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Abstract

Packing and covering are elementary but very important in combinatorial geom-
etry, they have great practical and theoretical significance. In this paper, we discuss
a problem on packing and covering a unit equilateral triangle with smaller triangles
which is originated from one of Erdős’ favorite problems.
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1 Introduction

Packing and covering are elementary but very important in combinatorial geometry, they
have great practical and theoretical significance. In 1932, Erdős posed one of his favorite
problems on square-packing which was included in [2]: Let S be a unit square. Inscribe n
squares with no common interior point. Denote by e1, e2, . . . , en the sides length of these

squares. Put f(n) = max
n∑

i=1

ei. In [3], P. Erdős and Soifer gave some results of f(n).

In [1], Connie Campbell and William Staton considered this problem again. Because
packing and covering are usually dual to each other, we discussed a problem of a minimal
square-covering in [5]. In this paper, we generalize this kind of problem to the case
of using equilateral triangles to pack and cover a unit equilateral triangle, and obtain
corresponding results.

∗Foundation items: This work is supported by the Doctoral Funds of Hebei Province in China
(B2004114).
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2 Packing a unit equilateral triangle

Firstly, we give the definition of the packing function:

Definition 2.1. Let T be a unit equilateral triangle. Inscribe n equilateral triangles
T1, T2, . . . , Tn with no common interior point in such a way which satisfies: Ti has side of
length ti (0 < ti ≤ 1) and is placed so that at least one of its sides is parallel to that of T .

Define t(n) = max
n∑

i=1

ti.

In this part, we mainly exploit the method of [1] to get the bounds of t(n) and obtain
a corresponding result. Here we list some of the proofs so that the readers may better
understand.

Theorem 2.2. The following estimates are true for all positive integers n:
(1) t(n) ≤ √

n.
(2) t(n) ≤ t(n + 1).
(3) t(n) < t(n + 2).

Proof. (1)Let s be the vector (t1, t2, . . . , tn), where the ti denote the length of the sides
of the equilateral triangles in the packing, and let v be the vector (1, 1, . . . , 1). Now
n∑

i=1

ti ≤ ‖s‖‖v‖ ≤
n∑

i=1

t2i n
1
2 = 2√

3

n∑

i=1

(
√

3
2

t2i )n
1
2 ≤ n

1
2 .

It’s easy to get (2),(3) by replacing a Ti with 2 or 3 equilateral triangles with sides of
length ti

2
.

Definition 2.3. For a equilateral triangle T , dissect each of its 3 sides into n equal parts,
then through these dissecting points draw parallel lines of the sides of T , so we get a
packing of T by n2 equilateral triangles with sides of length 1

n
. Such a configuration

is called an n2-grid. When T is a unit equilateral triangle, the packing is a standard
n2-packing.

See Figure 1 for the case n = 3.

Figure 1: a 32-grid

Proposition 2.4. t(k2) = k.
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Proof. By Definition 2.3, it’s easy to know that for the standard k2-packing , n = k2, ti = 1
k

and
n∑

i=1

ti = 1
k
k2 = k. So by the Definition of t(n) , t(k2) ≥ k which along with Theorem

2.2(1) provides the desired equality.

Proposition 2.5. For k ≥ 2, t(k2 − 1) ≥ k − 1
k
.

Proof. Consider the standard k2-packing with one equilateral triangle removed.

Theorem 2.6. If n is a positive integer such that (n− 1) is not a perfect square number,

then t(n) > (n − 1)
1
2 .

Proof. When n = k2, by Proposition 2.4, t(n) =
√

n >
√

n − 1.
When n = k2 − 1, by Proposition 2.5, t2(n) ≥ (k − 1

k
)2 = k2 − 1 − 1 + 1

k2 > n − 1.

That is t(n) >
√

n − 1.
When n 6= k2, k must lie between two perfect square numbers of different parity. That

is, there is an integer k such that k2 < n < (k +1)2, n−k2 and (k +1)2 −n have different
parity. When neither n − 1 nor n + 1 is a perfect square number, consider the values of
n where k2 + 1 < n < (k + 1)2 − 1, there are two cases which provide the lower bound of
t(n) for all n on the interval [k2 + 2, (k + 1)2 − 2]:

Case 1. (k+1)2−n is odd. Say, (k+1)2−n = 2a+1(a ≥ 1), k2 < n ≤ (k+1)2−3. From
a standard (k + 1)2-packing of T , remove an (a + 1)2-grid and replace it with an a2-grid
packing the same area. The result is a packing of (k+1)2−(a+1)2+a2 = (k+1)2−2a−1 =
n equilateral triangles, the sum of whose length is [(k+1)2−(a+1)2] 1

k+1
+a2(a+1

a
)( 1

k+1
) =

k + 1 − a+1
k+1

.

So t(n) ≥ k + 1− a+1
k+1

, t2(n) ≥ (k +1− a+1
k+1

)2 = (k + 1)2 − 2a− 1 + (a+1
k+1

)2 − 1 > n− 1.

That is, t(n) >
√

n − 1.
Case 2. n − k2 is odd. Say, n − k2 = 2a − 1(a ≥ 2), k2 + 3 ≤ n < (k + 1)2.

From a standard k2-packing of T , remove an (a − 1)2-grid and replace it with an a2-grid
covering the same area. The result is a packing of k2 − (a − 1)2 + a2 = k2 + 2a − 1 = n
equilateral triangles of the unit equilateral triangle T . The sum of the length of sides is
[k2 − (a − 1)2] 1

k
+ a2(a−1

a
)( 1

k
) = k + a−1

k
.

So t(n) ≥ k + a−1
k

, t(n)2 ≥ (k + a−1
k

)2 = k2 + 2a − 1 + (a−1
k

)2 − 1 > n − 1. That is,

t(n) >
√

n − 1.

Similar to [1], by Theorem 2.6, we can easily get the following result.

Theorem 2.7. If t(n + 1) = t(n), then n is a perfect square number.

On the other hand, we think the following is right:

Conjecture 2.8. t(n2 + 1) = t(n2).
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3 Covering a unit equilateral triangle

Definition 3.1. Let T be a unit equilateral triangle. If n equilateral triangles T1, T2, . . . , Tn

can cover T in such a way which satisfies:
(1) Ti has side of length ti(0 < ti < 1) and is placed so that at least one of its sides is

parallel to that of T ;
(2) Ti can’t be smaller, that is, there doesn’t exist any Ti1 ⊂ Ti such that {Tj , j =

1, 2, . . . , i − 1, i + 1, . . . , n} ∪ {Ti1} can cover T . (Here we admit translation.)

We call this kind of covering a minimal covering.
In the meaning of the minimal covering, define:

T1(n) = min
n∑

i=1

ti, T2(n) = max
n∑

i=1

ti.

When n ≤ 2, since 0 < ti < 1, each Ti (i = 1, 2) can only cover one corner of a unit
equilateral triangle, but it has three corners, so T1, T2 can’t cover T . That is, when n ≤ 2,
Ti(n)(i = 1, 2) has no meaning. So in the following, let n ≥ 3.

3.1 The upper bound of T1(n)

Theorem 3.2. When n is even, T1(n) ≤ 3 − 4
n
.

Proof. Consider a covering of a unit equilateral triangle T with a equilateral triangle T1

which has side of length x and n− 1 equilateral triangles T2, T3, . . . , Tn each of which has
sides of length 1 − x such that n

2
(1 − x) = 1, which implies x = 1 − 2

n
. When n = 6,

see Figure 2 for the placement. It’s easy to see this is a minimal covering. So by the
definition of T1(n), T1(n) ≤ x + (n − 1)(1 − x) = 3 − 4

n
.

T1

T2

T3

T4

T5

T6

Figure 2: a unit equilateral triangle covered by six smaller equilateral triangles

Proposition 3.3. T1(3) ≤ 2.

Proof. Consider a covering of a unit equilateral triangle T with 3 equilateral triangles
T1, T2, T3 each of which has sides of length 2

3
. See Figure 3 for the placement. It’s easy to

see this is a minimal covering. So by the definition of T1(n), T1(3) ≤ 3 × 2
3

= 2.
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T1

T2 T3

Figure 3: a unit equilateral triangle covered by 3 smaller equilateral triangles

Proposition 3.4. T1(5) < 9
4
.

Proof. Consider a covering of a unit equilateral triangle T with one equilateral triangle T1

which has side of length x, 2 equilateral triangles T2, T3 each of which has sides of length
y and 2 equilateral triangles T4, T5 each of which has sides of length 1 − x, such that
y < 2(1 − x) and 2y − x = x−(1−x)

2
, which implies y = x − 1

4
and 1

2
< x < 3

4
. See Figure

4 for the placement. It’s easy to see this is a minimal covering. So by the definition of
T1(n), T1(5) ≤ x + 2y + 2(1 − x) = x + 3

2
< 3

4
+ 3

2
= 9

4
.

T1

T2 T3
T4 T5

Figure 4: a unit equilateral triangle covered by 5 smaller equilateral triangles

Theorem 3.5. When n is odd and n ≥ 7, T1(n) ≤ 4 − 6
n−3

.

Proof. Consider a covering of a unit equilateral triangle T with 4 equilateral triangles
T1, T2, T3, T4 each of which has side of length x and n−4 equilateral triangles T5, T6, . . . , Tn

each of which has sides of length 1 − 2x , such that (n−3)(1−2x)
2

= 1 which implies x =
1
2
− 1

n−3
. when n = 7, see Figure 5 for the placement. It’s easy to see this is a minimal

covering. So by the definition of T1(n), T1(n) ≤ 4x + (n − 4)(1 − 2x) = 4 − 6
n−3

.

Here we can’t give the lower bound of T1(n), but it seems obvious that the following
is right:

Conjecture 3.6. T1(n) ≥ 2.
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T1

T2

T3 T4

T5

T6

T7

Figure 5: a unit equilateral triangle covered by seven smaller equilateral triangles

3.2 The bounds of T2(n)

Proposition 3.7. T2(k
2) ≥ k.

Proof. It’s easy to see that a standard n-packing is also a standard n-covering. By the
proof of Proposition 2.4 and the definition of T2(n), the assertion holds.

Proposition 3.8. T2(k
2 + 1) ≥ k.

Proof. From a standard k2-covering, remove a 22-grid and replace it with equilateral
triangles Ti1, Ti2, . . . , Ti5 covering the same area which are placed as Figure.4 such that
Ti1 is the largest equilateral triangles of {Tij | j = 1, 2, . . . , 5} which implies that ti1 ≥ 1

k

and ti2 = ti3 = 2
k
− ti1, ti4 = ti5 = ti1 − 1

2k
. The result is a covering of k2 − 4 + 5 = k2 + 1

equilateral triangles, the sum of whose length is t = k− 4
k
+ ti1 +2( 2

k
− ti1)+ 2(ti1 − 1

2k
) =

k − 1
k

+ ti1 ≥ k.
Obviously, any equilateral triangle of {Tij | j = 1, 2, . . . , 5} can’t be smaller. This

covering is a minimal covering, so we have T2(k
2 + 1) ≥ k.

Proposition 3.9. T2(k
2 − 1) ≥ k − 3

2k
.

Proof. From a standard k2-covering, remove a 32-grid and replace it with eight equilateral
triangles Ti1, Ti2, . . . , Ti8 covering the same area which are placed as Figure 6 such that Ti1

is the largest equilateral triangles of {Tij | j = 1, 2, . . . , 8} and ti2 = ti3 = ti4 = ti5 = ti6 =
ti7 = ti8 = 3

k
− ti1. It’s obvious that 0 < tij < 3

k
(j = 1, 2, . . . , 8). And 4( 3

k
− ti1) = 3

k
which

implies ti1 = 9
4k

. The result is a covering of k2−9+8 = k2−1 equilateral triangles, the sum
of whose length is t = k− 9

k
+ ti1 +7( 3

k
− ti1) = k + 12

k
−6ti1. So t ≥ k + 12

k
−6ti1 = k− 3

2k
.

Obviously, any equilateral triangles of {Tij | j = 1, 2, . . . , 8} can’t be smaller. So any
one of the resulting k2−1 equilateral triangles can’t be smaller. This covering is a minimal
covering, so T2(k

2 − 1) ≥ k − 3
2k

.

It’s easy to see that a standard n-packing is also a standard n-covering. By the proof
of Theorem 2.6 and the definition of T2(n), we can get the following result in a similar
way:

Theorem 3.10. If neither n−1 nor n+1 is a perfect square number, then T2(n) >
√

n − 1.
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T1

T2

T3
T4

T5
T6

T7
T8

Figure 6: a 32-grid covered by eight equilateral triangles

To get an upper bound of T2(n), we first list the following lemma which is a known
result of [4]:

Lemma 3.11. [4] Let T be a triangle and let {Ti}n
i=1 be a sequence of its positive or

negative copies. If the total area of {Ti}n
i=1 is greater than or equal to 4|T |(where |T |

denotes the area of T ), then {Ti}n
i=1 permits a translative covering of T .

Theorem 3.12. T2(n) ≤ 4
√

n.

Proof. Let {Ti}n
i=1 be a minimal covering of the unit equilateral triangle T , and ti denote

the length of the side of Ti(i = 1, 2, . . . , n). We first prove that
n∑

i=1

√
3

2
t2i ≤ 2

√
3. Otherwise,

if
n∑

i=1

√
3

2
t2i > 2

√
3, there exists a Ti1 ⊂ Ti, such that ti1 < ti and

√
3

2
(t2i1 +

i−1∑

j=1

t2j +
n∑

j=i+1

t2j ) ≥

2
√

3. Notice that the area of a unit equilateral triangle is
√

3
2

and all equilateral triangle are
homothetic, by Lemma 3.11, T1, T2, . . . , Ti−1, Ti1, Ti+1, . . . , Tn can cover the unit equilat-

eral triangle T , which contradicts the definition of a minimal covering . So
n∑

i=1

√
3

2
t2i ≤ 2

√
3.

Let s be the vector (t1, t2, . . . , tn), and let v be the vector (1, 1, . . . , 1). Now
n∑

i=1

ti ≤

‖s‖‖v‖ ≤
n∑

i=1

t2i n
1
2 = 2√

3
n

1
2

n∑

i=1

√
3

2
t2i ≤ 2√

3
2
√

3n
1
2 = 4

√
n. So T2(n) ≤ 4

√
n.

We also have the following unsolved problem:
Problem: Improve the upper bound of T2(n).

4 The case of isosceles right triangle with legs of

length 1

All the results above can be generalized to the isosceles right triangle with legs of length
1 in the same way.
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