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Abstract

In the context of generating functions for P-partitions, we revisit three flavors
of quasisymmetric functions: Gessel’s quasisymmetric functions, Chow’s type B
quasisymmetric functions, and Poirier’s signed quasisymmetric functions. In each
case we use the inner coproduct to give a combinatorial description (counting pairs of
permutations) to the multiplication in: Solomon’s type A descent algebra, Solomon’s
type B descent algebra, and the Mantaci-Reutenauer algebra, respectively. The
presentation is brief and elementary, our main results coming as consequences of
P-partition theorems already in the literature.

1 Quasisymmetric functions and Solomon’s descent
algebra

The ring of quasisymmetric functions is well-known (see [12], ch. 7.19). Recall that a
quasisymmetric function is a formal series

Q(z1,x9,...) € Zl[x1, 22, .. ]|

of bounded degree such that the coefficient of x?llej . xi’“ is the same for all ¢; <
iy < --- < i} and all compositions o = (e, e, ...,q). Recall that a composition of
n, written « = n, is an ordered tuple of positive integers a = (ay, g, ..., ay) such that

la] = a1 + g + - -+ + ag, = n. In this case we say that a has k parts, or #a = k. We can
put a partial order on the set of all compositions of n by reverse refinement. The covering
relations are of the form

(al,...,Oéi+Oéi+1,...7OZk) =< (Oél,...,Oéi,Oéi+1,...7O[k).

Let Qsym,, denote the set of all quasisymmetric functions homogeneous of degree n. The
ring of quasisymmetric functions can be defined as Qsym := EB@O Qsym,,, but our focus
will stay on the quasisymmetric functions of degree n, rather than the ring as a whole.
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The most obvious basis for Qsym,, is the set of monomial quasisymmetric functions,

defined for any composition o = (g, g, ..., %) E n,
PO § [0 %N Q.
MO( . le '/I/‘ZQ "'I'Z-k .
11 <ig<-<ip

We can form another natural basis with the fundamental quasisymmetric functions, also
indexed by compositions,
Foi=> Mj,

asf

since, by inclusion-exclusion we can express the M, in terms of the F|:

My =) (—1)##ep,,

asp

As an example,

Fony = Mgy + Maqq) = foxj + Z T;xjx) = Z TiX Ty,

1<j i<j<k i<j<k

Compositions can be used to encode descent classes of permutations in the following
way. Recall that a descent of a permutation m € &,, is a position ¢ such that m; > 7,
and that an increasing run of a permutation 7 is a maximal subword of consecutive
letters m; 1m0+ my, such that m; < mio < -+ < my,. By maximality, we have
that if 7, 1719 T, 18 an increasing run, then i is a descent of 7 (if ¢ # 0), and
i+ ris a descent of m (if i + 7 # n). For any permutation 7 € &,, define the descent
composition, C'(), to be the ordered tuple listing the lengths of the increasing runs of .
If C(7) = (v, e, ..., q), we can recover the descent set of 7:

Des(m) = {a1, a1 + g, ..., a1 + g + -+ -+ ag_1 }.

Since C'(7) and Des(7) have the same information, we will use them interchangeably. For
example the permutation 7 = (3,4, 5,2,6,1) has C(7) = (3,2,1) and Des(m) = {3, 5}.

Recall ([11], ch. 4.5) that a P-partition is an order-preserving map from a poset P
to some (countable) totally ordered set. To be precise, let P be any labeled partially
ordered set (with partial order <p) and let S be any totally ordered countable set. Then
f: P — S isa P-partition if it satisfies the following conditions:

Lf) < fG)ifi<pj
2. f(i) < f(j) if i <p j and i > j (as labels)

We let A(P) (or A(P;S) if we want to emphasize the image set) denote the set of all
P-partitions, and encode this set in the generating function

D(P):= > TpayTse - i),
FEA(P)
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where n is the number of elements in P (we will only consider finite posets). If we take S
to be the set of positive integers, then it should be clear that I'(P) is always going to be
a quasisymmetric function of degree n. As an easy example, let P be the poset defined
by 3 >p 2 <p 1. In this case we have

L(P) = > zpeTe.
F3)2F@)<F(1)

We can consider permutations to be labeled posets with total order m <, m <,
-+ < m,. With this convention, we have

A(m) ={f : [n] = S1f(m) < f(m2) < - < flm)
and k € Des(m) = f(m) < f(mr+1)},

and

F(ﬂ') = E Ljy Ly ** Ty, -
11 <2< <ip
keDes(m)=if<igt1

It is not hard to verify that in fact we have
F(ﬂ') = Fc(ﬂ),

so that generating functions for the P-partitions of permutations of 7 € &,, form a basis
for Qsym,,.
We have the following theorem related to P-partitions of permutations, due to Gessel

[5]-

Theorem 1 As sets, we have the bijection

A(m;ST) = [ A(m:8) & Ao T),

OT=T
where ST is the cartesian product of the sets S and T with the lexicographic ordering.

Let X = {z1,29,...} and Y = {y1, 42, ...} be two two sets of commuting indetermi-
nates. Then we define the bipartite generating function,

I(7)(XY) = > Tiy T Yjy o Y
(41,51)<(i2,42) < <(in,jn)
keDes(m)=>(ig,Jk) <(ik+1:Jk+1)

We will apply Theorem 1 with S =T = P, the positive integers.

Corollary 1 We have
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Following [5], we can define a Coalgebra structure on Qsym,, in the following way. If
7 is any permutation with C'(7) = 7, let a 5 denote the number of pairs of permutations
(0,7) € 6, x &, with C(0) = «, C(7) = ﬂ, and o7 = m. Then Corollary 1 defines a

coproduct Qsym,, — Qsym, ® Qsym,:
Fo > al jF @ F.
a,BEn

If Qsym;, with basis { F*}, is the algebra dual to Qsym,,, then by definition it is equipped
with multiplication
Fyx F, = Z al oF o

Let Z&,, denote the group algebra of the symmetric group. We can define its dual
coalgebra ZG; with comultiplication

7T'—>Z7'®O’

Then by Corollary 1 we have a surjective homomorphism of coalgebras ¢* : ZG; —
Qsym, given by
@ (m) = Fo(n).

The dualization of this map is then an injective homomorphism of algebras ¢ : Qsym; —

7.6,, with
> -
C(m)=a

The is image of ¢ is then a subalgebra of the group algebra, with basis
=2
C(m)=a

This subalgebra is well-known as Solomon’s descent algebra [10], denoted Sol(A,_1).
Corollary 1 has then given a combinatorial description to multiplication in Sol(A4,_1):

UGl = Z alﬁuv.
vEn

The above arguments are due to Gessel [5]. We give them here in full detail for compar-
ison with later sections, when we will outline a similar relationship between Chow’s type
B quasisymmetric functions [4] and Sol(B,,), and between Poirier’s signed quasisymmetric
functions [9] and the Mantaci-Reutenauer algebra.
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2 Type B quasisymmetric functions and Solomon’s
descent algebra

The type B quasisymmetric functions can be viewed as the natural objects related to
type B P-partitions (see [4]). Define the type B posets (with 2n + 1 elements) to be
posets labeled distinctly by {—n,...,—1,0,1,...,n} with the property that if i <p j,
then —j <p —i. For example, =2 >p 1 <p 0 <p —1 >p 2 is a type B poset.

Let P be any type B poset, and let S = {sg, s1, ...} be any countable totally ordered
set with a minimal element sy. Then a type B P-partition is any map f : P — £S5 such
that

1L f(0) < fG)ifi<pj
<f

J
2. f(i) (7)ifi <p j and i > j (as labels)
3. f(=i) = =f(9)

where £ is the totally ordered set
=8y =8 <G < s < Sy < e

If S is the nonnegative integers, then +S5 is the set of all integers.

The third property of type B P-partitions means that f(0) = 0 and the set {f(7) |
i=1,2,...,n} determines the map f. We let Ap(P) = Ap(P;=£S) denote the set of all
type B P-partitions, and define the generating function for type B P-partitions as

Pp(P)i= Y T Tsm)
feARB(P)

Signed permutations 7 € 98,, are type B posets with total order
T, << —m <0< m<-- <,
We then have

Ap(m) ={f : £[n] = £5]0 < f(m) < f(m) < - < f(m),
f(=i) = =f(0),
and k € Desp(m) = f(m) < f(mk41)},

and

FB(T('): Z Lijy Ly ** Ty, -

0<i1 <ig<-<in
k‘EDeS(ﬂ'):>Z‘k <ig+41

Here, the type B descent set, Desg(7), keeps track of the ordinary descents as well as a
descent in position 0 if m; < 0. Notice that if 7, < 0, then f(m;) > 0, and I'g(7) has no
To terms, as in

FB((—3, 2, —]_)) = Z ZEZ'ZEjZEk.

0<i<j<k
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The possible presence of a descent in position zero is the crucial difference between
type A and type B descent sets. Define a pseudo-composition of n to be an ordered tuple
a = (ag,...,ax) with oy >0, and o; > 0 for i > 1, such that a; +- - -+ ag = n. We write
a IF n to mean « is a pseudo-composition of n. Define the descent pseudo-composition
Cp(m) of a signed permutation 7 be the lengths of its increasing runs as before, but now
we have a; = 0 if m; < 0. As with ordinary compositions, the partial order on pseudo-
compositions of n is given by reverse refinement. We can move back and forth between
descent pseudo-compositions and descent sets in exactly the same way as for type A. If
Cp(m) = (aq, ..., ax), then we have

DeSB(ﬂ') = {041,061 +OZ2,...,OZ1 +OZ2+"'+Ozk_1}.

We will use pseudo-compositions of n to index the type B quasisymmetric functions.
Define BQsym,, as the vector space of functions spanned by the type B monomial qua-
sisymmetric functions:

Mg, = Z wotwyy gk,
0<ig<--<iy,
where a = (a4, ..., ax) is any pseudo-composition, or equivalently by the type B funda-

mental quasisymmetric functions:

FB,a = Z MB,ﬁ'

asf

The space of all type B quasisymmetric functions is defined as the direct sum BQsym :=
D> BAsym,,. By design, we have

U(7) = Fp.opn)-
From Chow [4] we have the following theorem and corollary.

Theorem 2 As sets, we have the bijection

Ap(m; ST) < H Ap(m;S) ® Ag(o;T),

where ST is the cartesian product of the sets S and T with the lexicographic ordering.
We take S =T = Z and we have the following.

Corollary 2 We have

Fpopm(XY) = Foopm)(X)Fpop)(Y).

OT=T
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The coalgebra structure on BQsym, works just the same as in the type A case.
Corollary 2 gives us the coproduct

Fpoy ) 0l 5Fps® Fpa,
a,BlkFn

where for any 7 such that Cp(7) = 7, bzy’ 5 is the number of pairs of signed permutations
(o, 7) such that Cp(0) = «, Cp(r) = 3, and o7 = m. The dual algebra is isomorphic to
Sol(B,,), where if u,, is the sum of all signed permutations with descent pseudo-composition

«, the multiplication given by
UGl = Z bl,ﬁ“v'

ylkn

3 Signed quasisymmetric functions and the Mantaci-
Reutenauer algebra

One thing to have noticed about the generating function for type B P-partitions is that we
are losing a certain amount of information when we take absolute values on the subscripts.
We can think of signed quasisymmetric functions as arising naturally by dropping this
restriction.

For a type B poset P, define the signed generating function for type B P-partitions
to be

L(P):= ) s Tiw),
JeARB(P)

where we will write

€T; =

T(r) = Z Tiy Tiy ** * Ty

0<iy <ig<--<in
s€Desp (m)=ts<ist1

Ts<0=x;, =u;

ws>0=m;, =v;

so that now we are keeping track of the set of minus signs of our signed permutation along
with the descents. For example,

I'(=3,2,-1)) = Z UV U,

0<i<j<k

To keep track of both the set of signs and the set of descents, we introduce the
signed compositions as used in [3]. A signed composition a of n, denoted a lIF n, is
a tuple of nonzero integers (ay,...,a) such that |ag| + -+ + |ag| = n. For any signed
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permutation 7 we will associate a signed composition sC(7) by simply recording the length
of increasing runs with constant sign, and then recording that sign. For example, if 7 =
(—3,4,5,—6,—2,—7,1), then sC(m) = (—1,2,—-2,—1,1). The signed composition keeps
track of both the set of signs and the set of descents of the permutation as we demonstrate
with an example. If sC(7) = (—3,2,1, —2, 1), then we know that 7 is a permutation in &g
such that w4, 75, T, and mg are positive, whereas the rest are all negative. The descents
of 7 are in positions 5 and 6. Note that for any ordinary composition of n with k parts,
there are 2% signed compositions, leading us to conclude that there are

- n—1 k n—1
Z(k_l)Q —2.3
k=1

signed compositions of n. The partial order on signed compositions is given by reverse
refinement with constant sign, i.e., the cover relations are still of the form:

(Oél,...,Oéi+C(i+1,...,Oék) =< (C(l,...,Oéi,CtiJrl,...,Oék),

but now «; and a;;; have to have the same sign. For example, if n = 2, we have the
following partial order:

(2) <(1,1)

(_17 1)

(17 _1)

(~2) < (~1,-1)

We will use signed compositions to index the signed quasisymmetric functions (see
[9]). For any signed composition «, define the monomial signed quasisymmetric function

T — § : o], az| |oeg |
MOt — le xz2 "'I'Z-k 9
1 <ig<-<ip

ar<0=z;,.=u;,
ar>0=x;,=v;,

and the fundamental signed quasisymmetric function

Fa = Zﬁg

asf

By construction, we have _ B
F(?T) = Fsc(ﬂ).

Notice that if we set u = v, then our signed quasisymmetric functions become type B
quasisymmetric functions.

Let SQsym,, denote the span of the M, (or F,), taken over all « lIF n. The space of
all signed quasisymmetric functions, SQsym = @,,, SQsym,,, is a graded ring whose
n-th graded component has rank 2 - 3"~'. We will relate this to the Mantaci-Reutenauer
algebra.
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Theorem 2 is a statement about splitting apart bipartite P-partitions, independent
of how we choose to encode the information. So while Corollary 2 is one such way of
encoding the information of Theorem 2, the following is another.

Corollary 3 We have

Faom(XY) = Foom(X)Fao@)(Y).

OT=T

We define a coalgebra structure on §Qsym,, as we did in the earlier cases. Let m € B,
be any signed permutation with sC(w) = =, and let czlﬁ be the number of pairs of
permutations (o, 7) € B, x B, with sC(0) = a, sC(7) = 3, and o7 = 7. Corollary 3
gives a coproduct SQsym,, — SQsym,, ® SQAsym,,:

F,— Y @ FsoF.
a,BliFn

Multiplication in the dual algebra SQsym; is given by

Fy«F, = Z cl 5F.

yllFn

The group algebra of the hyperoctahedral group, Z®8,,, has a dual coalgebra Z®8; with
comultiplication given by the map

T T Oo.
By Corollary 3, the following is a surjective homomorphism of coalgebras ¢* : ZB) —

SQsym,, given by

77Z)*(7T) = FSC(T()‘
The dualization of this map is an injective homomorphism ¢ : SQsym; — Z‘B,, with
W(F)= ) ™
sC(m)=a

The image of 1) is then a subalgebra of ZB,, of dimension 2 - 3", with basis

Vg = E .

sC(m)=a
This subalgebra is called the Mantaci-Reutenauer algebra [6], with multiplication given
explicitly by
VgV, = Z Clﬁvv.

YliFn

The duality between SQsym,, and the Mantaci-Reutenauer algebra was shown in
[1], and the bases {F,} and {v,} are shown to be dual in [2], but the the P-partition
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approach to the problem is new. As the Mantaci-Reutenauer algebra is defined for any
wreath product C,, 1 &, i.e., any “m-colored” permutation group, it would be nice to
develop a theory of colored P-partitions to tell the dual story in general.

In closing, we remark that this same method was put to use in [8], where Stembridge’s
enriched P-partitions [13] were generalized and put to use to study peak algebras. Vari-
ations on the theme can also be found in [7].
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