Bounds for the average L^{p}-extreme and the L^{∞}-extreme discrepancy

Michael Gnewuch *
Mathematisches Seminar, Christian-Albrechts-Universität Kiel
Christian-Albrechts-Platz 4, D-24098 Kiel, Germany
e-mail: mig@numerik.uni-kiel.de

Submitted: Jan 24, 2005; Accepted: Oct 18, 2005; Published: Oct 25, 2005
Mathematics Subject Classifications: 11K38

Abstract

The extreme or unanchored discrepancy is the geometric discrepancy of point sets in the d-dimensional unit cube with respect to the set system of axis-parallel boxes. For $2 \leq p<\infty$ we provide upper bounds for the average L^{p}-extreme discrepancy. With these bounds we are able to derive upper bounds for the inverse of the L^{∞}-extreme discrepancy with optimal dependence on the dimension d and explicitly given constants.

1 Introduction

Let \mathcal{R}_{d} be the set of all half-open axis-parallel boxes in the d-dimensional unit ball with respect to the maximum norm, i.e.,

$$
\mathcal{R}_{d}=\left\{[x, y) \mid x, y \in[-1,1]^{d}, x \leq y\right\}
$$

where $[x, y):=\left[x_{1}, y_{1}\right) \times \ldots \times\left[x_{d}, y_{d}\right)$ and inequalities between vectors are meant componentwise. It is convenient to identify \mathcal{R}_{d} with

$$
\Omega:=\left\{(\underline{x}, \bar{x}) \in \mathbb{R}^{2 d} \mid-\mathbf{1} \leq \underline{x} \leq \bar{x} \leq \mathbf{1}\right\},
$$

where for any real scalar a we put $\mathbf{a}:=(a, \ldots, a) \in \mathbb{R}^{d}$. The L^{p}-extreme discrepancy of a point set $\left\{t_{1}, \ldots, t_{n}\right\} \subset[-1,1]^{d}$ is given by

$$
D_{p}\left(t_{1}, \ldots, t_{n}\right):=\left(\int_{\Omega}\left|\prod_{l=1}^{d}\left(\bar{x}_{l}-\underline{x}_{l}\right)-\frac{1}{n} \sum_{i=1}^{n} 1_{[\underline{x}, \bar{x})}\left(t_{i}\right)\right|^{p} d \omega(\underline{x}, \bar{x})\right)^{1 / p}
$$

[^0]where $1_{[\underline{x}, \bar{x})}$ denotes the characteristic function of $[\underline{x}, \bar{x})$ and $d \omega$ is the normalized Lebesgue measure $2^{-d} d \underline{x} d \bar{x}$ on Ω. The L^{∞}-extreme discrepancy is
$$
D_{\infty}\left(t_{1}, \ldots, t_{n}\right):=\sup _{(\underline{x}, \bar{x}) \in \Omega}\left|\prod_{l=1}^{d}\left(\bar{x}_{l}-\underline{x}_{l}\right)-\frac{1}{n} \sum_{i=1}^{n} 1_{[\underline{x}, \bar{x})}\left(t_{i}\right)\right|,
$$
and the smallest possible L^{∞}-extreme discrepancy of any n-point set is
$$
D_{\infty}(n, d)=\inf _{t_{1}, \ldots, t_{n} \in[-1,1]^{d}} D_{\infty}\left(t_{1}, \ldots, t_{n}\right)
$$

Another quantity of interest is the inverse of $D_{\infty}(n, d)$, namely

$$
n_{\infty}(\varepsilon, d)=\min \left\{n \in \mathbb{N} \mid D_{\infty}(n, d) \leq \varepsilon\right\} .
$$

If we consider in the definitions above the set of all d-dimensional corners

$$
\mathcal{C}_{d}=\left\{[-\mathbf{1}, y) \mid y \in[-1,1]^{d}\right\}
$$

instead of \mathcal{R}_{d}, we get the classical notion of star-discrepancy.
It is well known that the star-discrepancy is related to the error of multivariate integration of certain function classes (see, e.g., $[2,5,8,10,12]$). That this is also true for the extreme discrepancy was pointed out by Novak and Woźniakowski in [12]. Therefore it is of interest to derive upper bounds for the extreme discrepancy with a good dependence on the dimension d and explicitly known constants.

Heinrich, Novak, Wasilkowski and Woźniakowski showed in [4] with probabilistic methods that for the inverse $n_{\infty}^{*}(\varepsilon, d)$ of the star-discrepancy we have $n^{*}(\varepsilon, d) \leq C d \varepsilon^{-2}$. The drawback is here that the constant C is not known. In the same paper a lower bound was proved establishing the linear dependence of $n_{\infty}^{*}(\varepsilon, d)$ on d. This bound has recently been improved by Aicke Hinrichs to $n_{\infty}^{*}(\varepsilon, d) \geq c d \varepsilon^{-1}[6]$. These results hold also for $n_{\infty}(\varepsilon, d)$.

In [4], Heinrich et al. presented two additional bounds for $n_{\infty}^{*}(\varepsilon, d)$ with slightly worse dependence on d, but explicitly known constants. The first one uses again a probabilistic approach, employs Hoeffding's inequality and leads to

$$
n_{\infty}^{*}(\varepsilon, d) \leq O\left(d \varepsilon^{-2}\left(\ln (d)+\ln \left(\varepsilon^{-1}\right)\right)\right)
$$

The approach has been modified in more recent papers to improve this bound or to derive similar results in different settings $[1,5,9]$. In particular, it has been implicitly shown in the quite general Theorem 3.1 in [9] that the last bound holds also for the extreme discrepancy (as pointed out in [3], this result can be improved by employing the methods used in [1]).

The second bound was shown in the following way: The authors proved for even p an upper bound for the average L^{p}-star discrepancy $\operatorname{av}_{p}^{*}(n, d)$:

$$
\operatorname{av}_{p}^{*}(n, d) \leq 3^{2 / 3} 2^{5 / 2+d / p} p(p+2)^{-d / p} n^{-1 / 2}
$$

(This analysis is quite elaborate, since $\operatorname{av}_{p}^{*}(n, d)$ is represented as an alternating sum of weighted products of Stirling numbers of the first and second kind.) The bound was used to derive upper bounds $n_{\infty}^{*}(\varepsilon, d) \leq C_{k} d^{2} \varepsilon^{-2-1 / k}$ for every $k \in \mathbb{N}$. To improve the dependence on d, Hinrichs suggested to use symmetrization. This approach was sketched in [11] and leads to

$$
\operatorname{av}_{p}^{*}(n, d) \leq 2^{1 / 2+d / p} p^{1 / 2}(p+2)^{-d / p} n^{-1 / 2}
$$

and $n_{\infty}^{*}(\varepsilon, d) \leq C_{k} d \varepsilon^{-2-1 / k}$. (Actually there seems to be an error in the calculations in [11], therefore we stated the results of our own calculations - see Remark 4 and 9).

In this paper we use the symmetrization approach to prove an upper bound for the average L^{p}-extreme discrepancy $\operatorname{av}_{p}(n, d)$ for $2 \leq p<\infty$. Our analysis does not need Stirling numbers and uses rather simple combinatorial arguments. Similar as in [4], we derive from this bound upper bounds for the inverse of the L^{∞}-extreme discrepancy of the form $n_{\infty}(\varepsilon, d) \leq C_{k} d \varepsilon^{-2-1 / k}$ for all $k \in \mathbb{N}$.

2 Bound for the average L^{p}-discrepancy

If \underline{x}, \bar{x} are vectors in \mathbb{R}^{d} with $\underline{x} \leq \bar{x}$, we use the (non-standard) notation $x:=(\bar{x}-\underline{x}) / 2$. Let $p \in \mathbb{N}$ be even. For $i=1, \ldots, n$ we define the Banach space valued random variable $X_{i}:[-1,1]^{n d} \rightarrow L^{p}(\Omega, d \omega)$ by $X_{i}(t)(\underline{x}, \bar{x})=1_{[\underline{x}, \bar{x})}\left(t_{i}\right)$. Then X_{1}, \ldots, X_{n} are independent and identically distributed. Note that X_{i} is Bochner integrable for all $i \in[n]$. If \mathbb{E} denotes the expectation with respect to the normalized measure $2^{-n d} d t$, then $\mathbb{E} X_{i} \in L^{p}(\Omega, d \omega)$ and $\mathbb{E} X_{i}(\underline{x}, \bar{x})=x_{1} \ldots x_{d}$ almost everywhere. We obtain

$$
\begin{aligned}
\operatorname{av}_{p}(n, d)^{p} & =\int_{[-1,1]^{n d}} D_{p}\left(t_{1}, \ldots, t_{n}\right)^{p} 2^{-n d} d t \\
& =\int_{[-1,1]^{n d}}\left\|\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}(t)-\mathbb{E} X_{i}\right)\right\|_{L^{p}(\Omega, d \omega)}^{p} 2^{-n d} d t \\
& =\mathbb{E}\left(\left\|\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mathbb{E} X_{i}\right)\right\|_{L^{p}(\Omega, d \omega)}^{p}\right) .
\end{aligned}
$$

Let $\varepsilon_{1}, \ldots, \varepsilon_{n}:[-1,1]^{n d} \rightarrow\{-1,+1\}$ be symmetric Rademacher random variables, i.e., random variables taking the values ± 1 with probability $1 / 2$. We choose these variables such that $\varepsilon_{1}, \ldots, \varepsilon_{n}, X_{1}, \ldots, X_{n}$ are independent. Then (see [7, $\left.\S 6.1\right]$)

$$
\begin{aligned}
& \operatorname{av}_{p}(n, d)^{p} \leq \mathbb{E}\left(2^{p}\left\|\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} X_{i}\right\|_{L^{p}(\Omega, d \omega)}^{p}\right) \\
= & \left(\frac{2}{n}\right)^{p} \sum_{i_{1}, \ldots, i_{p}=1}^{n} \int_{[-1,1]^{n d}} \int_{\Omega} \prod_{l=1}^{p}\left(\varepsilon_{i_{l}}(t) 1_{[\underline{x}, \bar{x})}\left(t_{i_{l}}\right)\right) d \omega(\underline{x}, \bar{x}) 2^{-n d} d t .
\end{aligned}
$$

Let us now consider $(\underline{x}, \bar{x}) \in \Omega, k \in[p]$, pairwise disjoint indices i_{1}, \ldots, i_{k} and $j_{1}, \ldots, j_{k} \in[p]$ with $\sum_{l=1}^{k} j_{l}=p$. According to Fubini's Theorem

$$
\begin{aligned}
J & :=\int_{[-1,1]^{n d}}\left(\prod_{l=1}^{k} \varepsilon_{i_{l}}^{j_{l}}(t)\right)\left(\int_{\Omega}\left(\prod_{l=1}^{k} X_{i_{l}}^{j_{l}}(t)(\underline{x}, \bar{x})\right) d \omega(\underline{x}, \bar{x})\right) 2^{-n d} d t \\
& =\left(\prod_{l=1}^{k} \int_{[-1,1]^{n d}} \varepsilon_{i_{l}}^{j_{l}}(t) 2^{-n d} d t\right)\left(\int_{\Omega} \int_{[-1,1]^{n d}}\left(\prod_{l=1}^{k} 1_{[x, \bar{x})}\left(t_{i_{l}}\right)\right) 2^{-n d} d t d \omega(\underline{x}, \bar{x})\right) .
\end{aligned}
$$

This yields $J=\int_{\Omega}\left(x_{1} \ldots x_{d}\right)^{k} d \omega(\underline{x}, \bar{x})=2^{d}(k+1)^{-d}(k+2)^{-d}$ if every exponent j_{l} is even, and $J=0$ if there exists at least one odd exponent j_{l}. Let $T(p, k, n)$ be the number of tuples $\left(i_{1}, \ldots, i_{p}\right) \in[n]^{p}$ with $\left|\left\{i_{1}, \ldots, i_{p}\right\}\right|=k$ and $\left|\left\{l \in[p] \mid i_{l}=i_{m}\right\}\right|$ even for each $m \in[p]$. Our last observation implies

$$
\operatorname{av}_{p}(n, d)^{p} \leq 2^{p+d} n^{-p} \sum_{k=1}^{p / 2} \frac{T(p, k, n)}{(k+1)^{d}(k+2)^{d}} .
$$

In the next step we shall estimate the numbers $T(p, k, n)$. For that purpose we introduce further notation. Let

$$
M(p / 2, k)=\left\{\nu \in \mathbb{N}^{k} \mid 1 \leq \nu_{1} \leq \ldots \leq \nu_{k} \leq p / 2, \sum_{i=1}^{k} \nu_{k}=p / 2\right\}
$$

and for $\nu \in M(p / 2, k)$ let $e(\nu, i)=\left|\left\{j \in[k] \mid \nu_{j}=i\right\}\right|$. With the standard notation for multinomial coefficients we get

$$
T(p, k, n)=\sum_{\nu \in M(p / 2, k)}\binom{p}{2 \nu_{1}, \ldots, 2 \nu_{k}} \frac{n(n-1) \ldots(n-k+1)}{e(\nu, 1)!\ldots e(\nu, p / 2)!} .
$$

If $\sharp(p / 2, k, n)$ denotes the number of tuples $\left(i_{1}, \ldots, i_{p / 2}\right) \in[n]^{p / 2}$ with $\left|\left\{i_{1}, \ldots, i_{p / 2}\right\}\right|$ $=k$, then

$$
\sharp(p / 2, k, n)=\sum_{\nu \in M(p / 2, k)}\binom{p / 2}{\nu_{1}, \ldots, \nu_{k}} \frac{n(n-1) \ldots(n-k+1)}{e(\nu, 1)!\ldots e(\nu, p / 2)!} .
$$

We want to compare $T(p, k, n)$ with $\sharp(p / 2, k, n)$ and are therefore interested in the quantity

$$
Q_{k}^{p}(\nu):=\binom{p}{2 \nu_{1}, \ldots, 2 \nu_{k}}\binom{p / 2}{\nu_{1}, \ldots, \nu_{k}}^{-1}
$$

To derive an upper bound for $Q_{k}^{p}(\nu)$, we prove two auxiliary lemmas.
Lemma 1. Let $f: \mathbb{N}_{0} \rightarrow \mathbb{R}$ be defined by $f(r)=[2 r(2 r-1) \ldots(r+1)](2 r)^{-r}$ for $r>0$ and $f(0)=1$. Then $f(r+s) \leq f(r) f(s)$ for all $r, s \in \mathbb{N}_{0}$.

Proof. We prove the inequality for an arbitrary s by induction over r. It is evident if $r=0$. So let the inequality hold for some $r \in \mathbb{N}_{0}$. The well known relations $\Gamma(x+1)=x \Gamma(x)$ and $\sqrt{\pi} \Gamma(2 x)=2^{2 x-1} \Gamma(x) \Gamma(x+1 / 2)$ for the gamma function lead to

$$
f(r)=2^{2 r} \pi^{-1 / 2} \Gamma(r+1 / 2) \exp (-r \ln (2 r)),
$$

with the convention $0 \cdot \ln (0)=0$ when $r=0$, and

$$
\frac{f(r+1+s)}{f(r+1)}=\frac{g(r)}{g(r+s)} \frac{f(r+s)}{f(r)}
$$

where $g:[0, \infty) \rightarrow[0, \infty)$ is defined by $g(0)=2$ and

$$
g(\lambda)=\left(1+\frac{1}{2 \lambda+1}\right) \exp (\lambda \ln (1+1 / \lambda))
$$

for $\lambda>0$. The function g is continuous in 0 and its derivative is given by

$$
g^{\prime}(\lambda)=\left(\ln (1+1 / \lambda)-\frac{2}{2 \lambda+1}\right) g(\lambda)
$$

for $\lambda>0$. Since

$$
\frac{d}{d \lambda}\left(\ln (1+1 / \lambda)-\frac{2}{2 \lambda+1}\right)=-\frac{1}{\lambda(\lambda+1)(2 \lambda+1)^{2}}<0
$$

and

$$
\lim _{\lambda \rightarrow \infty}\left(\ln (1+1 / \lambda)-\frac{2}{2 \lambda+1}\right)=0
$$

we obtain $g^{\prime}(\lambda) \geq 0$. Therefore g is an increasing function. Thus

$$
\frac{g(r)}{g(r+s)} \leq 1, \text { which establishes } \frac{f(r+1+s)}{f(r+1)} \leq \frac{f(r+s)}{f(r)} \leq f(s)
$$

Lemma 2. Let $k \in \mathbb{N}, a_{1}, \ldots, a_{k} \in[0, \infty)$ and $\sigma=\sum_{i=1}^{k} a_{i}$. Then

$$
\left(\frac{\sigma}{k}\right)^{\sigma} \leq \prod_{i=1}^{k} a_{i}^{a_{i}}
$$

Proof. Let $\sigma>0$, and consider the functions $s: \mathbb{R}^{k} \rightarrow \mathbb{R}, x \mapsto \sum_{i=1}^{k} x_{i}$ and

$$
f:[0, \infty)^{k} \rightarrow \mathbb{R}, x \mapsto \prod_{i=1}^{k} x_{i}^{x_{i}}=\prod_{i=1}^{k} \exp \left(x_{i} \ln \left(x_{i}\right)\right)
$$

where we use the convention $0 \cdot \ln (0)=0$. Let $M=\left\{x \in(0, \infty)^{k} \mid s(x)=\sigma\right\}$. Since f is continuous, there exists a point ξ in the closure \bar{M} of M with $f(\xi)=\min \{f(x) \mid x \in \bar{M}\}$.

Now let $x \in \bar{M} \backslash M$, which implies $x_{\mu}=0$ for an index $\mu \in[k]$. Since $s(x)=\sigma$, there exists a $\nu \in[k]$ with $x_{\nu}>0$. Without loss of generality we may assume $\mu=1, \nu=2$. Then

$$
f(x)=\prod_{i=2}^{k} x_{i}^{x_{i}}>\left(\frac{x_{2}}{2}\right)^{x_{2}} \prod_{i=3}^{k} x_{i}^{x_{i}}=f\left(x^{\prime}\right)
$$

where $x^{\prime}=\left(\frac{x_{2}}{2}, \frac{x_{2}}{2}, x_{3}, \ldots, x_{k}\right)$. Thus ξ lies in M. Since $\operatorname{grad} s \equiv(1, \ldots, 1) \neq 0$, there exists a Lagrangian multiplier $\lambda \in \mathbb{R}$ with $\operatorname{grad} f(\xi)=\lambda \operatorname{grad} s(\xi)$. From $\operatorname{grad} f(x)=$ $\left(1+\ln \left(x_{1}\right), \ldots, 1+\ln \left(x_{k}\right)\right) f(x)$ follows $\xi_{1}=\ldots=\xi_{k}$, i.e., $\xi_{i}=\sigma / k$ for $i=1, \ldots, k$.

With the help of Lemma 1 and 2 we conclude

$$
Q_{k} \leq \frac{p^{p / 2}}{\left(2 \nu_{1}\right)^{\nu_{1}} \ldots\left(2 \nu_{k}\right)^{\nu_{k}}}=\left(\prod_{i=1}^{k} \nu_{i}^{\nu_{i}}\right)^{-1}\left(\frac{p}{2}\right)^{p / 2} \leq\left(\frac{1}{k} \sum_{i=1}^{k} \nu_{i}\right)^{-p / 2}\left(\frac{p}{2}\right)^{p / 2}=k^{p / 2}
$$

Therefore

$$
\begin{equation*}
T(p, k, n) \leq k^{p / 2} \sharp(p / 2, k, n) . \tag{1}
\end{equation*}
$$

The last estimate yields

$$
\operatorname{av}_{p}(n, d)^{p} \leq 2^{p+d} n^{-p} \sum_{k=1}^{p / 2} \frac{k^{p / 2}}{(k+1)^{d}(k+2)^{d}} \sharp(p / 2, k, n) .
$$

If $p \geq 4 d$, then

$$
\begin{aligned}
\operatorname{av}_{p}(n, d)^{p} & \leq 2^{p / 2+3 d} n^{-p} p^{p / 2}(p+2)^{-d}(p+4)^{-d} \sum_{k=1}^{p / 2} \sharp(p / 2, k, n) \\
& \leq 2^{p / 2+3 d} p^{p / 2}(p+2)^{-d}(p+4)^{-d} n^{-p / 2}
\end{aligned}
$$

If $p<4 d$, then

$$
\begin{aligned}
\operatorname{av}_{p}(n, d)^{p} & \leq 2^{p+d} n^{-p} \sum_{k=1}^{p / 2}[(k+1)(k+2)]^{p / 4-d} \sharp(p / 2, k, d) \\
& \leq 2^{5 p / 4} 3^{p / 4-d} n^{-p / 2} .
\end{aligned}
$$

Thus we have shown the following theorem:
Theorem 3. Let p be an even integer. If $p \geq 4 d$, then

$$
\operatorname{av}_{p}(n, d) \leq 2^{1 / 2+3 d / p} p^{1 / 2}(p+2)^{-d / p}(p+4)^{-d / p} n^{-1 / 2}
$$

If $p<4 d$, then the estimate $\operatorname{av}_{p}(n, d) \leq 2^{5 / 4} 3^{1 / 4-d} n^{-1 / 2}$ holds.
For a general $p \in[2, \infty)$ we find a $k \in \mathbb{N}$ with $2 k \leq p<2(k+1)$. Hence there exists a $t \in(0,1]$ with $1 / p=t / 2 k+(1-t) / 2(k+1)$ and from Hölder's inequality we get

$$
\operatorname{av}_{p}(n, d) \leq \operatorname{av}_{2 k}(n, d)^{t} \operatorname{av}_{2(k+1)}(n, d)^{1-t}
$$

Remark 4. The probabilistic argument we used for deriving our upper bound for the average L^{p}-extreme discrepancy was sketched in [11]. Unfortunately the derivation there contains an error (the number $\sharp(p / 2, k, n)$ that appears there has to be substituted by the number $T(p, k, n)$ defined above). For that reason we state here the bounds for the average L^{p}-star discrepancy $\operatorname{av}_{p}^{*}(n, d)$ that we get by mimicking the approach discussed in this section: With the symmetrization argument and (1) we obtain

$$
\operatorname{av}_{p}^{*}(n, d)^{p} \leq\left(\frac{2}{n}\right)^{p} \sum_{k=1}^{p / 2} \frac{k^{p / 2}}{(k+1)^{d}} \sharp(p / 2, k, n) .
$$

If $p<2 d$, then $\operatorname{av}_{p}^{*}(n, d) \leq 2^{3 / 2-d / p} n^{-1 / 2}$. If $p \geq 2 d$, then

$$
\begin{equation*}
\operatorname{av}_{p}^{*}(n, d) \leq 2^{1 / 2+d / p} p^{1 / 2}(p+2)^{-d / p} n^{-1 / 2} \tag{2}
\end{equation*}
$$

3 Application to the L^{∞}-discrepancy

Now we want to derive an upper bound for the inverse $n_{\infty}(\varepsilon, d)$ of the L^{∞}-extreme discrepancy in terms of the average L^{p}-extreme discrepancy $\operatorname{av}_{p}(n, d)$. Therefore we define first a "homogeneous version" of the L^{∞}-extreme discrepancy: For any $h \in(0,1]$ and any $t_{1}, \ldots, t_{n} \in \mathbb{R}^{d}$ let

$$
D_{\infty}^{h}\left(t_{1}, \ldots, t_{n}\right)=\inf _{c>0} \sup _{-\mathbf{h} \leq \underline{x}<\bar{x} \leq \mathbf{h}}\left|\prod_{l=1}^{d} x_{l}-c \sum_{i=1}^{n} 1_{[\underline{x}, \bar{x})}\left(t_{i}\right)\right| .
$$

Obviously $D_{\infty}^{h}\left(h t_{1}, \ldots, h t_{n}\right)=h^{d} D_{\infty}^{1}\left(t_{1}, \ldots, t_{n}\right)$. Further quantities of interest are

$$
D_{\infty}^{1}(n, d)=\inf _{t_{1}, \ldots, t_{n} \in[-1,1]^{d}} D_{\infty}^{1}\left(t_{1}, \ldots, t_{n}\right)
$$

and

$$
n_{\infty}^{1}(\varepsilon, d):=\min \left\{n \in \mathbb{N} \mid D_{\infty}^{1}(n, d) \leq \varepsilon\right\}
$$

Lemma 5. For every $\varepsilon>0$ we have $n_{\infty}^{1}(\varepsilon, d) \leq n_{\infty}(\varepsilon, d) \leq n_{\infty}^{1}(\varepsilon / 2, d)$.
The Lemma can be verified by just mimicking the proof of [4, Lemma 2]. Now define for $1>\varepsilon>0, h=(1+\varepsilon)^{-1 / d}$ and all even natural numbers p

$$
A_{p}^{d}(\varepsilon):=h^{d(p+2)} \int_{\left[-\mathbf{1},\left(1-2(1-\varepsilon)^{1 / d}\right) \mathbf{1}\right]} \int_{\left[(1-\varepsilon)^{1 / d} \mathbf{1}, \frac{1}{2}(\mathbf{1}-y)\right]}\left((\varepsilon-1)+\prod_{j=1}^{d} z_{j}\right)^{p} d z d y
$$

and

$$
B_{p}^{d}(\varepsilon):=\int_{[-\mathbf{1},-\mathbf{h}]} \int_{[\mathbf{h}, \mathbf{1}]}\left(1-\prod_{l=1}^{d} x_{l}\right)^{p} 2^{-d} d \bar{x} d \underline{x}
$$

Theorem 6. Let $\varepsilon \in(0,1)$. If $\varepsilon<D_{\infty}^{1}(n, d)$, then we obtain for all even p the inequality $\operatorname{av}_{p}(n, d)>\min \left(A_{p}^{d}(\varepsilon), B_{p}^{d}(\varepsilon)\right)^{1 / p}$. Therefore

$$
n_{\infty}^{1}(\varepsilon, d) \leq \min \left\{n \mid \exists p \in 2 \mathbb{N}: \operatorname{av}_{p}(n, d) \leq \min \left(A_{p}^{d}(\varepsilon), B_{p}^{d}(\varepsilon)\right)^{1 / p}\right\}
$$

Proof. To verify the theorem, we modify the proof from [4, Thm. 6]: Let $D_{\infty}^{1}(n, d)>\varepsilon$. For $h \in(0,1]$ and $t_{1}, \ldots, t_{n} \in[-1,1]^{d}$ we have

$$
D_{\infty}^{h}\left(t_{1}, \ldots, t_{n}\right)=h^{d} D_{\infty}^{1}\left(t_{1} / h, \ldots, t_{n} / h\right)>\varepsilon h^{d} .
$$

Therefore we find $\underline{x}, \bar{x} \in[-h, h]^{d}$ with $\underline{x}<\bar{x}$ and

$$
\left|\prod_{l=1}^{d} x_{l}-\frac{1}{n} \sum_{i=1}^{n} 1_{[\underline{x}, \bar{x})}\left(t_{i}\right)\right|>\varepsilon h^{d} .
$$

Case 1: There holds

$$
\prod_{l=1}^{d} x_{l}-\frac{1}{n} \sum_{i=1}^{n} 1_{[\underline{x}, \bar{x})}\left(t_{i}\right)>\varepsilon h^{d}
$$

With respect to its volume the box $[\underline{x}, \bar{x})$ contains not sufficiently many sample points. This holds also for slightly smaller boxes. If $[\underline{v}, \bar{v}) \subseteq[\underline{x}, \bar{x})$, then

$$
\prod_{j=1}^{d} v_{j}-\frac{1}{n} \sum_{i=1}^{n} 1_{[v, \bar{v})}\left(t_{i}\right)>\varepsilon h^{d}-\prod_{j=1}^{d} x_{j}+\prod_{j=1}^{d} v_{j} .
$$

This leads to

$$
\begin{aligned}
& D_{p}\left(t_{1}, \ldots, t_{n}\right)^{p}>\int_{[\underline{x}, \bar{x}][\underline{x}, \bar{x}]} \int_{j}\left(\varepsilon h^{d}-\prod_{j=1}^{d} x_{j}+\prod_{j=1}^{d} v_{j}\right)^{p} 2^{-d} d \bar{v} d \underline{v} \\
= & \int_{[-\mathbf{h},-\mathbf{h}+2 x][\underline{z}+2(\mathbf{h}-x), \mathbf{h}]}\left(\varepsilon h^{d}-\prod_{j=1}^{d} x_{j}+\prod_{j=1}^{d}\left(z_{j}+x_{j}-h\right)\right)_{+}^{p} 2^{-d} d \bar{z} d \underline{z},
\end{aligned}
$$

where in the last step we made a change of coordinates: $\underline{z}=\underline{v}-\underline{x}-\mathbf{h}$ and $\bar{z}=\bar{v}-\bar{x}+\mathbf{h}$. If we translate edge points v and $w, v \leq w$, of anchored boxes $[0, v)$ and $[0, w)$ by a vector $a \geq 0$, then it is a simple geometrical observation that the volumes of the corresponding anchored boxes satisfy

$$
\operatorname{vol}([0, w))-\operatorname{vol}([0, v)) \leq \operatorname{vol}([0, w+a))-\operatorname{vol}([0, v+a))
$$

In particular, if $w=x, v=z+x-\mathbf{h}$ and $a=\mathbf{h}-x$, then

$$
\prod_{j=1}^{d} x_{j}-\prod_{j=1}^{d}\left(z_{j}+x_{j}-h\right) \leq h^{d}-\prod_{j=1}^{d} z_{j}
$$

This, and integrating over the variable z instead over \bar{z}, leads to

$$
D_{p}\left(t_{1}, \ldots, t_{n}\right)^{p}>\int_{[-\mathbf{h},-\mathbf{h}+2 x]\left[\mathbf{h}-x, \frac{1}{2}(\mathbf{h}-\underline{z})\right]}\left((\varepsilon-1) h^{d}+\prod_{j=1}^{d} z_{j}\right)^{p} d z d \underline{z}
$$

We can ignore those vectors z with a component $z_{i}<(1-\varepsilon) h$, since they satisfy the relation $(\varepsilon-1) h^{d}+\prod_{j=1}^{d} z_{j}<0$. As $x_{i}>\varepsilon h$ for all $1 \leq i \leq d$, we get

$$
\begin{aligned}
& D_{p}\left(t_{1}, \ldots, t_{n}\right)^{p}>\int_{[-\mathbf{h},(2 \varepsilon-1) \mathbf{h}]} \int_{\left[(1-\varepsilon) \mathbf{h}, \frac{1}{2}(\mathbf{h}-\underline{z})\right]}\left((\varepsilon-1) h^{d}+\prod_{j=1}^{d} z_{j}\right)^{p} d z d \underline{z} \\
\geq & \int_{\left[-\mathbf{h},\left(1-2(1-\varepsilon)^{1 / d}\right) \mathbf{h}\right]} \int_{\left[(1-\varepsilon)^{1 / d} \mathbf{h}, \frac{1}{2}(\mathbf{h}-\underline{z})\right]}\left((\varepsilon-1) h^{d}+\prod_{j=1}^{d} z_{j}\right)^{p} d z d \underline{z} .
\end{aligned}
$$

Case 2: There holds

$$
\frac{1}{n} \sum_{i=1}^{n} 1_{[x, \bar{x})}\left(t_{i}\right)-\prod_{l=1}^{d} x_{l}>\varepsilon h^{d}
$$

The box $[\underline{x}, \bar{x})$ contains too many points, and this is also true for somewhat larger boxes. If $[\underline{x}, \bar{x}) \subseteq[\underline{w}, \bar{w})$, then

$$
\frac{1}{n} \sum_{i=1}^{n} 1_{[\underline{w}, \bar{w})}\left(t_{i}\right)-\prod_{l=1}^{d} w_{l}>\varepsilon h^{d}+\prod_{l=1}^{d} x_{l}-\prod_{l=1}^{d} w_{l}
$$

This implies

$$
\begin{aligned}
& D_{p}\left(t_{1}, \ldots, t_{n}\right)^{p}>\int_{[-\mathbf{1}, \underline{x}]} \int_{[\bar{x}, \mathbf{1}]}\left(\varepsilon h^{d}+\prod_{l=1}^{d} x_{l}-\prod_{l=1}^{d} w_{l}\right)^{p} 2^{-d} d \bar{w} d \underline{w} \\
\geq & \int_{[-\mathbf{1}-\mathbf{h}-\underline{x},-\mathbf{h}][\mathbf{h}, \mathbf{1}+\mathbf{h}-\bar{x}]}\left(\varepsilon h^{d}+\prod_{l=1}^{d} x_{l}-\prod_{l=1}^{d}\left(z_{l}-h+x_{l}\right)\right)_{+}^{p} 2^{-d} d \bar{z} d \underline{z},
\end{aligned}
$$

where we made the substitutions $\bar{z}=\bar{w}-\bar{x}+\mathbf{h}$ and $\underline{z}=\underline{w}-\underline{x}-\mathbf{h}$. If we restrict the domain of integration and use the simple geometric observation mentioned in the discussion of Case 1, we obtain

$$
D_{p}\left(t_{1}, \ldots, t_{n}\right)^{p}>\int_{[-\mathbf{1},-\mathbf{h}]} \int_{[\mathbf{h}, \mathbf{1}]}\left((1+\varepsilon) h^{d}-\prod_{l=1}^{d} z_{l}\right)_{+}^{p} 2^{-d} d \bar{z} d \underline{z}
$$

If we choose $h=(1+\varepsilon)^{-1 / d}$, then $D_{p}\left(t_{1}, \ldots, t_{n}\right)^{p}>B_{p}^{d}(\varepsilon)$.
Our analysis results in $D_{p}\left(t_{1}, \ldots, t_{n}\right)^{p}>\min \left\{A_{p}^{d}(\varepsilon), B_{p}^{d}(\varepsilon)\right\}$ for all $t_{1}, \ldots, t_{n} \in[-1,1]^{d}$. Theorem 6 follows now by integration.

Lemma 7. Let $\varepsilon \in(0,1 / 2]$ and $p \geq 4 d$ be an even integer. Then

$$
\min \left(A_{p}^{d}(\varepsilon), B_{p}^{d}(\varepsilon)\right)^{1 / p} \geq \frac{1}{3} \varepsilon\left(\frac{\varepsilon}{4 d}\right)^{2 d / p}
$$

Proof. Let again $h=(1+\varepsilon)^{-1 / d}$. From the definition of $B_{p}^{d}(\varepsilon)$ follows

$$
\begin{aligned}
B_{p}^{d}(\varepsilon) & \geq \int_{\left[-(1+\varepsilon / 2)^{-1 / d} \mathbf{1},-\mathbf{h}\right]\left[\mathbf{h},(1+\varepsilon / 2)^{-1 / d} \mathbf{1}\right]}\left(1-(1+\varepsilon / 2)^{-1}\right)^{p} 2^{-d} d \bar{x} d \underline{x} \\
& =2^{-d}\left(1-(1+\varepsilon / 2)^{-1}\right)^{p}\left((1+\varepsilon / 2)^{-1 / d}-(1+\varepsilon)^{-1 / d}\right)^{2 d} .
\end{aligned}
$$

As $\varepsilon \leq 1 / 2$, it is straightforward to verify the inequalities $1-(1+\varepsilon / 2)^{-1} \geq 2 \varepsilon / 5$ and $(1+\varepsilon / 2)^{-1 / d}-(1+\varepsilon)^{-1 / d} \geq \varepsilon / 4 d$. That implies

$$
B_{p}^{d}(\varepsilon)^{1 / p} \geq 2^{-d / p} \frac{2}{5} \varepsilon\left(\frac{\varepsilon}{4 d}\right)^{2 d / p} \geq 2^{-1 / 4} \frac{2}{5} \varepsilon\left(\frac{\varepsilon}{4 d}\right)^{2 d / p} \geq \frac{1}{3} \varepsilon\left(\frac{\varepsilon}{4 d}\right)^{2 d / p}
$$

We can estimate $A_{p}^{d}(\varepsilon)$ in the following way:

$$
\begin{aligned}
A_{p}^{d}(\varepsilon) & \geq h^{d(p+2)} \int_{\left[-\mathbf{1},\left(1-2(1-\varepsilon / 2)^{1 / d}\right) \mathbf{1}\right]\left[(1-\varepsilon / 2)^{1 / d} \mathbf{1}, \frac{1}{2}(\mathbf{1}-y)\right]}(\varepsilon / 2)^{p} d z d y \\
& =(1+\varepsilon)^{-p-2}(\varepsilon / 2)^{p}\left(1-(1-\varepsilon / 2)^{1 / d}\right)^{2 d} .
\end{aligned}
$$

Since $1-(1-\varepsilon / 2)^{1 / d} \geq \varepsilon / 2 d$, we get

$$
\begin{aligned}
A_{p}^{d}(\varepsilon)^{1 / p} & \geq \frac{1}{(1+\varepsilon)^{1+2 / p}} \frac{\varepsilon}{2}\left(\frac{\varepsilon}{2 d}\right)^{2 d / p} \\
& \geq \frac{1}{1+\varepsilon}\left(\frac{2^{d}}{1+\varepsilon}\right)^{2 / p} \frac{\varepsilon}{2}\left(\frac{\varepsilon}{4 d}\right)^{2 d / p} \geq \frac{1}{3} \varepsilon\left(\frac{\varepsilon}{4 d}\right)^{2 d / p}
\end{aligned}
$$

Let now $k \in \mathbb{N}, p=4 k d$ and $\varepsilon \in(0,1 / 2)$. With Theorem 3 and Lemma 7 it is easily verified that

$$
n \geq 9 \cdot 2^{3(1+1 / 2 k)} k^{1-1 / k} d \varepsilon^{-2-1 / k} \quad \text { ensures } \quad \operatorname{av}_{p}(n, d) \leq \min \left(A_{p}^{d}(\varepsilon), B_{p}^{d}(\varepsilon)\right)^{1 / p}
$$

This, Lemma 5 and Theorem 6 lead to the following theorem:
Theorem 8. Let $\varepsilon \in(0,1 / 2)$ and $k \in \mathbb{N}$. Then $n_{\infty}(\varepsilon, d) \leq C_{k} d \varepsilon^{-2-1 / k}$, where the constant C_{k} is bounded from above by $9 \cdot 2^{5(1+1 / 2 k)} k^{1-1 / k}$.
Remark 9. In a similar way we can use the bound for the average L^{p}-star discrepancy to calculate an upper bound for the inverse $n_{\infty}^{*}(d, \varepsilon)$ of the star discrepancy: With (2), [4, Thm. 6] and [4, Lemma 3] (where we can replace the factor $\sqrt{2 / 3}$ by 1 -cf. with the proof of Lemma 7), we obtain

$$
\begin{equation*}
n_{\infty}^{*}(d, \varepsilon) \leq 9 \cdot 2^{4+3 / k} k^{1-1 / k} d \varepsilon^{-2-1 / k} \tag{3}
\end{equation*}
$$

Acknowledgment

I would like to thank Erich Novak for interesting and helpful discussions.

References

[1] B. Doerr, M. Gnewuch, A. Srivastav. Bounds and constructions for the stardiscrepancy via δ-covers. J. Complexity 21(2005), 691-709.
[2] M. Drmota, R. F. Tichy. Sequences, Discrepancies and Applications. Lecture Notes in Math. 1651, Springer, Berlin, 1997.
[3] M. Gnewuch (Joint work with B. Doerr). Geometric discrepancies and δ-covers. Extended abstract of a talk at the Oberwolfach seminar "Discrepancy Theory and its Applications", Report No. 13/2004, Mathematisches Forschungsinstitut Oberwolfach.
[4] S. Heinrich, E. Novak, G. W. Wasilkowski, H. Woźniakowski. The inverse of the stardiscrepancy depends linearly on the dimension. Acta Arithmetica XCVI.3(2001), 279-302.
[5] F. J. Hickernell, I. H. Sloan, G. W. Wasilkowski. On tractability of weighted integration over bounded and unbounded regions in \mathbb{R}^{s}. Math. Comp. 73(2004), 1885-1905.
[6] A. Hinrichs. Covering numbers, Vapnik-Červonenkis classes and bounds for the stardiscrepancy. J. Complexity 20(2004), 477-483.
[7] M. Ledoux, M. Talagrand. Probability in Banach Spaces. Springer, Berlin, 1991.
[8] J. Matoušek. Geometric Discrepancy. Springer, Berlin, 1999.
[9] H. N. Mhaskar. On the tractability of multivariate integration and approximation by neural networks. J. Complexity 20(2004), 561-590.
[10] H. Niederreiter. Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia, 1992.
[11] E. Novak (Joint work with A. Hinrichs). New bounds for the star discrepancy. Extended abstract of a talk at the Oberwolfach seminar "Discrepancy Theory and its Applications", Report No. 13/2004, Mathematisches Forschungsinstitut Oberwolfach.
[12] E. Novak, H. Woźniakowski. When are integration and discrepancy tractable? In: Foundations of Computational Mathematics, R. A. DeVore, A. Iserles, E. Süli (eds.), Cambridge University Press 2001, 211-266.

[^0]: *Supported by the Deutsche Forschungsgemeinschaft under Grant SR7/10-1

