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Abstract

The probability that a random pair of elements from the alternating group A,
generates all of A, is shown to have an asymptotic expansion of the form 1 —1/n —
1/n?—4/n3—23/n*—171/n® — ... . This same asymptotic expansion is valid for the
probability that a random pair of elements from the symmetric group S,, generates
either A,, or S,. Similar results hold for the case of r generators (r > 2).

1 Introduction

In [5] I proved that the probability that a random pair of elements from the symmetric
group S, will generate either S, or A, is at least 1 — 2/(loglogn)? for large enough n.
This estimate was improved by Bovey and Williamson [3] to 1 — exp(—+/logn). Finally
Babai [1] showed that the probability has the asymptotic form 1 —1/n+ O(1/n?). Unlike
the earlier estimates, the proof of Babai’s result uses the classification of finite simple
groups.

Babai’s result depends on two elementary results from [5], namely: the probability
t, that a pair of elements in S,, generates a transitive group is 1 — 1/n + O(1/n?); and
the probability that a pair of elements generates a transitive, imprimitive group of .S,, is
< n2~™*. Using the classification, he shows that the probability that a pair of elements
generates a primitive subgroup of S, different from A,, or S, is < nv™/n! for all sufficiently
large n. Thus the probability that a pair of elements of S, generates a transitive group
but does not generate either S, or A, is O(n2™"/* 4 nV?/n!) = O(n=*) for all k.
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The object of the present paper is to show that there is an asymptotic series of the
form ¢, ~ 1+ > ¢x/nF so that

ty=14ci/n+co/n* + ...+ /™ + 01 /") form =1,2, ... .

By what we have just said, the same asymptotic series is valid for the probability that a
pair of elements of S,, generates either A, or S,,. We shall also show that this asymptotic
series is valid for the probability that a pair of elements in A, generates A,,.

More precisely, we shall prove the following.

Theorem 1 The probability t,, that a random pair of elements from S,, generates a tran-
sitive group has an asymptotic series of the form described above. The first few terms
are

The same asymptotic series is valid for the probability that the subgroup generated by a
random pair of elements from S,, is either A, or S,.

Theorem 2 If a, is the number of pairs (x,y) € A, X A, which generate a transitive
subgroup of A, and s, is the number of pairs (x,y) € S, X S, which generate a transitive
subgroup of S,, then s, — 4a, = (—=1)"3 - (n — 1)! for all n > 1. Thus for n > 2
the probability 4a,/(n!)? that a random pair of elements from A, generates a transitive
subgroup is equal to t, +3/(n-n!). Hence the probability that a random pair of elements
from A, generates A, has the same asymptotic expansion as given above fort,.

Remark 3 The sequence {t,} also appears in other contexts. Peter Cameron has pointed
out to me that a theorem of M. Hall shows that the number N(n,2) of subgroups of index
n in a free group of rank 2 is equal to nlnt, (see (1) below and [6]). On the other
hand, a result of Comtet [4] (quoted in [8, page 48] and [7, Example 7.4]) implies that
nlnt, = c,y1 for all n > 1 where ¢, is the number of “indecomposable” permutations in
Sy (in this context x € S,, is called indecomposable if there is no positive integer m < n
such that x maps {1,2, ..., m} into itself).

We shall discuss a generalisation to more than two generators at the end of this paper.

2 Lattice of Young subgroups

In the present section we shall prove Theorem 2. Consider the set P of all (set) partitions
of {1,2,....,n}. If Il = {X¥;,...5;} is a partition with k parts then, as usual, we define the
Young subgroup Y (II) as the subgroup of S,, consisting of all elements which map each of
the parts X; into itself. The set of Young subgroups of .S, is a lattice, and we define an
ordering on P by writing IT > II" when Y (IT) < Y (IT'). Under this ordering the greatest
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element of P is II; := {{1},{2},...,{n}} and the least element is IIy := {{1,2,....,n}}.
Consider the Mébius function p on P (see, for example, [8, Section 3.7]), and write (1)
in place of u(Ilp,II). By definition, p(Ily) = 1 and > oq p(Il') = 0 for all IT > Il,.
Example 3.10.4 of [8] shows that u(IT) = (—1)***(k — 1)! whenever II has k parts.

Now let f4(II) (respectively fs(II)) be the number of pairs (z,y) of elements from A,
(respectively, S,,) such that the parts of II are the orbits of the group (z,y) generated by
x and y. Similarly let g4(II) and gs(II), respectively, be the number of pairs for which
the parts of II are invariant under (x,y); that is, for which =,y € Y(II). Every Young
subgroup Y (IT) except for the trivial group Y (II;) contains an odd permutation and so
we have
1

|Y(H)|2 = ZQS(H) for IT # I, and ga(Ily) = gs(I;) = 1.

9a(l0) = |

We also have

ga(T) = Y fa(I') and gs(T) = > fs(IT).

I'>11 I’ >11

Since p(I1;) = (—1)"*(n—1)!, the M&bius inversion formula [8, Propositon 3.7.1] now
shows that

sn=fs(lo) = Y p(M)gs(I) =4 u(I)ga(ll) — 3p(Ily) - 1
= 4fa(Ilo) = 3p(Ily) = da, + (=1)"3(n — 1)!

as claimed.

3 Asymptotic expansion

It remains to prove Theorem 1 and obtain an asymptotic expansion for ¢, = s,,/(n!)?. It is
possible that this can be done with a careful analysis of the series fs(Ily) = > p(I1)gs(II)
since the size of the terms decreases rapidly: the largest are those when II has the shapes
[1,n — 1], [2,n — 2], [12,n — 2], ...; but the argument seems to require considerable care.
We therefore approach the problem from a different direction using a generating function
for t,, which was derived in [5]. Consider the formal power series

E(X):=> nX"and T(X):= Y nlt,X".
n=1

n=0

Then Section 2 of [5] shows that F(X) = expT(X) and so
T(X)=log E(X). (1)

We shall apply a theorem of Bender [2, Theorem 2] (quoted in [7, Theorem 7.3]):
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Theorem 4 (E.A. Bender) Consider formal power series A(X) = > a,X" and
F(X,Y) where F(X,Y) is analytic in some neighbourhood of (0,0). Define B(X) :=
F(X,A(X)) = >0 b, X", say. Let D(X) = Fy(X,A(X)) = >0° ,d, X", say, where
Fy(X,Y) is the partial derivative of F with respect to Y.
Now, suppose that all a,, # 0 and that for some integerr > 1 we have: (i) a,—1/a, — 0
asn — oo; and (1t) > _" |agan—k| = O(an—,) as n — oo. Then
r—1
b= dyan i+ O(an,).
k=0
Using the identity (1) we take A(X) = E(X) — 1, F(X,Y) =log(1+Y), D(X) =
1/E(X) and B(X) = T(X) in Bender’s theorem. Then condition (i) is clearly satisfied
and (ii) holds for every integer r > 1 since for n > 2r
Z Eln—k)!'<2riln—r)l+(n—2r—=1)(r+Dn—r—1! < {274+ (r+ D!} (n—r)l
k=r

Thus we get

r—1

nlt, =Y di(n— k) 4+ O((n—r))
k=0

and hence )
r— dk
t, =1+ — +0(n™"
2 o O

where [n]p = n(n —1)...(n — k + 1). The Stirling numbers S(m, k) of the second kind
satisfy the identity

k)X™ =
2 S(m. k) (1—X)(1—2X)..(1— kX)

m=k

where the series converges for | X| < 1 (see [8, page 34]). Thus for n > k > 0 we have

(e 9]

1 1 Stm. k—1) 1
— = m — .
[y A —=1/m)(1-2/n)..(1-(k-1)/n) = ’ nmtl
This shows that ¢, has an asymptotic expansion of the form 1 + 220:1 cxn~ where ¢, =
Zf:ll S(k—1,i)d;41 since S(m,0) = 0 for m = 0. To compute the numerical values of the
coefficients we can use a computer algebra system such as Maple to obtain

DX)=1/E(X)=1-X — X? -3X® - 13X* — 71X° — 461X°% — 3447X" — ...

and then
; 1 1 1 3 13 71 461
" [n] 1 [n] 2 [n] 3 [n] 4 [n] 5 [n] 6
. 1 1 4 23 171 1542
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4 Generalization to more than two generators

In view of the theorem of M. Hall mentioned in Remark 3 there is some interest in
extending the analysis for ¢, to the case of r generators where r > 2. Let ¢,(r) be
the probability that r elements of S, generate a transitive group (so t, = t,(2)). A
simple argument similar to that in Section 2 of [5] shows that the generating function
To(X) := > (n))t,(r) X" satisfies the equation

n=1
T.(X) =log E,.(X)
where E,(X) := 3> (n!)"'X™. Now, following the same path as we did in the previous

section, an application of Bender’s theorem leads to

o0

t&r)wl%-Z%

where the coefficients di(r) are given by 1/E,(X) = Y 7, dx(r)X*. For example, we find
that
1/E3(X) =1— X —3X? —29X® — 499X* — 13101X° — ...

SO
1 3 929 499 13101
tn(3) ~1— _ _ — —
] [n]3 [n)3 [0l [nl?
1 3 6
~l
n2 nt nd
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