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Abstract

The extreme or unanchored discrepancy is the geometric discrepancy of point
sets in the d-dimensional unit cube with respect to the set system of axis-parallel
boxes. For 2 < p < oo we provide upper bounds for the average LP-extreme dis-
crepancy. With these bounds we are able to derive upper bounds for the inverse
of the L*°-extreme discrepancy with optimal dependence on the dimension d and
explicitly given constants.

1 Introduction

Let R4 be the set of all half-open axis-parallel boxes in the d-dimensional unit ball with
respect to the maximum norm, i.e.,

Ra=A{lz,y) |z,y € [-11)" 2 <y},

where [z, y) := [21,y1)X. . .X[Tq, yq) and inequalities between vectors are meant component-
wise. It is convenient to identify R4 with

Q:={(z,7) eR¥| —1<2<T <1},

where for any real scalar a we put a := (a,...,a) € R, The LP-extreme discrepancy of a
point set {t1,...,t,} C [~1,1]¢ is given by

Dy(t1, ...ty (/)ﬁxl—xl —%21[“ t:) (2,@)%7
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where 1j, 7 denotes the characteristic function of [z, T) and dw is the normalized Lebesgue
measure 2~ %z dT on Q. The L>®-extreme discrepancy is

Y

d n
_ 1
Doo(ta, ..., tn) := sup ’ [[@—z) - - Y lua(t)
1 =1

(z,7)EQ =
and the smallest possible L>°-extreme discrepancy of any n-point set is

Dy (n,d) = inf Doo(t1, s ty) -

t1,..tn€[—1,1]4
Another quantity of interest is the inverse of Do (n,d), namely
Neo(€,d) =min{n € N| Dy (n,d) <e}.
If we consider in the definitions above the set of all d-dimensional corners

Ca=A{[-1,9)|y € [-1,1]}

instead of R4, we get the classical notion of star-discrepancy.

It is well known that the star-discrepancy is related to the error of multivariate inte-
gration of certain function classes (see, e.g., [2, 5, 8, 10, 12]). That this is also true for the
extreme discrepancy was pointed out by Novak and WoZniakowski in [12]. Therefore it is
of interest to derive upper bounds for the extreme discrepancy with a good dependence
on the dimension d and explicitly known constants.

Heinrich, Novak, Wasilkowski and Wozniakowski showed in [4] with probabilistic meth-
ods that for the inverse n* (e,d) of the star-discrepancy we have n*(e,d) < Cde2. The
drawback is here that the constant C'is not known. In the same paper a lower bound was
proved establishing the linear dependence of n} (¢, d) on d. This bound has recently been
improved by Aicke Hinrichs to n?_(g,d) > cde™! [6]. These results hold also for n.(e, d).

In [4], Heinrich et al. presented two additional bounds for n’_(e, d) with slightly worse
dependence on d, but explicitly known constants. The first one uses again a probabilistic
approach, employs Hoeffding’s inequality and leads to

ni(e,d) < O(de™*(In(d) + In(e7"))) .

The approach has been modified in more recent papers to improve this bound or to derive
similar results in different settings [1, 5, 9]. In particular, it has been implicitly shown
in the quite general Theorem 3.1 in [9] that the last bound holds also for the extreme
discrepancy (as pointed out in [3], this result can be improved by employing the methods
used in [1]).

The second bound was shown in the following way: The authors proved for even p an
upper bound for the average LP-star discrepancy av;;(n, d):

avy(n,d) < 32352 d/p (- 2) P12
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(This analysis is quite elaborate, since avy(n,d) is represented as an alternating sum of
weighted products of Stirling numbers of the first and second kind.) The bound was
used to derive upper bounds n?_(e,d) < Crd?c=271/* for every k € N. To improve the
dependence on d, Hinrichs suggested to use symmetrization. This approach was sketched
n [11] and leads to

avi(n,d) < 22l 4 0)=d/ry =1/

and n?_(e,d) < Cpde=2"Y*. (Actually there seems to be an error in the calculations in
[11], therefore we stated the results of our own calculations—see Remark 4 and 9).

In this paper we use the symmetrization approach to prove an upper bound for the
average LP-extreme discrepancy avy(n,d) for 2 < p < oco. Our analysis does not need
Stirling numbers and uses rather simple combinatorial arguments. Similar as in [4], we
derive from this bound upper bounds for the inverse of the L*>-extreme discrepancy of
the form n (e, d) < Crde=2"V* for all k € N.

2 Bound for the average L’-discrepancy

If 2, T are vectors in R? with z < Z, we use the (non-standard) notation z := (T — z)/2.
Let p € N be even. For ¢ = 1,...,n we define the Banach space valued random variable
X, [-1,1]" — LP(Q, dw) by X;(t)(z,T) = 15 (t;). Then X, ..., X, are independent
and identically distributed. Note that X; is Bochner integrable for all ¢ € [n]. If E denotes
the expectation with respect to the normalized measure 2 "¢ dt, then EX; € LP(Q, dw)
and EX;(z,T) = x1...x4 almost everywhere. We obtain

avy(n, d)? / Dy(ty, ..., tn)P 27 dt
[ 1, 1nd
1 P i
- / H—Z(Xi(t)—EXi) 27" dt
n - LP(Q, dw)
[—1,1]nd =1
1 n
=B(|p X -Ex, )
n — LP(Q, dw)
Let €1,....,, : [-1,1]" — {—1,+1} be symmetric Rademacher random variables, i.e.,

random variables taking the values +1 with probability 1/2. We choose these variables
such that €1, ...,&,, X1, ..., X, are independent. Then (see [7, §6.1])

avy(n, d)? < E<2p

Lr(Q, dw)>

< Z / /H 6” [27) Zl))dw(x 7)2 " dt .

115y ip= 1[ 11]nd Q =1
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Let us now consider (z,T) € Q, k € [p|, pairwise disjoint indices i1, ..., i and jy, ..., jx € [p]
with Zle J1 = p- According to Fubini’s Theorem

J = / (}id;(t)) (/ <HX” )dw(m x)) 9-nd

(—1.1]n
:<lli / £)2 ”ddt) (/ / l]ilm (t, )2 " dt do(z, flf))

[71,1]"d Q [ 1, 1 nd =

This yields J = [,(21...7q)" dw(z,T) = 24(k 4 1)%(k + 2)~ if every exponent j; is even,
and J = 0 if there exists at least one odd exponent j;. Let T'(p, k,n) be the number of
tuples (i1, ..., 1p) € [n]P with |{i1,...,i,}| = k and [{l € [p]| & = i, }| even for each m € [p].
Our last observation implies

p/2
i T(p,k,n)
avy(n, d)P < 2Ptip=p y 7
Zkl e+ 1k 1 2)

In the next step we shall estimate the numbers T'(p, k,n). For that purpose we introduce
further notation. Let

k
M(p/2,k) = {VENk’1 < <..<y <p/2, Zl/k:p/Q},
i=1

and for v € M(p/2,k) let e(v,i) = |{j € [k]|v; = i}|. With the standard notation for
multinomial coefficients we get

B p o \nn—1)..(n—k+1)
T(p.kn)= ), )(zyl,...,Qw) e(v, Dle(v,p/2)!

veM(p/2,k

If #(p/2, k,n) denotes the number of tuples (i1, ...,4,2) € [n]P/? with [{i1, ..., iy }]

= k, then
{(p)2, k) — Z ( p/2 )n(n—l)...(n—k—l—l)‘

veMpyak) V1o Vk e(v,1))...e(v,p/2)!

We want to compare T'(p, k, n) with §(p/2, k,n) and are therefore interested in the quantity

) o P p/2 -
Qk(l/) — (2V1, . 2Vk) (Vla ceey l/k) .

To derive an upper bound for Q%(v), we prove two auxiliary lemmas.

Lemma 1. Let f : Ny — R be defined by f(r) = [2r(2r —1)...(r + 1)](2r)~" forr > 0 and
f(0) =1. Then f(r+s) < f(r)f(s) for allr, s € Ny.
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Proof. We prove the inequality for an arbitrary s by induction over r. It is evident if r = 0.
So let the inequality hold for some r € Ny. The well known relations I'(z + 1) = «I'(z)
and /7 ['(2z) = 222711 (2)['(z + 1/2) for the gamma function lead to

f(r) = 2% 77120 (r +1/2) exp(—r1n(2r)),
with the convention 0 - In(0) = 0 when r = 0, and

fr+l+s)  g(r) flr+s)

flr+1)  glr+s) f(r) ~
where g : [0,00) — [0,00) is defined by ¢(0) = 2 and

g(\) = <1 + ) exp(Aln(1+ 1/X))

220 +1

for A > 0. The function g is continuous in 0 and its derivative is given by

Jrey

2
! — —_
JdO) = <1n(1+1/)\) e
for A > 0. Since

2 1

d

—(In(1+1/X) — =—

o (1) 2/\+1) oD@ ie <Y
and 5

Jim (113~ 557) =0
we obtain ¢’(A) > 0. Therefore g is an increasing function. Thus
1
9(r) < 1, which establishes frlts) < fr + ) < f(s)-
g(r+s) fr+1) f(r)
]
k

Lemma 2. Let k € N, ay,...,a; € [0,00) and 0 =) ;_, a;. Then

o k
(7 <Tle

Proof. Let ¢ > 0, and consider the functions s : R* — R, x +— Zle x; and

k k

f:0,00)f =R,z fol = Hexp(xi In(x;)),
i=1

i=1

where we use the convention 0 -In(0) = 0. Let M = {z € (0,00)" | s(z) = o}. Since f is
continuous, there exists a point & in the closure M of M with f(§) = min{f(z) |z € M}.
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Now let x € M \ M, which implies x, = 0 for an index u € [k]. Since s(z) = o, there
exists a v € [k] with x, > 0. Without loss of generality we may assume p = 1, v = 2.

Then
Hm‘“ > <x2> H:rx = f(z

where o’ = (2,3, 23, ..., Tp). Thus ¢ lies in M. Since grads = (1,...,1) # 0, there

exists a Lagrangian multiplier A € R with grad f(§) = Agrads({). From grad f(z) =
(14 In(xy),...,1 +In(xy)) f(z) follows & = ... =&, le, § =0/k fori =1, .. k. O
With the help of Lemma 1 and 2 we conclude

Op < D pp oy (HV,,Z> <_>p/2 (%Z%) p/2<_> e

=1

Therefore
T(p, k,n) < k"*4(p/2, k. n) . (1)

The last estimate yields

p/2 kp/2

av,(n, d)P < 2°Pin =P Z y y
—~ (k+1)4k+2)

t(p/2,k,n).

If p > 4d, then
p/2
avy(n,d)? < 2P (p 4 2)7(p+ 4)™1 Y (p/2, K, n)
< 2p/2+3dpp/2(p + 2)7d(p + 4)fdn7p/2'
If p < 4d, then

p/2
avy(n, d) < 275?37 [(k + 1) (k +2)]" 7 8(p/2, k, d)
k=1
< 95p/43p/4=d, —p/2

Thus we have shown the following theorem:
Theorem 3. Let p be an even integer. If p > 4d, then

avy(n, d) < 2P (p 4 2)7 P (p + 4)=Pn Y2
If p < 4d, then the estimate av,(n,d) < 2%/43Y4=dn=1/2 polds.

For a general p € [2,00) we find a £ € N with 2k < p < 2(k + 1). Hence there exists
ate (0,1 with 1/p=1t/2k+ (1 —t)/2(k + 1) and from Holder’s inequality we get

avy(n, d) < aveg(n,d)" avagi)(n, d)'~
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Remark 4. The probabilistic argument we used for deriving our upper bound for the
average LP-extreme discrepancy was sketched in [11]. Unfortunately the derivation there
contains an error (the number #(p/2, k,n) that appears there has to be substituted by
the number T'(p, k,n) defined above). For that reason we state here the bounds for the
average LP-star discrepancy avy(n, d) that we get by mimicking the approach discussed
in this section: With the symmetrization argument and (1) we obtain

av’(n,d)? < (%)p Z CEmE t(p/2,k,n).

k=1

If p < 2d, then av;(n,d) < 23/2=d/p n=1/2 If p > 2d, then

v (n, d) < 2120 12y 4 2) =l p1/2 (2)

3 Application to the L>*-discrepancy

Now we want to derive an upper bound for the inverse ny(e,d) of the L>-extreme dis-
crepancy in terms of the average LP-extreme discrepancy av,(n,d). Therefore we define
first a “homogeneous version” of the L>-extreme discrepancy: For any h € (0, 1] and any
th, .ty € RY let

D" (ty,...,t,) = inf  sup
> >0 _ph<z<z<h

d n
Hxl — CZ 1@3)(12) .
=1 =1

Obviously D" (hty, ..., ht,) = h?D. (¢, ...,t,). Further quantities of interest are

D! (n,d) = inf D! (ti,....t,)

t1yestn€[—1,1]4

and
nl (e,d) :=min{n € N| DL (n,d) < &}.

Lemma 5. For every ¢ > 0 we have n_(g,d) < ny(e,d) < nl (¢/2,d).

The Lemma can be verified by just mimicking the proof of [4, Lemma 2].
Now define for 1 > ¢ > 0, h = (1 +¢)~¥? and all even natural numbers p

AZ(&) — pApt2) / / <(5 — 1)+ ﬁZj)de dy

[-1,(1-2(1-e)/)1] [(1-)1/41,5(1~y)]

and
d

Bl(e) == / /(1—Hxl)p2—ddm@.

[~1,~h] [h1] =1
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Theorem 6. Let € € (0,1). Ife < D! (n,d), then we obtain for all even p the inequality
av,(n,d) > min(Al(e), Bd(e))"/?. Therefore

nl (e,d) <min{n|Ip € 2N : av,(n,d) < min(Az(e), Bg(s))l/”}.

Proof. To verify the theorem, we modify the proof from [4, Thm. 6]: Let Dl (n,d) > ¢
For h € (0,1] and t4,...,t,, € [—1,1]¢ we have

D" (ty,....,t,) = h®DL (t1/h, ..., t,/h) > eh®.

Therefore we find z, T € [—h, h]¢ with x < T and

)Hﬂﬂz——zlm

> eh?.

Case 1: There holds
Hxl——Zh;w >€hd

With respect to its volume the box [z, T) contains not sufficiently many sample points.
This holds also for slightly smaller boxes. If [v,7) C [z,7), then

ij——21[w >€h —ij—l—Hv]

This leads to

IS

/ / ahd H:z:j + [+ —h))iQddEdg,

—h,~h+22] [z+2(h—z),h 7=1 7=1

where in the last step we made a change of coordinates: z=v—z—hand Z=v—-7+ h.
If we translate edge points v and w, v < w, of anchored boxes [0, v) and [0, w) by a vector
a > 0, then it is a simple geometrical observation that the volumes of the corresponding
anchored boxes satisfy

vol([0,w)) — vol([0,v)) < vol([0,w + a)) — vol([0,v + a)) .

In particular, if w =2, v=2z+ 2 —h and a = h — z, then

d

d
H:z:] Hz]—l—xj—h)ghd—nzj.
Jj=1 j=1
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This, and integrating over the variable z instead over Z, leads to
Dy(t1, ..., tn / / 5—1 hd—l—Hz]) dzdz.

We can ignore those vectors z with a component z; < (1 — €)h, since they satisfy the
relation (¢ — 1)h? + H?‘:l 2; < 0. Asx; > ch forall 1 <7 <d, we get

Dy(t, oo ty)? > / / ((e— 1)hd+f[zj)idzdg

[~h,(2e—1)h] [(1—¢)h,1(h—z)]

/ / ((5— 1)hd—|—f[1zj)pdzdg.

[~h,(1=2(1=¢)'/9)h] [(1~€)!/?h,5(h~2)]

v

Case 2: There holds
—Zlm ) Hxl -

The box [z, T) contains too many points, and thls is also true for somewhat larger boxes.
If [z,7) C [w,w), then

—Zl[ww le>€hd+H$l le

This implies

D(tl,...,tn)p>/ /(md Hml le> 9= 45 dw

-1,z [z,1]
P
eh v —h ) 974 dz dz |
/ / Hxl H + ;) . zdz
[-1—h—z,—h] [h,1+h-7]

where we made the substitutions 7 = w—7+h and z = w—x—h. If we restrict the domain
of integration and use the simple geometric observation mentioned in the discussion of
Case 1, we obtain

d
Dylty, ..o, t)? > / / ((1 +e)hd — Hzl>p 24 dz dz .
+
[~1,~h] [h,1] =1

If we choose h = (1+&)~"/4, then Dp(ty,...,t,)" > Bl(e).
Our analysis results in Dy(t1, ..., t,)? > min{A%(e), B(e)} for all t1,....t, € [-1,1]%
Theorem 6 follows now by integration. O
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Lemma 7. Let € € (0,1/2] and p > 4d be an even integer. Then

1 /e \2d/p
o ad d(-y\1
min(A; (), By(e)) P> §€<4_d> .
Proof. Let again h = (1+¢)~"/4. From the definition of B(e) follows
Bl(e) > / / (1-(1+e/2) ") 27 "dzda
[—(1+e/2)~1/41,—h] [h,(1+e/2)~1/41]
— 2791 = (142/2) ) (1 +¢/2)" V= (1+)" V%)™,

As e < 1/2, it is straightforward to verify the inequalities 1 — (1 + &/2)~! > 2¢/5 and
(14¢/2)74 — (1 +¢)7'/? > £/4d. That implies

2 /e \2d/p 2 senN2d/p ] €\ 2d/p
Bi(e)Y/P > 9=d/pZ <—> >~z <—> > = <—> :
p(5)7 = 5\ 5°\1d) ~3°\44

We can estimate Af(e) in the following way:

d d(p+2
A(e) > h (P+2) / / (e/2)Pdzdy
[-1,(1-2(1—¢/2)V/ 1] [(1—£/2)1/ 1,1 (1-y))]
— (142) P 2(e/2)7(1 — (1 — /2)/4)*".
Since 1 — (1 — &/2)Y4 > ¢/2d, we get

1 €/ €\ 2/p
AP >t _<_)
W2 G 3 \2d

1 24 N2/pe s eN2d/p 1 €\ 2d/p
> (2) 3@ za(m)
1+e\l+e¢ 2\4d 3 \4d

Let now k € N, p = 4kd and ¢ € (0,1/2). With Theorem 3 and Lemma 7 it is easily
verified that

n > 9. 230 HREI=/k g =221k engures  av,(n, d) < min(A%(e), Bl(e))"".
This, Lemma 5 and Theorem 6 lead to the following theorem:

Theorem 8. Lete € (0,1/2) and k € N. Then ny(e,d) < Crpde>~V* where the constant
Cy, is bounded from above by 9 - 2°0+1/2k) p1=1/k

Remark 9. In a similar way we can use the bound for the average LP-star discrepancy
to calculate an upper bound for the inverse n’_(d,¢) of the star discrepancy: With (2),
[4, Thm. 6] and [4, Lemma 3] (where we can replace the factor \/2/3 by 1-—cf. with the
proof of Lemma 7), we obtain

n’(d,e) < 9. 2H3/kp1-Vkge—2-1/k (3)

O
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