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Abstract

The extreme or unanchored discrepancy is the geometric discrepancy of point
sets in the d-dimensional unit cube with respect to the set system of axis-parallel
boxes. For 2 ≤ p < ∞ we provide upper bounds for the average Lp-extreme dis-
crepancy. With these bounds we are able to derive upper bounds for the inverse
of the L∞-extreme discrepancy with optimal dependence on the dimension d and
explicitly given constants.

1 Introduction

Let Rd be the set of all half-open axis-parallel boxes in the d-dimensional unit ball with
respect to the maximum norm, i.e.,

Rd = {[x, y) | x, y ∈ [−1, 1]d, x ≤ y} ,

where [x, y) := [x1, y1)×. . .×[xd, yd) and inequalities between vectors are meant component-
wise. It is convenient to identify Rd with

Ω := {(x, x) ∈ R
2d | − 1 ≤ x ≤ x ≤ 1} ,

where for any real scalar a we put a := (a, . . . , a) ∈ R
d. The Lp-extreme discrepancy of a

point set {t1, . . . , tn} ⊂ [−1, 1]d is given by

Dp(t1, ..., tn) :=

( ∫
Ω

∣∣∣
d∏

l=1

(xl − xl) −
1

n

n∑
i=1

1[x,x)(ti)
∣∣∣p dω(x, x)

)1/p

,
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where 1[x,x) denotes the characteristic function of [x, x) and dω is the normalized Lebesgue
measure 2−ddx dx on Ω. The L∞-extreme discrepancy is

D∞(t1, ..., tn) := sup
(x,x)∈Ω

∣∣∣
d∏

l=1

(xl − xl) −
1

n

n∑
i=1

1[x,x)(ti)
∣∣∣ ,

and the smallest possible L∞-extreme discrepancy of any n-point set is

D∞(n, d) = inf
t1,...,tn∈[−1,1]d

D∞(t1, ..., tn) .

Another quantity of interest is the inverse of D∞(n, d), namely

n∞(ε, d) = min{n ∈ N |D∞(n, d) ≤ ε} .

If we consider in the definitions above the set of all d-dimensional corners

Cd = {[−1, y) | y ∈ [−1, 1]d}

instead of Rd, we get the classical notion of star-discrepancy.
It is well known that the star-discrepancy is related to the error of multivariate inte-

gration of certain function classes (see, e.g., [2, 5, 8, 10, 12]). That this is also true for the
extreme discrepancy was pointed out by Novak and Woźniakowski in [12]. Therefore it is
of interest to derive upper bounds for the extreme discrepancy with a good dependence
on the dimension d and explicitly known constants.

Heinrich, Novak, Wasilkowski and Woźniakowski showed in [4] with probabilistic meth-
ods that for the inverse n∗

∞(ε, d) of the star-discrepancy we have n∗(ε, d) ≤ Cdε−2. The
drawback is here that the constant C is not known. In the same paper a lower bound was
proved establishing the linear dependence of n∗

∞(ε, d) on d. This bound has recently been
improved by Aicke Hinrichs to n∗

∞(ε, d) ≥ cdε−1 [6]. These results hold also for n∞(ε, d).
In [4], Heinrich et al. presented two additional bounds for n∗

∞(ε, d) with slightly worse
dependence on d, but explicitly known constants. The first one uses again a probabilistic
approach, employs Hoeffding’s inequality and leads to

n∗
∞(ε, d) ≤ O

(
dε−2

(
ln(d) + ln(ε−1)

))
.

The approach has been modified in more recent papers to improve this bound or to derive
similar results in different settings [1, 5, 9]. In particular, it has been implicitly shown
in the quite general Theorem 3.1 in [9] that the last bound holds also for the extreme
discrepancy (as pointed out in [3], this result can be improved by employing the methods
used in [1]).

The second bound was shown in the following way: The authors proved for even p an
upper bound for the average Lp-star discrepancy av∗

p(n, d):

av∗
p(n, d) ≤ 32/325/2+d/pp(p + 2)−d/pn−1/2 .
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(This analysis is quite elaborate, since av∗
p(n, d) is represented as an alternating sum of

weighted products of Stirling numbers of the first and second kind.) The bound was
used to derive upper bounds n∗

∞(ε, d) ≤ Ckd
2ε−2−1/k for every k ∈ N. To improve the

dependence on d, Hinrichs suggested to use symmetrization. This approach was sketched
in [11] and leads to

av∗
p(n, d) ≤ 21/2+d/pp1/2(p + 2)−d/pn−1/2

and n∗
∞(ε, d) ≤ Ckdε−2−1/k. (Actually there seems to be an error in the calculations in

[11], therefore we stated the results of our own calculations—see Remark 4 and 9).
In this paper we use the symmetrization approach to prove an upper bound for the

average Lp-extreme discrepancy avp(n, d) for 2 ≤ p < ∞. Our analysis does not need
Stirling numbers and uses rather simple combinatorial arguments. Similar as in [4], we
derive from this bound upper bounds for the inverse of the L∞-extreme discrepancy of
the form n∞(ε, d) ≤ Ckdε−2−1/k for all k ∈ N.

2 Bound for the average Lp-discrepancy

If x, x are vectors in R
d with x ≤ x, we use the (non-standard) notation x := (x − x)/2.

Let p ∈ N be even. For i = 1, ..., n we define the Banach space valued random variable
Xi : [−1, 1]nd → Lp(Ω, dω) by Xi(t)(x, x) = 1[x,x)(ti). Then X1, ..., Xn are independent
and identically distributed. Note that Xi is Bochner integrable for all i ∈ [n]. If E denotes
the expectation with respect to the normalized measure 2−nd dt, then EXi ∈ Lp(Ω, dω)
and EXi(x, x) = x1...xd almost everywhere. We obtain

avp(n, d)p =

∫
[−1,1]nd

Dp(t1, ..., tn)p 2−nd dt

=

∫
[−1,1]nd

∥∥∥ 1

n

n∑
i=1

(Xi(t) − EXi)
∥∥∥p

Lp(Ω, dω)
2−nd dt

= E

(∥∥∥1

n

n∑
i=1

(Xi − EXi)
∥∥∥p

Lp(Ω, dω)

)
.

Let ε1, ..., εn : [−1, 1]nd → {−1, +1} be symmetric Rademacher random variables, i.e.,
random variables taking the values ±1 with probability 1/2. We choose these variables
such that ε1, ..., εn, X1, ..., Xn are independent. Then (see [7, §6.1])

avp(n, d)p ≤ E

(
2p

∥∥∥1

n

n∑
i=1

εiXi

∥∥∥p

Lp(Ω, dω)

)

=
(2

n

)p
n∑

i1,...,ip=1

∫
[−1,1]nd

∫
Ω

p∏
l=1

(
εil(t)1[x,x)(til)

)
dω(x, x) 2−nd dt .
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Let us now consider (x, x) ∈ Ω, k ∈ [p], pairwise disjoint indices i1, ..., ik and j1, ..., jk ∈ [p]
with

∑k
l=1 jl = p. According to Fubini’s Theorem

J :=

∫
[−1,1]nd

( k∏
l=1

εjl
il
(t)

)( ∫
Ω

( k∏
l=1

Xjl
il

(t)(x, x)
)

dω(x, x)

)
2−nd dt

=

( k∏
l=1

∫
[−1,1]nd

εjl
il
(t) 2−nd dt

) ( ∫
Ω

∫
[−1,1]nd

( k∏
l=1

1[x,x)(til)
)

2−nd dt dω(x, x)

)
.

This yields J =
∫
Ω
(x1...xd)

k dω(x, x) = 2d(k + 1)−d(k + 2)−d if every exponent jl is even,
and J = 0 if there exists at least one odd exponent jl. Let T (p, k, n) be the number of
tuples (i1, ..., ip) ∈ [n]p with |{i1, ..., ip}| = k and |{l ∈ [p] | il = im}| even for each m ∈ [p].
Our last observation implies

avp(n, d)p ≤ 2p+dn−p

p/2∑
k=1

T (p, k, n)

(k + 1)d(k + 2)d
.

In the next step we shall estimate the numbers T (p, k, n). For that purpose we introduce
further notation. Let

M(p/2, k) =
{

ν ∈ N
k
∣∣∣ 1 ≤ ν1 ≤ ... ≤ νk ≤ p/2,

k∑
i=1

νk = p/2
}

,

and for ν ∈ M(p/2, k) let e(ν, i) = |{j ∈ [k] | νj = i}|. With the standard notation for
multinomial coefficients we get

T (p, k, n) =
∑

ν∈M(p/2,k)

(
p

2ν1, ..., 2νk

)
n(n − 1)...(n − k + 1)

e(ν, 1)!...e(ν, p/2)!
.

If ](p/2, k, n) denotes the number of tuples (i1, ..., ip/2) ∈ [n]p/2 with |{i1, ..., ip/2}|
= k, then

](p/2, k, n) =
∑

ν∈M(p/2,k)

(
p/2

ν1, ..., νk

)
n(n − 1)...(n − k + 1)

e(ν, 1)!...e(ν, p/2)!
.

We want to compare T (p, k, n) with ](p/2, k, n) and are therefore interested in the quantity

Qp
k(ν) :=

(
p

2ν1, ..., 2νk

)(
p/2

ν1, ..., νk

)−1

.

To derive an upper bound for Qp
k(ν), we prove two auxiliary lemmas.

Lemma 1. Let f : N0 → R be defined by f(r) = [2r(2r− 1)...(r +1)](2r)−r for r > 0 and
f(0) = 1. Then f(r + s) ≤ f(r)f(s) for all r, s ∈ N0.

the electronic journal of combinatorics 12 (2005), #R54 4



Proof. We prove the inequality for an arbitrary s by induction over r. It is evident if r = 0.
So let the inequality hold for some r ∈ N0. The well known relations Γ(x + 1) = xΓ(x)
and

√
π Γ(2x) = 22x−1Γ(x)Γ(x + 1/2) for the gamma function lead to

f(r) = 22rπ−1/2Γ(r + 1/2) exp(−r ln(2r)) ,

with the convention 0 · ln(0) = 0 when r = 0, and

f(r + 1 + s)

f(r + 1)
=

g(r)

g(r + s)

f(r + s)

f(r)
,

where g : [0,∞) → [0,∞) is defined by g(0) = 2 and

g(λ) =
(
1 +

1

2λ + 1

)
exp(λ ln(1 + 1/λ))

for λ > 0. The function g is continuous in 0 and its derivative is given by

g′(λ) =
(

ln(1 + 1/λ) − 2

2λ + 1

)
g(λ)

for λ > 0. Since

d

dλ

(
ln(1 + 1/λ) − 2

2λ + 1

)
= − 1

λ(λ + 1)(2λ + 1)2
< 0

and

lim
λ→∞

(
ln(1 + 1/λ) − 2

2λ + 1

)
= 0 ,

we obtain g′(λ) ≥ 0. Therefore g is an increasing function. Thus

g(r)

g(r + s)
≤ 1 , which establishes

f(r + 1 + s)

f(r + 1)
≤ f(r + s)

f(r)
≤ f(s) .

Lemma 2. Let k ∈ N, a1, ..., ak ∈ [0,∞) and σ =
∑k

i=1 ai. Then

(σ

k

)σ

≤
k∏

i=1

aai
i .

Proof. Let σ > 0, and consider the functions s : R
k → R, x 7→ ∑k

i=1 xi and

f : [0,∞)k → R , x 7→
k∏

i=1

xxi
i =

k∏
i=1

exp(xi ln(xi)) ,

where we use the convention 0 · ln(0) = 0. Let M = {x ∈ (0,∞)k | s(x) = σ}. Since f is
continuous, there exists a point ξ in the closure M of M with f(ξ) = min{f(x) | x ∈ M}.
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Now let x ∈ M \ M , which implies xµ = 0 for an index µ ∈ [k]. Since s(x) = σ, there
exists a ν ∈ [k] with xν > 0. Without loss of generality we may assume µ = 1, ν = 2.
Then

f(x) =
k∏

i=2

xxi
i >

(x2

2

)x2
k∏

i=3

xxi
i = f(x′) ,

where x′ = (x2

2
, x2

2
, x3, ..., xk). Thus ξ lies in M . Since grad s ≡ (1, ..., 1) 6= 0, there

exists a Lagrangian multiplier λ ∈ R with grad f(ξ) = λ grad s(ξ). From grad f(x) =
(1 + ln(x1), ..., 1 + ln(xk))f(x) follows ξ1 = ... = ξk, i.e., ξi = σ/k for i = 1, ..., k.

With the help of Lemma 1 and 2 we conclude

Qk ≤ pp/2

(2ν1)ν1...(2νk)νk
=

( k∏
i=1

ννi
i

)−1(p

2

)p/2

≤
(1

k

k∑
i=1

νi

)−p/2(p

2

)p/2

= kp/2 .

Therefore
T (p, k, n) ≤ kp/2](p/2, k, n) . (1)

The last estimate yields

avp(n, d)p ≤ 2p+dn−p

p/2∑
k=1

kp/2

(k + 1)d(k + 2)d
](p/2, k, n) .

If p ≥ 4d, then

avp(n, d)p ≤ 2p/2+3dn−ppp/2(p + 2)−d(p + 4)−d

p/2∑
k=1

](p/2, k, n)

≤ 2p/2+3dpp/2(p + 2)−d(p + 4)−dn−p/2 .

If p < 4d, then

avp(n, d)p ≤ 2p+dn−p

p/2∑
k=1

[
(k + 1)(k + 2)

]p/4−d
](p/2, k, d)

≤ 25p/43p/4−dn−p/2 .

Thus we have shown the following theorem:

Theorem 3. Let p be an even integer. If p ≥ 4d, then

avp(n, d) ≤ 21/2+3d/pp1/2(p + 2)−d/p(p + 4)−d/pn−1/2 .

If p < 4d, then the estimate avp(n, d) ≤ 25/431/4−dn−1/2 holds.

For a general p ∈ [2,∞) we find a k ∈ N with 2k ≤ p < 2(k + 1). Hence there exists
a t ∈ (0, 1] with 1/p = t/2k + (1 − t)/2(k + 1) and from Hölder’s inequality we get

avp(n, d) ≤ av2k(n, d)t av2(k+1)(n, d)1−t .
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Remark 4. The probabilistic argument we used for deriving our upper bound for the
average Lp-extreme discrepancy was sketched in [11]. Unfortunately the derivation there
contains an error (the number ](p/2, k, n) that appears there has to be substituted by
the number T (p, k, n) defined above). For that reason we state here the bounds for the
average Lp-star discrepancy av∗

p(n, d) that we get by mimicking the approach discussed
in this section: With the symmetrization argument and (1) we obtain

av∗
p(n, d)p ≤

(2

n

)p
p/2∑
k=1

kp/2

(k + 1)d
](p/2, k, n) .

If p < 2d, then av∗
p(n, d) ≤ 23/2−d/p n−1/2. If p ≥ 2d, then

av∗
p(n, d) ≤ 21/2+d/p p1/2(p + 2)−d/p n−1/2 . (2)

3 Application to the L∞-discrepancy

Now we want to derive an upper bound for the inverse n∞(ε, d) of the L∞-extreme dis-
crepancy in terms of the average Lp-extreme discrepancy avp(n, d). Therefore we define
first a “homogeneous version” of the L∞-extreme discrepancy: For any h ∈ (0, 1] and any
t1, ..., tn ∈ R

d let

Dh
∞(t1, ..., tn) = inf

c>0
sup

−h≤x<x≤h

∣∣∣
d∏

l=1

xl − c

n∑
i=1

1[x,x)(ti)
∣∣∣ .

Obviously Dh
∞(ht1, ..., htn) = hdD1

∞(t1, ..., tn). Further quantities of interest are

D1
∞(n, d) = inf

t1,...,tn∈[−1,1]d
D1

∞(t1, ..., tn)

and
n1
∞(ε, d) := min{n ∈ N |D1

∞(n, d) ≤ ε} .

Lemma 5. For every ε > 0 we have n1
∞(ε, d) ≤ n∞(ε, d) ≤ n1

∞(ε/2, d).

The Lemma can be verified by just mimicking the proof of [4, Lemma 2].
Now define for 1 > ε > 0, h = (1 + ε)−1/d and all even natural numbers p

Ad
p(ε) := hd(p+2)

∫
[−1,(1−2(1−ε)1/d)1]

∫
[(1−ε)1/d1, 1

2
(1−y)]

(
(ε − 1) +

d∏
j=1

zj

)p

dz dy

and

Bd
p(ε) :=

∫
[−1,−h]

∫
[h,1]

(
1 −

d∏
l=1

xl

)p

2−d dx dx .
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Theorem 6. Let ε ∈ (0, 1). If ε < D1
∞(n, d), then we obtain for all even p the inequality

avp(n, d) > min(Ad
p(ε), B

d
p(ε))

1/p. Therefore

n1
∞(ε, d) ≤ min{n| ∃p ∈ 2N : avp(n, d) ≤ min(Ad

p(ε), B
d
p(ε))

1/p} .

Proof. To verify the theorem, we modify the proof from [4, Thm. 6]: Let D1
∞(n, d) > ε.

For h ∈ (0, 1] and t1,...,tn ∈ [−1, 1]d we have

Dh
∞(t1, ..., tn) = hdD1

∞(t1/h, ..., tn/h) > εhd .

Therefore we find x, x ∈ [−h, h]d with x < x and

∣∣∣
d∏

l=1

xl − 1

n

n∑
i=1

1[x,x)(ti)
∣∣∣ > εhd .

Case 1 : There holds
d∏

l=1

xl − 1

n

n∑
i=1

1[x,x)(ti) > εhd .

With respect to its volume the box [x, x) contains not sufficiently many sample points.
This holds also for slightly smaller boxes. If [v, v) ⊆ [x, x), then

d∏
j=1

vj − 1

n

n∑
i=1

1[v,v)(ti) > εhd −
d∏

j=1

xj +
d∏

j=1

vj .

This leads to

Dp(t1, ..., tn)p >

∫
[x,x]

∫
[v,x]

(
εhd −

d∏
j=1

xj +
d∏

j=1

vj

)p

+
2−d dv dv

=

∫
[−h,−h+2x]

∫
[z+2(h−x),h]

(
εhd −

d∏
j=1

xj +
d∏

j=1

(zj + xj − h)
)p

+
2−d dz dz ,

where in the last step we made a change of coordinates: z = v−x−h and z = v−x +h.
If we translate edge points v and w, v ≤ w, of anchored boxes [0, v) and [0, w) by a vector
a ≥ 0, then it is a simple geometrical observation that the volumes of the corresponding
anchored boxes satisfy

vol([0, w)) − vol([0, v)) ≤ vol([0, w + a)) − vol([0, v + a)) .

In particular, if w = x, v = z + x − h and a = h− x, then

d∏
j=1

xj −
d∏

j=1

(zj + xj − h) ≤ hd −
d∏

j=1

zj .
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This, and integrating over the variable z instead over z, leads to

Dp(t1, ..., tn)p >

∫
[−h,−h+2x]

∫
[h−x, 1

2
(h−z)]

(
(ε − 1)hd +

d∏
j=1

zj

)p

+
dz dz .

We can ignore those vectors z with a component zi < (1 − ε)h, since they satisfy the
relation (ε − 1)hd +

∏d
j=1 zj < 0. As xi > εh for all 1 ≤ i ≤ d, we get

Dp(t1, ..., tn)p >

∫
[−h,(2ε−1)h]

∫
[(1−ε)h, 1

2
(h−z)]

(
(ε − 1)hd +

d∏
j=1

zj

)p

+
dz dz

≥
∫

[−h,(1−2(1−ε)1/d)h]

∫
[(1−ε)1/dh, 1

2
(h−z)]

(
(ε − 1)hd +

d∏
j=1

zj

)p

dz dz .

Case 2 : There holds
1

n

n∑
i=1

1[x,x)(ti) −
d∏

l=1

xl > εhd .

The box [x, x) contains too many points, and this is also true for somewhat larger boxes.
If [x, x) ⊆ [w, w), then

1

n

n∑
i=1

1[w,w)(ti) −
d∏

l=1

wl > εhd +
d∏

l=1

xl −
d∏

l=1

wl .

This implies

Dp(t1, ..., tn)p >

∫
[−1,x]

∫
[x,1]

(
εhd +

d∏
l=1

xl −
d∏

l=1

wl

)p

+
2−d dw dw

≥
∫

[−1−h−x,−h]

∫
[h,1+h−x]

(
εhd +

d∏
l=1

xl −
d∏

l=1

(zl − h + xl)
)p

+
2−d dz dz ,

where we made the substitutions z = w−x+h and z = w−x−h. If we restrict the domain
of integration and use the simple geometric observation mentioned in the discussion of
Case 1, we obtain

Dp(t1, ..., tn)p >

∫
[−1,−h]

∫
[h,1]

(
(1 + ε)hd −

d∏
l=1

zl

)p

+
2−d dz dz .

If we choose h = (1 + ε)−1/d, then Dp(t1, ..., tn)p > Bd
p(ε).

Our analysis results in Dp(t1, ..., tn)p > min{Ad
p(ε), B

d
p(ε)} for all t1, ..., tn ∈ [−1, 1]d.

Theorem 6 follows now by integration.
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Lemma 7. Let ε ∈ (0, 1/2] and p ≥ 4d be an even integer. Then

min(Ad
p(ε), B

d
p(ε))

1/p ≥ 1

3
ε
( ε

4d

)2d/p

.

Proof. Let again h = (1 + ε)−1/d. From the definition of Bd
p(ε) follows

Bd
p(ε) ≥

∫
[−(1+ε/2)−1/d1,−h]

∫
[h,(1+ε/2)−1/d1]

(
1 − (1 + ε/2)−1

)p
2−d dx dx

= 2−d
(
1 − (1 + ε/2)−1

)p(
(1 + ε/2)−1/d − (1 + ε)−1/d

)2d
.

As ε ≤ 1/2, it is straightforward to verify the inequalities 1 − (1 + ε/2)−1 ≥ 2ε/5 and
(1 + ε/2)−1/d − (1 + ε)−1/d ≥ ε/4d. That implies

Bd
p(ε)

1/p ≥ 2−d/p 2

5
ε
( ε

4d

)2d/p

≥ 2−1/4 2

5
ε
( ε

4d

)2d/p

≥ 1

3
ε
( ε

4d

)2d/p

.

We can estimate Ad
p(ε) in the following way:

Ad
p(ε) ≥ hd(p+2)

∫
[−1,(1−2(1−ε/2)1/d)1]

∫
[(1−ε/2)1/d1, 1

2
(1−y)]

(ε/2)p dz dy

= (1 + ε)−p−2(ε/2)p
(
1 − (1 − ε/2)1/d

)2d
.

Since 1 − (1 − ε/2)1/d ≥ ε/2d, we get

Ad
p(ε)

1/p ≥ 1

(1 + ε)1+2/p

ε

2

( ε

2d

)2d/p

≥ 1

1 + ε

( 2d

1 + ε

)2/p ε

2

( ε

4d

)2d/p

≥ 1

3
ε
( ε

4d

)2d/p

.

Let now k ∈ N, p = 4kd and ε ∈ (0, 1/2). With Theorem 3 and Lemma 7 it is easily
verified that

n ≥ 9 · 23(1+1/2k)k1−1/kdε−2−1/k ensures avp(n, d) ≤ min(Ad
p(ε), B

d
p(ε))

1/p .

This, Lemma 5 and Theorem 6 lead to the following theorem:

Theorem 8. Let ε ∈ (0, 1/2) and k ∈ N. Then n∞(ε, d) ≤ Ckdε−2−1/k, where the constant
Ck is bounded from above by 9 · 25(1+1/2k)k1−1/k.

Remark 9. In a similar way we can use the bound for the average Lp-star discrepancy
to calculate an upper bound for the inverse n∗

∞(d, ε) of the star discrepancy: With (2),
[4, Thm. 6] and [4, Lemma 3] (where we can replace the factor

√
2/3 by 1—cf. with the

proof of Lemma 7), we obtain

n∗
∞(d, ε) ≤ 9 · 24+3/kk1−1/kdε−2−1/k . (3)
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