proof: Every 2-CP of type (ii) with the blue path
(0, i, i + 1, . . . , i + k, n + 1), k ≥ 2, is the unique member of L which includes the red arc
(i − 1, i + k + 1). 2

Lemma 4 Every (xb, R(xb)) ∈ C2−CP is an affine combination of L.

Proof. If the blue path defined by xb has no nodes in N , i.e., consists of the blue arc
(0, n + 1), then (xb, R(xb)) ∈ L and the proof is complete. Hence we will consider that
the path defined by xb includes at least one node from N .

Every such path may be viewed as a sequence of k ≥ 1 paths, each consisting of
consecutive nodes from N , connected by arcs of nonconsecutive nodes. If P (i, j), with
i ≤ j, denotes the path (i, i+1, . . . , j) of consecutive nodes of N , then xb is the incidence
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vector of the blue path (0, P (i1, j1), P (i2, j2), . . . , P (ik, jk), n + 1), with il > jl−1 + 1, for
l = 2, . . . , k. Assuming P (i, j) = ∅ in case i > j, the red counterpart of xb is the incidence
vector of the red path (0, P (1, i1 − 1), P (j1 + 1, i2 − 1), . . . , P (jk + 1, n), n + 1).

To prove (xb, R(xb)) is an affine combination of elements of L we use induction on k.
For k = 1 the result obviously holds as (xb, R(xb)) ∈ L.

For k > 1 let x̄b be the incidence vector of the blue path consisting of the k − 1 first
P (il, jl) of xb, i.e., (0, P (i1, j1), P (i2, j2), . . . , P (ik−1, jk−1), n + 1). Consider also yb, zb,
wb and vb the incidence vectors of the blue paths (0, P (ik, jk), n + 1), (0, jk−1, ik, n + 1),
(0, jk−1, n + 1) and (0, ik, n + 1), respectively.

It is now easy to check that we have both xb = x̄b + yb + zb − wb − vb and R(xb) =
R(x̄b) + R(yb) + R(zb) − R(wb) − R(vb). Induction shows that (xb, R(xb)) is an affine
combination of elements of L. 2

Theorem 5 The dimension of the convex hull of C2−CP is n2 − n + 1.

Proof. This follows immediately from |L| = n2 − n + 2 and Lemmas 3 and 4. 2
We will now establish a complete system of equalities for the convex hull of C2−CP.

Theorem 5 ensures that at least 4n + 1 equations are needed. System (1)-(5), consisting
of 3n + 2 equations, is therefore not sufficient.

Consider equations

j−1∑
i=0

(xb
ij + xb

ij+1) + xr
jj+1 = 1 j = 1, . . . , n − 1, (6)

which, when xb and xr are 0/1 vectors, are implied from (1)-(5). Each equation states,
in one hand, that if red arc (j, j + 1) is included in the path defined by xr, nodes j and
j + 1 are not used by the blue path defined xb. On the other hand, it also states that if
red arc (j, j + 1) is not included in the path defined by xr, then j or j + 1 is used by the
blue path defined by xb, and that if both j and j + 1 are used, the path also includes the
blue arc (j, j + 1).

When xb and xr are not constrained to 0/1 values, equations (6) do not follow from
(1)-(5). Let A be the matrix of the coefficients of the 4n + 1 equations (1)-(6).

Lemma 6 Matrix A is of full row rank.

Proof. Each arc (j, n + 1), j = 0, . . . , n, of each of the two colours interferes in exactly
one of the flow constraints (2)-(5). None of these arcs appears in equations (1), and each
equation uses exactly one red arc (0, j), j = 1, . . . , n. This shows that the set of the 3n+2
rows of A corresponding to equations (1)-(5) is linearly independent.

Each red arc (j, j + 1), j = 1, . . . , n − 1 figures in exactly one equality (6). None of
these equations involves any of the previous arcs. 2

Theorem 5 and Lemma 6 ensure that (1)-(6) is a complete minimal system of equations
for the convex hull of C2−CP. In what follows we prove that xb, xr ≥ 0 are the only
inequalities which are needed to obtain a full description of the convex hull of C2−CP.
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We will show this by giving an algorithm which decomposes any member of P2−CP =
{(xb, xr) ≥ 0 : (1) − (6)} into a convex combination of elements in C2−CP.

More specifically, for 0 < λ ≤ 1 consider y = λx with x ∈ P2−CP, i.e., y ≥ 0 satisfies
(1λ)-(6λ), which are equations (1)-(6) with the right hand sides multiplied by λ. Let Gy

be the graph obtained from G2 removing every blue (red) arc (i, j) for which yb
ij = 0

(yr
ij = 0). We will exhibit x̄ ∈ C2−CP and 0 < α ≤ λ, such that the blue and red paths

defined by x̄ are subgraphs of Gy, and Gy−αx̄ is a proper subgraph of Gy. Thus, starting
from an arbitrary y ∈ P2−CP, i.e., from λ = 1, in each step k we determine a 2-CP x̄(k)
and a value α(k) and define y := y − α(k)x̄(k) ≥ 0. The procedure will eventually stop,
since in each step at least one arc is removed from the current Gy, defining the initial y
as the convex combination of incidence vectors of 2-CPs:

∑
k α(k)x̄(k).

We first give two technical lemmas.

Lemma 7 Let y and Gy be defined as above, and 1 ≤ u < v ≤ n. Then
∑

k<u

∑
l>v yb

kl ≤
yr

jj+1, for j = u, . . . , v − 1. Thus, the existence of any blue arc (k, l) in Gy, with k < u
and l > v, implies the red path (u, u + 1, . . . , v) to be also in Gy.

Proof. Equations (2λ) and (3λ) ensure
∑

i<j

∑
l≥j yb

il = λ, for all j ∈ N . If α =∑
k<u

∑
l>v yb

kl then
∑

i<j(y
b
ij + yb

ij+1) ≤ λ − α, for j = u, . . . , v − 1. Using (6λ), λ =∑
i<j(y

b
ij + yb

ij+1) + yr
jj+1 ≤ λ − α + yr

jj+1, and therefore yr
jj+1 ≥ α. 2

Lemma 8 Let y and Gy be defined as above, and 1 ≤ j ≤ n. Then
∑

i<j yb
ij+1 =∑

l>j+1 yr
jl. Thus, the existence of any blue arc (i, j + 1) in Gy, with i < j, implies

that at least one of the red arcs (j, l), l > j + 1, is also in Gy.

Proof. Equations (1λ) and (4λ) imply
∑

i<j yb
ij +

∑
l>j yr

jl = λ. From (6λ) and the

previous equality we have
∑

i<j(y
b
ij + yb

ij+1) + yr
jj+1 =

∑
i<j yb

ij +
∑

l>j yr
jl, and therefore∑

i<j yb
ij+1 =

∑
l>j+1 yr

jl. 2

Remark 9 Lemmas 7 and 8 also apply when switching the blue and red colours.

Proof. Note that instead of equations (6) we could have used

j−1∑
i=0

(xr
ij + xr

ij+1) + xb
jj+1 = 1, j = 1, . . . , n − 1. (6′)

Indeed system (1),(6’) is equivalent to (1),(6). 2

We are now on conditions to prove the main result.

Theorem 10 P2−CP = {(xb, xr) ≥ 0 : (1) − (6)} is the convex hull of C2−CP.

Proof. Let y and graph Gy be defined as above. We construct a 2-CP X̄ using arcs of Gy.
Take any arc (0, j) with j > 1 and define X̄ := {(0, j)}. One such arc has to exist since

otherwise yb
01 + yr

01 = 2λ contradicting (1λ). Suppose, without loss of generality (given
9), that arc (0, j) is blue. Lemma 7 ensures the existence of the red path (1, 2, . . . , j − 1)
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. Equation (5λ) and flow conservation constraint (4λ) on node 1 implies that the red arc
(0, 1) also exists. Now, Lemma 8 shows there is a red arc (j − 1, l), with l > j. Add to X̄
the red path (0, 1, . . . , j−1, l). Lemma 8 and Remark 9. Put the blue path (j, . . . , l−1, k)
in X̄.

Continue proceeding this way until node n + 1 is reached by one of the two paths.
This will certainly occur when using Lemma 8 (if needed together with Remark 9) and
some arc (t, n + 1), with t < n, is added to X̄. Suppose (t, n + 1) is a blue arc. Surely
some red arc (s, t + 1), with s < t, has already been added to X̄. If t + 1 < n, Lemma 7
ensures that red path (t + 1, t + 2, . . . , n) is in Gy. Equation (5λ) and flow conservation
constraint (4λ) on node n implies that red arc (n, n + 1) also exists. Adding the red path
(t + 1, . . . , n, n + 1) to X̄ turns this set into a 2-CP.

Let x̄ be the incidence vector of X̄ and define α to be the minimum component of y
among the arcs of X̄. Recall y = λx with x ∈ P2−CP and set y := y − αx̄ ≥ 0. Note that
now y = (λ − α)x and the new Gy is a proper subgraph of the previous one.

This shows how to turn an arbitrary y = x ∈ P2−CP (i.e., λ = 1) into a convex
combination of 2-CPs x̄ with coefficients α. 2

4 The k-CP polytope

The system of equations (1)-(5) straightforwardly extends to k-CPs. If xl ∈ R
(n+2)(n+1)/2

denotes the incidence vector of the set of arcs of colour l, the incidence vectors of k-CPs
are the (k(n + 2)(n + 1)/2)-tuples (xl, l = 1, . . . , k) which satisfy the following equations:

k∑
l=1

j−1∑
i=0

xl
ij = 1, j = 1, . . . , n (7)

j−1∑
i=0

xl
ij −

n+1∑
i=j+1

xl
ji = 0, j = 1, . . . , n; l = 1, . . . , k (8)

n+1∑
i=1

xl
0i = 1, l = 1, . . . , k (9)

Let B be the matrix of the coefficients of the (k + 1)n + k equations (7)-(9).

Lemma 11 Matrix B is of full row rank.

Proof. We extend the first part of the proof of Lemma 6 to the case k > 2.
Each arc (j, n+1), j = 0, . . . , n, of each of the k colours interferes in exactly one of the

flow constraints (8)-(9). None of these arcs appears in equations (7), and each equation
uses exactly one of the colour k arcs (0, j), j = 1, . . . , n. This shows that the set of the
(k + 1)n + k rows of B is linearly independent. 2

Denote by Ck−CP ⊆ R
k(n+2)(n+1)/2 the set of incidence vectors of k-CPs and let Pk−CP

be the convex hull of Ck−CP.
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Unlike the case when k = 2, where to derive an equality set for Pk−CP we had to add to
(7)-(9) some extra equations, we will see that for k > 2 equalities (7)-(9) are enough. We
prove this by exhibiting an affinely independent set Sl

j of 1
2
(kn2 + kn − 2n) + 1 members

of Ck−CP. Since |Sl
j| − 1 is precisely the dimension of the ground set of Pk−CP minus the

number of equations (7)-(9), it follows from Lemma 11 that dimPk−CP = 1
2
(kn2+kn−2n)

and that (7)-(9) is a minimal equality set for Pk−CP.
Let l be any of the k colours and consider

(iii) for some colour t 6= l, the 2-CPs that use colour l and include a t colour path of type
(i) or type (ii) from 0 to n + 1,

(iv) for each colour p 6= l, t, the 2-CPs that use colour l and include a p colour path of
type (i) from 0 to n + 1, different from (0, n + 1).

There are |L| = n2 − n + 2 2-CPs of type (iii) and (k − 2)(n + n(n − 1)/2) of type (iv).
Consider also, for some colour p 6= l, t and for i = 1, . . . , n, the 2-CPs that

(v) use colour t and include the p colour path (0, i, n + 1).

By adding to any 2-CP above the k−2 arcs (0, n+1) of each of the remaining colours,
a k-CP is obtained. Let si, i = 1, . . . , n, be the incidence vector of the k-CP resulting
from the 2-CP of type (v) and, for any given j = 1, . . . , n, define Sl

j to be the set of the
incidence vectors of the k-CPs obtained from every 2-CP (iii), (iv) or (v), different from
sj.

Lemma 12 The set Sl
j ⊆ Ck−CP is linearly independent.

Proof. Let C be the set of k-CPs whose incidence vectors are in Sl
j . We first identify some

k-CPs in C which, for the purpose of proving independence of Sl
j, can be removed from

consideration.
If p 6= l, t and for i = 1, . . . , n − 1, there is a unique k-CP in C with the p colour

arc (i, i + 1). This is the k-CP obtained from the 2-CP of type (iv) with the p colour
path of type (i) (0, i, i + 1, n + 1), and the l colour arc (i − 1, i + 2). Thus, if we delete
from C every such k-CP, Sl

j is linearly independent iff the set of incidence vectors of the
remaining k-CPs of C is also independent. We proceed with this reduced set C.

Any l colour arc (i, i + r) 6= (0, n + 1), with r > 2, appears in a unique member of the
current set C. This is the k-CP obtained from the 2-CP of type (iii) which includes the t
colour path (0, i+1, i+2, . . . , i+ r− 1, n+1). All these k-CPs can also be removed from
C.

Note that in the new set C the k-CPs which use any t colour arc (i, i + 1), with
i = 1, . . . , n − 1, are those whose incidence vectors are s1, s2, . . . , sn ( 6= sj) and the one
resulting from the 2-CP of type (iii) with the t colour path (0, 1, . . . , n+1), whose incidence
vector we denote by s0. Also note that the l colour arc (0, n + 1) appears in all these
k-CPs, and in no other k-CP of C. For r = 0, 1, . . . , n, let pr be the restriction of sr to
the indices which correspond to the l colour arc (0, n + 1) and t colour arcs (i, i + 1),
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i = 1, . . . , n − 1. Since the set of incidence vectors of k-CPs of C different from sr is
clearly independent, it follows from the previous remarks that the proof can be completed
by showing that ∪n

r=0;r 6=j{pr} is linearly independent. Hence, consider the n × n matrix
with column r equal to pr, r = 0, . . . , n; r 6= j. This matrix can be viewed as obtained by
deleting the column corresponding to sj from the n × (n + 1) matrix




1 1 1 . . . 1
1 0 0 1 . . . 1
1 1 0 0 1 . . 1
. 1 0 0 . .
. . . . . .
. . . . 1
1 . . . 1 0 0




.

It is straightforward to verify that every n × n submatrix of such a matrix obtained by
deleting any column, different from the first one, is nonsingular. 2

We are now on conditions to establish, for k > 2, the dimension of the convex hull of
the set of incidence vectors of k-CPs.

Theorem 13 If k > 2, dimPk−CP = 1
2
(kn2 + kn − 2n).

Proof. Lemmas 11 and 12 imply that |Sl
j |−1 ≤ dimPk−CP ≤ m−b, where m = k(n+2)(n+1)

2

is the dimension of the ground set of Pk−CP and b = (k+1)n+k is the number of equations
(7)-(9). Since |Sl

j| − 1 = m − b = 1
2
(kn2 + kn − 2n), the result follows. 2

Theorem 13 allows to conclude that, if k > 2, every equation satisfied by all elements
of Pk−CP is implied by equalities (7)-(9). Extending equations (6) for k > 2 the following
valid inequalities were obtained

j−1∑
i=0

(xl
ij + xl

ij+1) +
k∑

p=1;p 6=l

xp
jj+1 ≤ 1 j = 1, . . . , n − 1; l = 1, . . . , k (10)

Note that for each inequality we can find incidence vectors of k-CPs (sj and sj+1, for
example) for which the left hand side is strictly less than 1.

We finish with a result regarding the inequalities (10).

Theorem 14 For k > 2, each inequality (10) determines a facet of Pk−CP.

Proof. We show that every element of Sl
j \ {sj+1} satisfies the corresponding inequality

(10) with equality.
Equations (6) hold for the incidence vector of every 2-CP. Therefore, the incidence

vector of a k-CP obtained adding to a 2-CP the k − 2 arcs (0, n + 1) of each of the
remaining colours, satisfy with equality every inequality (10) in which l is any of the 2
colours of the 2-CP. Thus, the incidence vectors of the k-CPs obtained from 2-CPs of
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types (iii) and (iv) satisfy (10) with equality. The same happens with every si ∈ Sl
j ,

except sj+1, since the corresponding k-CP uses the t 6= l colour arc (j, j + 1).
The result now follows from Lemma 12, |Sl

j \ {sj+1}| = dimPk−CP, and from the
arbitrary choice of l = 1, . . . , k and j = 1, . . . , n in defining Sl

j . 2
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