Packing and covering a unit equilateral triangle with
equilateral triangles

Yuqin Zhang! Yonghui Fan?*

'Department of Mathematics
Beijing Institute of Technology, 100081, Beijing, China
email: yuqinzhang@126.com
2College of Mathematics and Information Science
Hebei Normal University, 050016, Shijiazhuang, China

Submitted: Jun 7, 2005 ; Accepted: Oct 20, 2005; Published: Oct 25, 2005

Abstract

Packing and covering are elementary but very important in combinatorial geom-
etry, they have great practical and theoretical significance. In this paper, we discuss
a problem on packing and covering a unit equilateral triangle with smaller triangles
which is originated from one of Erdés’ favorite problems.
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1 Introduction

Packing and covering are elementary but very important in combinatorial geometry, they
have great practical and theoretical significance. In 1932, Erdos posed one of his favorite
problems on square-packing which was included in [2]: Let S be a unit square. Inscribe n
squares with no common interior point. Denote by ey, es, ..., e, the sides length of these
n
squares. Put f(n) = max > e;. In [3], P. Erd6s and Soifer gave some results of f(n).
i=1
In [1], Connie Campbell and William Staton considered this problem again. Because
packing and covering are usually dual to each other, we discussed a problem of a minimal
square-covering in [5]. In this paper, we generalize this kind of problem to the case
of using equilateral triangles to pack and cover a unit equilateral triangle, and obtain
corresponding results.

*Foundation items: This work is supported by the Doctoral Funds of Hebei Province in China
(B2004114).
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2 Packing a unit equilateral triangle

Firstly, we give the definition of the packing function:

Definition 2.1. Let 7" be a unit equilateral triangle. Inscribe n equilateral triangles
Ty,T;, ..., T, with no common interior point in such a way which satisfies: T; has side of
length ¢; (0 < t; < 1) and is placed so that at least one of its sides is parallel to that of 7T'.

Define t(n) = max »_ t;.
i=1

In this part, we mainly exploit the method of [1] to get the bounds of £(n) and obtain
a corresponding result. Here we list some of the proofs so that the readers may better
understand.

Theorem 2.2. The following estimates are true for all positive integers n:
(1) t(n) < v/n.
(2) t(n) < t(n+1).
(3) t(n) < t(n+2).

Proof. (1)Let s be the vector (¢,ts,...,t,), where the t; denote the length of the sides
of the equilateral triangles in the packing, and let v be the vector (1,1,...,1). Now

Zt < [Islllivll < ZtQm =2 Z(ﬁt?)n% <.

It’s easy to get ( ),(3) by replacmg a T; with 2 or 3 equilateral triangles with sides of
length %. O

Definition 2.3. For a equilateral triangle T, dissect each of its 3 sides into n equal parts,
then through these dissecting points draw parallel lines of the sides of T', so we get a
packing of T' by n? equilateral triangles with sides of length % Such a configuration
is called an n%-grid. When T is a unit equilateral triangle, the packing is a standard
n2-packing.

See Figure 1 for the case n = 3.

/\

Figure 1: a 32-grid

Proposition 2.4. t(k?) = k.
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Proof. By Definition 2.3, it’s easy to know that for the standard k*-packing , n = k?,t; = %
and Y t; = 1k* = k. So by the Definition of ¢(n) , t(k?) > k which along with Theorem
i=1

1=

2.2(1) provides the desired equality.

O
Proposition 2.5. For k> 2, t(k* —1) > k — %
Proof. Consider the standard k*-packing with one equilateral triangle removed. O

Theorem 2.6. Ifn is a positive integer such that (n — 1) is not a perfect square number,
then t(n) > (n —1)z.

Proof. When n = k? by Proposition 2.4, t(n) = /n > v/n — 1.

When n = k? — 1, by Proposition 2.5, t*(n) > (k— 1)’ =k*—-1-1+ 5 >n—1
That is t(n) > v/n — 1.

When n # k2, k must lie between two perfect square numbers of different parity. That
is, there is an integer k such that k> < n < (k+1) n—k* and (k+ 1)* —n have different
parity. When neither n — 1 nor n + 1 is a perfect square number, consider the values of
n where k* + 1 < n < (k+ 1) — 1, there are two cases which provide the lower bound of
t(n) for all n on the interval [k* + 2, (k + 1)? — 2]:

Case 1. (k+1)*—nisodd. Say, (k+1)?—n = 2a+1(a > 1), k¥* <n < (k+1)?—3. From
a standard (k + 1)%-packing of T, remove an (a + 1)*-grid and replace it with an a®-grid
packing the same area. The result is a packing of (k+1)*—(a+1)?+a* = (k+1)*—2a—1 =

n equilateral triangles, the sum of whose length is [(k+1)* = (a+1)*] 75 +a*(“H) (7)) =
k41—
Sot(n) > k+1—¢, 2 (n) > (k+1—- )2 = (k+1)°—2a— 1+ (F1)* =1 >n—1.

That is, t(n) > v/n — 1.

Case 2. n — k% is odd. Say, n — k* = 2a — 1(a > 2), ¥ +3 < n < (k+ 1)
From a standard k*-packing of T', remove an (a — 1)%-grid and replace it with an a*-grid
covering the same area. The result is a packing of k? — (a — 1)? +a* =k*+2a—1=n
equilateral triangles of the unit equilateral triangle 7. The sum of the length of sides is
B = (a — 17+ a2(=0)(3) = b+ 22

So t(n) > k+ %2, t(n)* > (k+“2)? =k*+2a— 1+ (%2)? —1 > n— 1. That is,
t(n) >+vn— 1L 0

Similar to [1], by Theorem 2.6, we can easily get the following result.
Theorem 2.7. Ift(n+ 1) = t(n), then n is a perfect square number.
On the other hand, we think the following is right:

Conjecture 2.8. t(n? + 1) = t(n?).
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3 Covering a unit equilateral triangle

Definition 3.1. Let T be a unit equilateral triangle. If n equilateral triangles 11,15, ..., T,
can cover T in such a way which satisfies:

(1) T; has side of length ¢;(0 < t; < 1) and is placed so that at least one of its sides is
parallel to that of T

(2) T; can’t be smaller, that is, there doesn’t exist any 7;; C 7; such that {7},j =
1,2,...;i—1,i+1,...,n} U{T;} can cover T. (Here we admit translation.)

We call this kind of covering a minimal covering.

In the meaning of the minimal covering, define:

Ti(n) =min Y t;, To(n) = max > _ ;.
=1 i=1

When n < 2, since 0 < t; < 1, each T; (i = 1,2) can only cover one corner of a unit
equilateral triangle, but it has three corners, so T}, T, can’t cover T'. That is, when n < 2,
T;(n)(i = 1,2) has no meaning. So in the following, let n > 3.

3.1 The upper bound of 7;(n)
Theorem 3.2. When n is even, T (n) <3 — 3.

Proof. Consider a covering of a unit equilateral triangle 7" with a equilateral triangle T}
which has side of length x and n — 1 equilateral triangles T5, T3, ..., T, each of which has
sides of length 1 — 2 such that §(1 — ) = 1, which implies z = 1 — % When n = 6,
see Figure 2 for the placement. It’s easy to see this is a minimal covering. So by the
definition of Ty(n), T1(n) <z + (n—1)(1 —z) =3 — 4.

Figure 2: a unit equilateral triangle covered by six smaller equilateral triangles

Proposition 3.3. T1(3) < 2.

Proof. Consider a covering of a unit equilateral triangle 7" with 3 equilateral triangles
Ty,T5, T each of which has sides of length % See Figure 3 for the placement. It’s easy to
see this is a minimal covering. So by the definition of 77 (n), T1(3) <3 x 2 = 2.

O
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Figure 3: a unit equilateral triangle covered by 3 smaller equilateral triangles

Proposition 3.4. T1(5) < 7.

Proof. Consider a covering of a unit equilateral triangle 7" with one equilateral triangle 7}
which has side of length z, 2 equilateral triangles 75, T3 each of which has sides of length

y and 2 equilateral triangles Ty, T each of which has sides of length 1 — x, such that
y<2(l—2x)and 2y —x = x_(;_x), which implies y = 2 — 1 and 3 < x < 3. See Figure

4 for the placement. It’s easy to see this is a minimal covering. So by the definition of
Ti(n), i(5) <z +2y+2(1—z)=x+3 <3+3=2

T

AVAN

Figure 4: a unit equilateral triangle covered by 5 smaller equilateral triangles

Theorem 3.5. When n is odd andn > 7, Ti(n) < 4 — %.

Proof. Consider a covering of a unit equilateral triangle 7" with 4 equilateral triangles
Ty,T5, T3, T, each of which has side of length x and n—4 equilateral triangles 75, T, ..., T,
each of which has sides of length 1 — 2x , such that (”_3)(+2$) = 1 which implies x =
% - % when n = 7, see Figure 5 for the placement. It’s easy to see this is a minimal

covering. So by the definition of T1(n), T1(n) < 4z + (n —4)(1 — 2z) =4 — %=

O

Here we can’t give the lower bound of T} (n), but it seems obvious that the following
is right:

Conjecture 3.6. T7(n) > 2.
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Figure 5: a unit equilateral triangle covered by seven smaller equilateral triangles

3.2 The bounds of T5(n)
Proposition 3.7. Ty(k?) > k.

Proof. It’s easy to see that a standard n-packing is also a standard n-covering. By the
proof of Proposition 2.4 and the definition of T5(n), the assertion holds. O

Proposition 3.8. Ty(k*>+1) > k.

Proof. From a standard k?-covering, remove a 22-grid and replace it with equilateral
triangles T;1, Tio, . . ., T;5 covering the same area which are placed as Figure.4 such that
Ty is the largest equilateral triangles of {T}; | j = 1,2,...,5} which implies that ¢;; > ¢
and tip = ti3 = 2 — t1, tiyy = tis =t — 5. The result is a covering of k* —4+5 = k% +1
equilateral triangles, the sum of whose length is ¢t = k — & +t; +2(2 — ;1) +2(ta — 57) =
k—2+ta >k

Obviously, any equilateral triangle of {T}; | j = 1,2,...,5} can’t be smaller. This
covering is a minimal covering, so we have Ty(k* + 1) > k.

O

Proposition 3.9. Ty(k* — 1) > k — 5.

Proof. From a standard k2-covering, remove a 32-grid and replace it with eight equilateral
triangles Ty, Tjo, . . . , T;g covering the same area which are placed as Figure 6 such that T},
is the largest equilateral triangles of {T;; | j =1,2,...,8} and tjp = ti5 =ty = tis = tig =
tiv = tig = %—tﬂ. It’s obvious that 0 < ¢;; < %(] =1,2,...,8). And 4(% —ti) = % which
implies t;; = %. The result is a covering of k2 —9+8 = k% —1 equilateral triangles, the sum
of whose length is t = k—%+ti1+7(% —ti1) = k+% —6t;1. Sot > k+% —6t;; = k— %
Obviously, any equilateral triangles of {T}; | j = 1,2,...,8} can’t be smaller. So any
one of the resulting k? —1 equilateral triangles can’t be smaller. This covering is a minimal

covering, so Tp(k* = 1) > k — 3.
O

It’s easy to see that a standard n-packing is also a standard n-covering. By the proof
of Theorem 2.6 and the definition of T5(n), we can get the following result in a similar
way:

Theorem 3.10. If neither n—1 nor n+1 is a perfect square number, then To(n) > /n — 1.
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Figure 6: a 32-grid covered by eight equilateral triangles

To get an upper bound of Ty(n), we first list the following lemma which is a known
result of [4]:

Lemma 3.11. [}/ Let T be a triangle and let {T;}, be a sequence of its positive or
negative copies. If the total area of {T;}", is greater than or equal to 4|T|(where |T|
denotes the area of T'), then {T;}?_, permits a translative covering of T.

Theorem 3.12. Ty(n) < 44/n.

Proof. Let {T;}!, be a minimal covering of the unit equilateral triangle T', and t; denote

the length of the side of T;(i = 1,2, ...,n). We first prove that > ?tf < 2v/3. Otherwise,
=1

2

n i—1 n
if 21 VB12 > 94/3, there exists a Ty C T, such that t;; < t; and %2 (t% + th§+ Z;ﬁ) >
1= j= Jj=t
21/3. Notice that the area of a unit equilateral triangle is ? and all equilateral triangle are
homothetic, by Lemma 3.11, 11,75, ..., T; 1,11, Ti1q, ..., T, can cover the unit equilat-
eral triangle T', which contradicts the definition of a minimal covering . So ) ?tf < 2v/3.
i=1

Let s be the vector (¢y,ts,...,t,), and let v be the vector (1,1,...,1). Now > #; <
i=1

L2 < 2:2/3n2 = 4y/n. So Ta(n) < 4y/n.

3 1

s||||v]| < ntgn%:ln%
SE
1= 1

- 0

We also have the following unsolved problem:
Problem: Improve the upper bound of T(n).

4 The case of isosceles right triangle with legs of
length 1

All the results above can be generalized to the isosceles right triangle with legs of length
1 in the same way.
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