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Abstract

Pattern avoidance classes of permutations that cannot be expressed as unions
of proper subclasses can be described as the set of subpermutations of a single
bijection. In the case that this bijection is a permutation of the natural numbers
a structure theorem is given. The structure theorem shows that the class is almost
closed under direct sums or has a rational generating function.
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1 Introduction

Classes of permutations defined by their avoiding a given set of permutation patterns
have been intensively studied within the last decade. Quite often the issue has been to
determine the number of permutations of each length in the class. In order to do this
it is necessary to derive structural properties of the permutations in the class starting
from the avoided set. However, there are very few general techniques for obtaining such
structural information. This paper is a contribution towards a general structure theory.
We begin from the point of view that pattern-avoidance classes can be expressed as unions
of atomic classes (those that have no non-trivial expression as a union). We shall show
that these atomic classes are precisely the classes that arise as the set of restrictions of
some injection from one ordered set to another. In general the order types of these two
sets provide some information about the atomic class. The major part of our paper is a
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characterisation of such injections and classes in the simplest case: when the order types
are those of the natural numbers.

In the remainder of this section we review the terminology of pattern avoidance classes.
Most of this terminology is standard in the subject except for the notion of a natural
class. We shall see a number of conditions on pattern avoidance classes that are equivalent
to their being atomic and we shall exhibit examples of atomic and non-atomic classes.
These conditions and examples motivate the notion of a natural class whose elementary
properties we explore in Section 2. Section 3 contains our main result: a characterisation
of natural classes, and Section 4 gives some further examples.

We need a small number of definitions concerned with permutations and sets of permuta-
tions. For our purposes a permutation is just an arrangement of the numbers 1, 2, . . . , n
for some n, and we shall write these as lists of numbers (sometimes with separating com-
mas to avoid notational confusion). We shall often need to consider arrangements of other
sets of numbers and we shall refer to these as sequences; so, unless stated otherwise, a
sequence will mean a list of distinct numbers.

Two finite sequences of the same length α = a1a2a3 · · · and β = b1b2b3 · · · are said to be
order isomorphic (denoted as α ∼= β) if for all i, j we have ai < aj if and only if bi < bj .
Any sequence defines a unique order isomorphic permutation; for example 7496 ∼= 3142.

A sequence α is said to be involved in a sequence β (denoted as α � β) if α is order
isomorphic to a subsequence of β. Usually, involvement is defined between permutations;
for example 1324 � 146325 because of the subsequence 1435.

It is easily seen that the involvement relation is a partial order on the set of all (finite)
permutations. We study it in terms of its order ideals which we call closed sets; see [8] for
some similar definitions. A closed set X of permutations has the defining property that
if α ∈ X and δ � α then δ ∈ X.

Closed sets are most frequently specified by their basis : the set of permutations that are
minimal subject to not lying in the closed set. Once the basis B is given the closed set is
simply

{σ | β 6� σ for all β ∈ B}
and we shall denote it by A(B).

Closed sets arise in the context of limited capability sorting machines such as networks of
stacks, queues and deques with a point of input and a similar output. Here the basis con-
sists of minimal sequences that cannot be sorted into some desirable order. As sequences
can be sorted if and only if they do not involve any basis elements, basis elements are
frequently referred to as “forbidden patterns” and the set of permutations that can be
sorted by such a mechanism is described as the set of all permutations that “avoid” that
basis.

Much of the thrust of this paper is in specifying closed sets in a different way. Suppose
that A and B are sets of real numbers and let π be an injection from A to B. Then
every finite subset {c1, c2, . . . , cn} of A, where c1 < c2 < . . . < cn maps to a sequence
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π(c1) π(c2) . . . π(cn) which is order isomorphic to some permutation. The set of permuta-
tions that arise in this way is easily seen to be closed and we denote it by Sub(π : A → B).
In many cases the domain and range of π are evident from the context in which case we
write simply Sub(π). Also, since we may always replace B by the range of π we shall,
from now on, assume that π is a bijection.

Example 1.1 Let A = {1 − 1/2i, 2 − 1/2i | i = 1, 2, . . .} and B = {1, 2, . . .}. Let π be
defined by:

π(x) =

{
2i − 1 if x = 1 − 1/2i

2i if x = 2 − 1/2i

Then it is easily seen that any finite increasing sequence of elements in A maps to an
increasing sequence of odd integers followed by an increasing sequence of even integers.
From this it follows readily that the permutations of Sub(π : A → B) are precisely
those that consist of two increasing segments. As shown in [2] this closed set has basis
{321, 3142, 2143}. Notice that A and B have order types 2ω and ω. This particular closed
set cannot be defined as Sub(π : A → B) with both A and B having order type ω.

We now give several conditions on a closed set equivalent to it being expressible as Sub(π :
A → B).

Theorem 1.2 The following conditions on a closed set X are equivalent:

1. X = Sub(π : A → B) for some sets A, B and bijection π.

2. X cannot be expressed as a union of two proper closed subsets.

3. For every α, β ∈ X there exists γ ∈ X such that α � γ and β � γ.

4. X contains permutations γ1 � γ2 � · · · such that, for every α ∈ X, we have α � γn

for some n.

Proof:

1 ⇒ 2. Suppose X = Sub(π : A → B) and yet there exist proper closed subsets Y, Z of X
such that X = Y ∪Z. Then there exist permutations ρ ∈ X \Y and σ ∈ X \Z. Therefore
we can find subsequences r1 < r2 < · · · and s1 < s2 < · · · of A which are mapped by π
to subsequences order isomorphic to ρ and σ. The union of {r1, r2, . . .} with {s1, s2, . . .}
defines a sequence t1 < t2 < · · · that is mapped by π to a subsequence order isomorphic
to a permutation τ ∈ X. Obviously, ρ � τ and σ � τ . However τ belongs to at least one
of Y or Z, say τ ∈ Y . Since Y is closed we have ρ ∈ Y , a contradiction.
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2 ⇒ 3. Suppose that there exist α, β ∈ X with the property that no permutation of X
involves both of them. Put

Y = {γ ∈ X | α 6� γ}
Z = {γ ∈ X | β 6� γ}

Then Y and Z are proper closed subsets of X whose union is X (since any γ ∈ X \(Y ∪Z)
would involve both α and β).

3 ⇒ 4. If θ, φ are two permutations in X we know that there exists a permutation of X
that involves both. Temporarily we shall use the notation θ ∨ φ to denote one of these
permutations. Now let β1, β2, . . . be any listing of the permutations of X. We define a
sequence of permutations of X as follows: γ1 = β1 and, for i ≥ 2, γi = γi−1∨βi. Obviously,
γ1 � γ2 � · · · and, for each permutation βn ∈ X, βn � γn.

4 ⇒ 1. In the sequence γ1 � γ2 � · · · we remove duplicates (if any) and we insert suitable
permutations so that we have one of every length. This gives a sequence of permutations
α1 � α2 � · · · such that

1. |αi| = i,

2. αi ∈ X,

3. for all σ ∈ X there exists some αi with σ � αi

Now we shall inductively define, for each i, sets Ai, Bi and bijections πi : Ai → Bi with
the following properties:

1. |Ai| = |Bi| = i

2. πi is order isomorphic to αi

3. Ai−1 ⊂ Ai and Bi−1 ⊂ Bi

4. πi|Ai−1
= πi−1

Once these sets have been constructed we can complete the proof by setting A =
⋃

i Ai

and B =
⋃

i Bi. Then we define π : A → B for any a ∈ A by finding some Ai for which
a ∈ Ai and setting π(a) = πi(a); by the last two properties π is well-defined. The second
property guarantees that X = Sub(π : A → B).

To carry out the construction we shall define Ai, Bi as subsets of the open interval (0, 1).
We begin by setting A1 = B1 = {1/2} and π1(1/2) = 1/2. Suppose now that Ai, Bi, πi

have been constructed for i = 1, 2 . . . , n. The permutation αn+1 is constructed from αn

by the insertion of a new element t at position s in αn; the position numbers of all the
elements of αn which are greater than or equal to s have to be increased by 1 and those
values which are greater than or equal to t have also to be incremented by 1.
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We reflect this insertion in the definition of An+1, Bn+1 and πn+1. The set An+1 is formed
by augmenting An with another number a whose value lies between its (s − 1)th and sth

elements (if s = 1 we take a between 0 and the minimal element of An; while if s = n we
take a between the maximal element and 1). Similarly Bn+1 is formed by augmenting Bn

with a number b whose value lies between its (t − 1)th and tth elements. Then we define
πn+1 so that it agrees with πn on the elements of An and has πn+1(a) = b.

Because of this result we call closed sets of the form Sub(π : A → B) atomic on the grounds
that they cannot be decomposed as a proper union of two closed subsets. Expressing a
given closed set as a union of atomic sets is often very useful in discovering structural
information.

Example 1.3 (See [2]) A(321, 2143) = A(321, 2143, 3142)∪A(321, 2143, 2413)

Given an arbitrary closed subset one might hope to find its properties by first expressing
it as a union of atomic sets, and then discovering properties of the bijection π associated
with each atomic subset. Many difficulties impede this approach. It may happen that a
closed set cannot be expressed as a finite union of atomic subsets. Moreover an atomic
closed set may have a defining bijection π whose domain and range have high ordinal
type; in that case one might be hopeful that properties of these ordinals (in particular,
limit points) might imply properties of X = Sub(π : A → B). Despite this hope it seems
sensible to begin the systematic study of atomic sets by looking at the case where the
ordinal type of both A and B is that of the natural numbers N.

2 Natural classes and sum-complete classes

A natural class is a closed set of the form Sub(π : N → N). In other words, starting from a
permutation π of the natural numbers, we form all the finite subsequences of π(1), π(2), . . .
and define a natural class as consisting of the permutations order isomorphic to these
subsequences. From now on we shall use the notation Sub(π) (suppressing a notational
reference to the domain and range of π) in the following circumstances

1. when π is an infinite permutation with N as its domain and range,

2. when π is a finite permutation (in which case the domain and range are {1, 2, . . . , n}
where n is the length of π).

Example 2.1 Let π be defined by:

π = 1 3 2 6 5 4 10 9 8 7 . . .

Then Sub(π) is easily seen to be the set of all layered permutations as defined in [5].
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If α = a1a2 · · ·am and β = b1b2 · · · are sequences (in particular, permutations) then
their sum α ⊕ β is defined to be the permutation γδ where the segments γ and δ are
rearrangements of 1, 2, . . . , m and m + 1, m + 2, . . . respectively, and α ∼= γ and β ∼= δ.
Notice that we do not require that β be a finite permutation. If a permutation can
be expressed as α ⊕ β (with neither summand empty) we say that it is decomposable;
otherwise it is said to be indecomposable. We also extend the sum notation to sets by
defining, for any two sets of permutations X and Y ,

X ⊕ Y = {σ ⊕ τ | σ ∈ X, τ ∈ Y }

A set X of permutations is said to be sum-complete if for all α, β ∈ X, we have α⊕β ∈ X.

Sum-completeness and decomposability are linked by the following result, proved in [3].

Lemma 2.2 Let X be a closed set with basis B. Then X is sum-complete if and only if
B contains only indecomposable permutations.

We shall see that natural classes and sum-complete closed sets are closely connected. The
first hint of this connection is the following result which, in particular, shows that every
sum-complete closed set is a natural class.

Proposition 2.3 Let γ be any (finite) permutation and S any sum-complete closed set.
Then Sub(γ) ⊕ S is a natural class.

Proof: Let β1, β2, . . . be any listing of the permutations of S. Consider the sequence
of permutations

γ � γ ⊕ β1 � γ ⊕ β1 ⊕ β2 � γ ⊕ β1 ⊕ β2 ⊕ β3 � · · ·

Since S is sum-complete all these permutations lie in Sub(γ) ⊕ S. On the other hand it
is clear that every permutation of Sub(γ) ⊕ S is involved in some term of the sequence.
Hence Sub(γ)⊕S satisfies condition 4 of Theorem 1.2, and hence is atomic. Furthermore,
the proof of (4⇒1) in Theorem 1.2 tells us how to express Sub(γ)⊕S in the form Sub(π :
A → B). Following this recipe, it is easy to see that both A and B are (isomorphic to)
N, and we have a natural class, as required.

Notice that the proof of this result makes no assumption on the listing of the elements
of S. That means that the infinite permutation π for which Sub(γ)⊕ S = Sub(π) is very
far from being unique.

In the remainder of the paper we shall be exploring a partial converse of Proposition 2.3.
Our main theorem will show that every finitely based natural class X does have the form
of the proposition unless π and X have a very particular form.
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3 A characterisation of natural classes

This section is devoted to the proof of the following theorem.

Theorem 3.1 Let X be a finitely based natural class. Then either

1. X = Sub(γ) ⊕ S where γ is a finite permutation and S is a sum-complete closed
class determined uniquely by X, or

2. X = Sub(π) where π is unique and ultimately periodic in the sense that there exist
integers N and P > 0 such that, for all n ≥ N , π(n + P ) = π(n) + P .

The proof of the theorem will show precisely how X determines S in the first alternative.
It will also, in the case of the second alternative, prove that X is enumerated by a rational
generating function.

Before embarking on a series of lemmas that lead up to the proof of Theorem 3.1 we shall
define some notation that will be in force for the rest of this section.

We shall let X = Sub(π) where π is a permutation of N. The basis of X will be denoted
by B and we let b denote the length of a longest permutation in B. The permutations
of B have a decomposition into sum components; the set of final components in such
decompositions will be denoted by C.

We shall use the notation A(C) for the closed set of all permutations that avoid the
permutations of C. This is a slight extension of the notation we defined in Section 1
because C might not be the basis of A(C) (C might contain some non-minimal elements
outside A(C)). This causes no technical difficulties. Obviously, as every permutation
that avoids the permutations of C also avoids the permutations of B, we have A(C) ⊆ X.
By Lemma 2.2 A(C) is sum-complete; it is, as we shall see, the sum-complete class S
occurring in the statement of Theorem 3.1.

From time to time we shall illustrate our proof with diagrams that display permutations.
These diagrams are plots in the (x, y) plane. A permutation p1, p2, . . . (which maps i to pi)
will be represented by a set of points whose coordinates are (i, pi). As a first use of such
diagrams we have Figure 1 which illustrates the sum operation and the two alternatives
in Theorem 3.1.

Lemma 3.2 There exists an integer k such that, for all d > k,

Sub(π(d), π(d + 1), . . .) = A(C)

Proof: For each γ ∈ C there is a basis element of X of the form βγ ⊕ γ. Every such
βγ is a permutation of X and so we can choose a particular subsequence S(βγ) of π with
S(βγ) ∼= β. Let t be the maximal value occurring in all such S(βγ) (as γ ranges over C)
and let u be the right-most position of π where an element of some S(βγ) occurs.
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Figure 1: The sum of 132 and 4231 is 132 7564, as plotted on the left. Every finitely
based natural class is defined by a finite permutation summed with a sum-complete class
(centre), or is eventually periodic (right).

There exists an integer k > u such that all terms π(k + 1), π(k + 2), . . . exceed t. Note
that the order type of N is used in establishing the existence of k. Among the terms
π(k + 1), π(k + 2), . . . there can be no subsequence order isomorphic to an element of C.
This proves that Sub(π(d), π(d + 1), . . .) ⊆ A(C) for all d > k. It also proves that A(C)
is non-empty.

Now let θ ∈ A(C). Since the permutation 1 lies in A(C) and A(C) is sum-complete we
have 1, 2, . . . , d − 1 ⊕ θ ∈ A(C). Therefore π has a subsequence order isomorphic to this
permutation and that implies that π(d), π(d + 1), . . . has a subsequence order isomorphic
to θ which completes the proof.

Corollary 3.3 Either X = Sub(γ) ⊕ A(C) for some finite permutation γ, or π has
finitely many components and the last component (which is necessarily infinite) involves
an element of C.

Proof: Let π = π1 ⊕ π2 ⊕ · · · be the sum decomposition of π. Lemma 3.2 tells us, in
particular, that there is a maximal position k where a subsequence order isomorphic to an
element of C can begin. Suppose this position occurs in the sum component πr. If πr is
not the final component of π then we have Sub(π) = Sub(π1⊕· · ·⊕πr)⊕Sub(πr+1⊕· · · ).
However γ = π1 ⊕ · · · ⊕ πr is finite and Sub(πr+1 ⊕ · · · ) = A(C) by the lemma.

The first alternative of this corollary leads to the first alternative of Theorem 3.1 because
of the following uniqueness result.

Proposition 3.4 If X = Sub(γ1)⊕S1 = Sub(γ2)⊕S2 where γ1, γ2 are finite permutations
and S1, S2 are sum-complete then S1 = S2.
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Proof: Let σ1 ∈ S1. Then, as S1 contains every permutation of the form ιm =
1 2 . . .m, S1 also contains ιt ⊕ σ1 where t = |γ2|. But this permutation belongs to
Sub(γ2) ⊕ S2 and so can be expressed as γ′ ⊕ σ2 where γ′ � γ2. Since ιt ⊕ σ1 = γ′ ⊕ σ2

and |γ′| ≤ |ιt| we have σ1 � σ2. This proves that σ1 ∈ S2 and therefore S1 ⊆ S2. The
result now follows by symmetry.

In the remainder of the proof of Theorem 3.1 we shall assume that the second alternative
of Corollary 3.3 holds and work towards proving the second alternative of the theorem.
In particular, there exists a greatest position k in π where a subsequence isomorphic to a
permutation in C can begin, and this position occurs in the final (infinite) sum component
πz of π.

Next we prepare the ground for two arguments that occur later in the proof and which
depend upon the indecomposability of πz. Suppose that r is any position in πz. We define
a pair of sequences U(r) = u1u2 · · · and V (r) = v1v2 · · · by the following rules:

1. vi is the position among the terms of π up to and including position ui−1 (when
i = 1 take u0 = r) where the greatest element occurs:

π(vi) = max{π(h) | h ≤ ui−1}.

2. ui is the rightmost position in π where a term not exceeding π(vi) occurs:

ui = max{h | π(h) ≤ π(vi)}.

Figure 2 depicts these points and the next lemma assures us that the figure accurately
represents the relative positions of the marked points.

Lemma 3.5 The relative positions and sizes of the terms π(ui) and π(vj) are described
by the following inequalities:

v1 < v2 < u1 < v3 < u2 < v4 < u3 < · · ·

π(u1) < π(v1) < π(u2) < π(v2) < π(u3) < π(v3) < · · ·

Proof: (I) From the definition of vi we have vi ≤ ui−1, and from the definition of ui

we have and π(vi) ≥ π(ui). Note that we cannot have ui = ui−1, because then every term
of π to the left of this position would be less than or equal to π(vi), and every term to
the right would be greater than π(vi), contradicting the assumption that π(vi) belongs to
the final component of π. Hence we have vi ≤ ui−1 < ui and π(vi) > π(ui).

(II) By the definition of vi+1, we have vi+1 ≤ ui and π(vi+1) ≥ π(vi). We cannot have
vi+1 < vi, because π(vi) is the maximal value of π on the interval [1, ui−1]. Also, we
cannot have vi+1 = vi, because that would imply ui+1 = ui, which is proved impossible as
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Figure 2: The terms of π as mapped out by π(ui) and π(vi). All terms lie in the shaded
boxes.

in (I). Finally, we cannot have vi+1 = ui because π(ui) < π(vi) by (I). We conclude that
vi < vi+1 < ui and π(vi) < π(vi+1).

(III) As in (I), we have ui+1 > ui and π(ui+1) < π(vi+1). Moreover, ui+1 > ui immediately
implies that π(ui+1) > π(vi).

(IV) As in (II), we have vi+2 < ui+1 and π(vi+2) > π(vi+1). Moreover, vi+2 > ui for
otherwise we would have π(vi+2) ≤ π(vi+1).

Summarising (I)–(IV), we have vi < vi+1 < ui < vi+2 < ui+1 and π(ui) < π(vi) <
π(ui+1) < π(vi+1) < π(vi+2) for every i = 1, 2, . . ., which is enough to prove the lemma.

Our first use of the sequences U(r) and V (r) and the above lemma occurs immediately.
We have seen (Lemma 3.2) that there is a rightmost position in π where subsequences
order isomorphic to permutations in C can begin. Now we prove that there is a rightmost
position by which they have all ended.

Lemma 3.6 There exists a position ` of π such that no subsequence of π that is order
isomorphic to an element of C terminates after position `.

Proof: Consider the sequences U(k), V (k) and refer to Figure 2 with r = k, in partic-
ular to the edge-connected strip of boxes that begins with the box B1 bounded by π(v1)
and π(k). Let S be a subsequence of π isomorphic to a permutation γ ∈ C. By definition
of k, S cannot start to the right of π(k). In fact, since γ is indecomposable, S must start
in B1, and the terms of S must lie in a contiguous segment of boxes. Therefore, as |S| ≤ b,
S cannot extend beyond position ubb/2c.

In view of this lemma we may define ` as the last position of π that is part of a subsequence
isomorphic to an element of C. Now we define the sequences U(`), V (`) (and, re-using
notation, call them u1, u2, . . . and v1, v2, . . .).

The defining property of ` implies that π(1), . . . , π(`) is the only subsequence of π with
this order isomorphism type. For any subsequence of π order isomorphic to π(1), . . . , π(`)
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has a final element that is part of a subsequence order isomorphic to an element of C.
Therefore this final element cannot occur after position ` within π and so it must be
π(1), . . . , π(`) itself. Notice also, again from the definition of `, that the permutation
order isomorphic to π(1), . . . , π(`) is the longest permutation in X whose last element is
the terminating element of a subsequence order isomorphic to an element of C; as such,
this permutation depends on X and not on π. In the next lemma we prove that a number
of other initial segments of π are unique of their isomorphism type, and depend on X
rather than on π.

Lemma 3.7 For each i = 1, 2, . . . the sequence π(1), . . . , π(ui) is the unique subsequence
of that order isomorphism type. Its corresponding permutation β = β(1), . . . , β(ui) is the
longest permutation in X satisfying the following two properties:

(1) β(1), . . . , β(ui−1) is isomorphic to π(1), . . . , π(ui−1) (where u0 = `);

(2) β(ui) ≤ β(vi).

As such, β depends on X only, and not on π.

Proof: We prove the lemma by induction, anchoring it at u0 = `. Assume that
the statements are true for some i ≥ 1, and consider any subsequence π(s1), . . . , π(sui+1

)
order isomorphic to π(1), . . . , π(ui+1). By the inductive hypothesis we must have sj = j
for j = 1, . . . , ui. But then, since π(ui+1) is the rightmost term of π smaller than π(vi+1),
and since there are ui+1 − ui − 1 terms between π(ui) and π(ui+1), it follows that sj = j
for j = ui + 1, . . . , ui+1 as well.

Clearly, the permutation β satisfies properties (1) and (2), by virtue of being isomorphic
to π(1), . . . , π(ui+1). Suppose that γ = γ(1), . . . , γ(m) is any permutation satisfying these
conditions. Consider an embedding π(t1), . . . , π(tm) of γ in π. As above, we must have
tj = j for j = 1, . . . , ui. And again, π(ui+1) being the rightmost term of π smaller than
π(vi+1), we have that tm ≤ ui+1. But this, in turn, implies that |γ| = m ≤ tm ≤ ui+1 = |β|.
This proves that β is indeed the longest permutation of X satisfying (1) and (2). The
last statement of the lemma is now straightforward.

At this point we can prove the uniqueness of π: it is the limit of its initial segments
π(1) · · ·π(ui) and these depend on X alone.

For future use we record the following result, the proof of which is analogous to the proof
of Lemma 3.7:

Lemma 3.8 For each i = 2, 3, . . . the subsequence consisting of all terms of π not ex-
ceeding π(vi) is unique of its order isomorphism type. Its corresponding permutation
β = β(1), . . . , β(ni) is the longest permutation in X satisfying the following two proper-
ties:
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(1) β(1), . . . , β(ui−1) is isomorphic to π(1), . . . , π(ui−1);

(2) β(vi) is its largest term.

As such, β depends on X only, and not on π.

The subsequences whose embeddings are unique in the previous two lemmas are those
all of whose terms are taken from an initial contiguous strip of blocks in Figure 2 (with
r = `). For convenience we let σ(i) be the permutation isomorphic to the first type of
subsequence (Lemma 3.7), and σ′(i) be the permutation isomorphic to the second type
(Lemma 3.8).

Lemma 3.9 ui+1 − ui ≤ 2(b − 1)2

Proof: Of course ui+1 − ui is the number of terms of π(ui + 1) · · ·π(ui+1). We divide
these terms into two sets

L = {j | ui < j ≤ ui+1 and π(j) < π(vi+1)}

and
U = {j | ui < j ≤ ui+1 and π(j) > π(vi+1)}

and we shall show that both |L| and |U | are at most (b − 1)2. Each bound is proved in
the same way and we give the details for |L| only. Figure 3 depicts the locations of L and
U within π.

Consider a maximal increasing subsequence π(j1)π(j2) · · ·π(jm) of π such that all ji ∈ L.
Using this we form another subsequence of π whose terms are the following:

1. all terms not exceeding π(vi), (a subsequence order isomorphic to σ′(i))

2. the term π(vi+1)

3. all the terms π(j1)π(j2) · · ·π(jm)

The permutation which is order isomorphic to this subsequence is, of course, a member
of X and we write it as λnρθ where n corresponds to the term π(vi+1), λρ corresponds to
σ′(i), and θ = n − m, n − m + 1, . . . , n − 1 corresponds to π(j1)π(j2) · · ·π(jm).

Now consider another permutation almost the same as this except that θ contains one
more term, and n is replaced by n + 1. It has the form λ, n + 1, ρθ′ with θ′ = n −
m, n − m + 1, . . . , n − 1, n. This permutation does not belong to X. To see this, assume
that some subsequence of π is order isomorphic to it. In the correspondence between
the permutation and the subsequence, λρ (which is order isomorphic to σ′(i)) must be
mapped to the subsequence of terms not exceeding π(vi), by Lemma 3.8, and n + 1 must
be mapped to one of the terms of π in the range of positions ui−1 + 1 to ui. This forces
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θ′ to be mapped into L as these are the only positions of π to the right of ui and smaller
than π(vi+1). However, this contradicts that L contains no increasing sequence of length
m + 1.

It follows that λ, n + 1, ρθ′ must involve a basis element of X. A particular embedding of
a basis element must contain all the terms of θ′ for otherwise this basis element would be
embedded in λnρθ which is impossible. In particular we can deduce that m + 1 ≤ b.

Exactly the same argument can be carried out for maximal decreasing subsequences. Thus
the sequence π(L) contains no increasing or decreasing subsequence of length more than
b − 1 and, by the well known result of Erdős and Szekeres (see [6]), we conclude that
|L| ≤ (b − 1)2.

The proof that |U | ≤ (b − 1)2 is similar but it uses π(ui+1) and σ(i) instead of π(vi+1)
and σ′(i).

We now define an encoding of permutations of X. If ξ = x1x2 · · ·xn ∈ X then we encode
it as E(ξ) = e1e2 · · · en where

ek = |{i | 1 ≤ i ≤ k and xi ≥ xk}|

If a term of π lies in the final component beyond position u2 then there are, by Lemma
3.9, at most 4(b − 1)2 preceding terms greater than it. On the other hand, if it lies in
one of the finite components or in the final component and not beyond position u2 then,
obviously, there will again only be a bounded number of preceding greater terms. Since
permutations of X are order isomorphic to subsequences of π and π is determined by X
there is an upper bound depending on X alone for each of the code symbols ek. Thus we
may consider E(X) as a language over some finite alphabet A = {1, . . . , m}.
The encoding has the property that, if γ = δε is a permutation and δ̄ is the permutation
order isomorphic to the initial segment δ, then E(δ̄) is an initial segment of E(γ).

-

6

r

r

π(v1)

π(l)

r

r

π(v2)

π(u1)

r

r

π(v3)

π(u2)

r

r

π(v4)

π(u3)

L

U L

U L

U

etc

Figure 3: π mapped out by ui and vi. None of the boxes marked L or U contains a
monotonic increasing or decreasing subsequence of length b. Thus the sizes of these boxes
is bounded.
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Furthermore this encoding (in which every element of a permutation is encoded by the
number of its higher predecessors) is closely related to the encoding studied in [1] (in
which every element was encoded by its number of lower successors). In fact, if F (ξ)
denotes the latter encoding and ξ̄ is the permutation obtained from ξ by replacing each
element xi by |ξ| − xi + 1 and then reversing it, then F (ξ̄) is the reverse of E(ξ). It
therefore follows from Theorem 2 of [1] that

Lemma 3.10 E(X) is a regular set.

We can now confirm one of the claims we made when stating Theorem 3.1: from the results
of [1] the ordinary generating function of the sequence (gn), where gn is the number
of permutations of length n, is a rational function. But to show that π is eventually
periodic and thus complete the proof of the theorem we need to study a deterministic
finite automaton that accepts E(X). We denote this automaton by M = (Σ, A, s0, τ, T )
(the notation specifies, respectively, the set of states, the alphabet, the initial state, the
transition function, and the set of final states).

Lemma 3.11 {E(σ(i)) | i = 1, 2, . . .} contains the set

{αβj | j = 0, 1, 2, . . .}
defined by the regular expression αβ∗ for some non-empty words α, β ∈ A∗.

Proof: We shall consider the sequence of states ti = τ(s0, E(σ(i))), i = 1, 2, . . . and
aim to show that it is periodic. By definition and by Lemma 3.7 σ(i + 1) = θφ where

(a) θ is a sequence order isomorphic to σ(i)

(b) φ = a1a2 · · ·an satisfies an < max(θ) and θφ ∈ X

(c) φ is maximal with these properties.

We shall express these conditions in terms of the automaton M. From (a), (b) and the
definition of E we have

E(σ(i + 1)) = E(σ(i))b1b2 · · · bn

where w = b1b2 · · · bn is a word in the alphabet A and τ(ti, w) = ti+1.

By definition, bj is the number of terms of θφ up to and including aj that exceed or equal
aj . To capture the condition an < max(θ) we need to define another sequence c0c1c2 · · · cn

where c0 = 0 and cj is the number of terms up to and including aj that exceed max(θ);
of course, all such terms are among a1, a2, . . . , an.

If aj < max(θ) then the terms enumerated by bj include max(θ), aj and the cj−1 terms
above max(θ); hence bj > cj−1 + 1. However, if aj > max(θ) then each of the bj terms
that exceed or equal aj is one of the terms that exceeds max(θ); hence bj ≤ cj−1 + 1.
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Furthermore, in the former case cj = cj−1 and in the latter case cj = cj−1 + 1. Thus
c1c2 · · · cn is determined uniquely by b1b2 · · · bn, and an < max(θ) if and only if bn > cn.

Putting all this together ti+1 is the unique state of M for which there exists a word
w = b1b2 · · · bn in the alphabet A with the following properties:

1. τ(ti, w) = ti+1;

2. if the sequence (c0, c1, . . . , cn) is defined by c0 = 0 and, for j > 0,

cj =

{
cj−1 if bj > cj−1 + 1,

cj−1 + 1 if bj ≤ cj−1 + 1

then bn > cn;

3. w has maximal length among all words satisfying these two conditions.

But now note that the three conditions depend only on the ti and the automaton M
and not on E(σ(i)). Therefore the sequence t1, t2, . . . is ultimately periodic. So, for some
P > 0 and N we have tj = tj+P for all j ≥ N .

Let α = E(σ(N)) and let β be the unique word such that E(σ(N + P )) = αβ. Then
E(σ(N+hP )) = αβh and τ(s0, αβh) = tN for all h ≥ 0. This proves that αβ∗ ⊆ {E(σ(i)) |
i = 1, 2, . . .}.

We can now complete the proof of Theorem 3.1. In the notation of the previous lemma,
let |α| = m and |β| = n. Consider the encoding of π itself: E(π) = e1e2 · · · . This is just
the limit of its prefixes E(σ(1)), E(σ(2)), . . .. It is also the limit of E(σ(N)), E(σ(N +
P )), E(σ(N +2P )), . . .. Hence, by Lemma 3.11, E(π) is ultimately periodic with ej+n = ej

for all j ≥ m.

Consider an arbitrary π(j) with j ≥ m. We have π(j) = lj + rj + 1 where

lj = |{i | i ≤ j and π(i) < π(j)}|
and

rj = |{i | i > j and π(i) < π(j)}|
Obviously, lj = j − ej . The number rj can be obtained from E(π) as follows. Define two
sequences ν(j) = (n0, n1, . . .) and θ(j) = (h0, h1, . . .) by n0 = 0 and h0 = ej and

ni+1 =

{
ni + 1 if ej+i+1 > hi

ni otherwise

and

hi+1 =

{
hi if ej+i+1 > hi

hi + 1 otherwise
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An easy inductive argument shows that ni is equal to the number of terms from π(j +
1), . . . , π(j + i) which are smaller than π(j), while hi − ej is the number of terms from
the same set which are greater than π(j). In particular, ν(j) eventually becomes constant
with value rj .

Finally, note that ν(j) depends only on ejej+1ej+2 · · · and not on e1e2 · · · ej−1. Hence
ν(j) = ν(j+n) and rj = rj+n. Therefore

π(j + n) = lj+n + rj+n + 1

= j + n − ej+n + rj+n + 1

= n + j − ej + rj + 1

= n + lj + rj + 1

= n + π(j)

as required.

4 Natural classes with infinite bases

Any natural class that is not of the form stipulated by the conclusion of Theorem 3.1 is,
of course, not finitely based. An example of such a class is Y = Sub(π) where

π = 3 2 5 1 [7, 8] 4 [10, 12] 6 [14, 17] 9 [19, 23] 13 [25, 30] 18 [32, 38] 24 . . .

In this example [a, b] stands for the segment [a, a + 1, . . . , b]. It is clear by inspection
that π is not periodic and so, by the uniqueness conclusion of Theorem 3.1, Y is not of
periodic type. We argue that it is not of the form Sub(γ) ⊕ S where S is sum-complete.
Suppose it were of this form. Consider the initial segments of π ending with one of
1, 4, 6, 9, . . . respectively. These all define permutations ξ1, ξ2, ξ3, ξ4 . . . of Y . Every ξi is
indecomposable and has a unique embedding in π. From the indecomposability those ξi

of length greater than γ must be order isomorphic to permutations of S; but, if ξi ∈ S,
so also is ξi ⊕ ξi which contradicts that it is uniquely embeddable in π.

It would perhaps be tempting to suppose that when π is periodic, the closed class Sub(π)
is always finitely based. This, however, is not the case, as our final example shows.

Let X = Sub(π), where

π = 2 3 5 1 7 8 4 10 6 12 13 9 15 11 · · · .

Essentially, π is an increasing oscillating sequence with every other left maximal term
replaced with an increasing pair (the underlinings are intended to highlight this). Call
these increasing pairs twins, and note that they are the only pairs of terms of π occurring
in successive positions and having successive values.
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Figure 4: On the left, an infinitely based periodic natural class. On the right, two basis
elements.

We claim that each of the following permutations belongs to the basis of X:

β1 = 2 3 4 5 1

β2 = 2 3 5 1 7 4 8 9 6
...

βn = 2 3 5 1 7 4 9 6 · · ·4n − 3 4n − 6 4n − 1 4n − 4 4n 4n + 1 4n − 2
...

The permutation βn is obtained from an oscillating sequence with an even number of
left maximal terms by replacing the first and last of these terms by increasing pairs (see
Figure 4). To show that βn 6∈ X we can argue as follows. Write π as

π = U0U1l1U2l2U3l3 . . . ,

where U0, U2, U4, . . . are the twins, U1, U3, U5, . . . are the remaining (unexpanded) left
maxima, and l1, l2, l3, . . . are the remaining terms. Suppose βn embeds into π. The two
twins of βn must correspond to two twins, say U2p and U2q, of π. Since βn is indecom-
posable, the remaining left maxima 5, 7, 9, . . . of βn must map into U2p+1, U2p+2, U2p+3, . . .
respectively. The number of left maxima between the two twins of βn is even, while the
number of segments U2p+1, . . . , U2q−1 is odd, a contradiction.

To complete the proof that βn is a basis permutation of X, we need to demonstrate that
βn \ {βn(j)}, the permutation obtained by removing the jth term from βn, belongs to
X for every j = 1, . . . , 4n + 1. If j 6∈ {1, 2, 4n − 1, 4n} the resulting permutation is
decomposable, and can be embedded into π by embedding each of its components and
keeping them sufficiently apart. If j is one of 1, 2, 4n − 1 or 4n then one of the twins of
βn becomes a singleton. Suppose, for the sake of argument, that j = 4n (the other cases
are treated analogously). Then we can embed βn \ {βn(4n)} by mapping 2 and 3 onto U0,
all the other left maxima of βn into U1, U2, . . . respectively, and the remaining terms into
l1, l2, . . . respectively. Note that the parity problem which prevented us from embedding
βn into π does not arise here, because the second twin of βn has become a singleton in
βn \ {βn(4n)}, and can therefore be mapped onto the singleton U2n−1.
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