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Abstract

We introduce and study a common generalization of 1-error binary perfect codes
and perfect single error correcting codes in Lee metric, namely perfect codes on
products of paths of length 2 and of infinite length. Both existence and nonexistence
results are given.

1 Introduction

Perfect codes appeared in error correcting codes theory during the late 40’s with the
work of Golay and Hamming [3, 6]. They constructed perfect binary single-error correcting
codes of length n where n = 2q − 1 for some integer q.

Later, Golomb and Welch [4, 5] proved, for any length n, the existence of perfect
single-error correcting codes in Lee metric. Such codes can be considered either as regular
periodic tilings of the euclidean space R

n by Lee spheres of radius 1 or as periodic tilings
of the grid Z

n by balls of radius 1. Perfect codes have also been studied on other alphabets
or mixed one (see [2]).

In [1], Biggs introduced perfect codes in graphs. From this point of view, a perfect
binary single-error correcting code of length k is a perfect code on the hypercube Qk, and
a tiling of the grid Z

n by balls of radius 1 is nothing more than a perfect code of Z
n.
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Both Qk and the grid Z
n are cartesian products of paths either of length 2 (P2) or

of infinite length (P∞). We study the existence of perfect codes on the mixed product
P n
∞2P k

2 = Z
n
2Qk.

In the next section, we give the definitions we will use along this paper. Section 3
presents classical results on error correcting codes. In section 4, we construct new codes,
and in section 5, we prove some inexistence results. The last section summarizes what we
know and what is still open.

2 Definitions

Given G1 = (V1, E1) and G2 = (V2, E2) two graphs, the cartesian product G12G2 is
the graph with vertex set V1 × V2 and satisfying (x1, x2)(y1, y2) ∈ E(G12G2) if and only
if x1y1 ∈ E1 and x2 = y2 or x2y2 ∈ E2 and x1 = y1. We will use the notation Gn for the
graph G2G2 . . .2G (n times).

The hypercube of dimension k is the graph Qk whose vertices are the words of length k
over the alphabet {0, 1}, and where two vertices are adjacent if they differ in exactly one
place. Notice that Q1 is P2 the path with 2 vertices and that Qk+1 = Qk2P2. For two
vertices u and v in Qk, we will denote by u+v the vertex ((u1+v1), (u2+v2), . . . , (uk+vk))
where + is the sum modulo 2.

The infinite grid Z
n is the graph whose vertices are the words of length n over the

alphabet Z and where two vertices are adjacent if and only if they differ by 1 in exactly one
place. Notice that if we denote by P∞ the two ways infinite path, we have also Z

1 = P∞
and Z

n+1 = Z
n
2P∞.

We will consider in the same idea the vertices of the cycle of length l, denoted by Cl,
as the elements of Z/lZ. For two vertices u and v, we will denote by u + v the vertex
(u + v) mod l.

From now on, we will work on the cartesian product Z
n
2Qk. This graph can also be

considered as follows : the vertices are words of length n + k whose n first symbols are in
Z and the k others are in {0, 1}. Two vertices are adjacent if they differ by 1 in exactly
one place. Notice that this graph is regular with degree 2n + k. Moreover, Z

n
2Q0 = Z

n

and Z
0
2Qk = Qk.

For two vertices x and y, we will denote by d(x, y) the classical distance on graphs.
For our graph Z

n
2Qk,

d((x1, x2, . . . , xn+k), (y1, y2, . . . , yn+k)) =

n+k∑

i=1

|xi − yi|

If n = 0, this is the Hamming distance, and if k = 0, this is the Manhattan distance.
For an integer r and a vertex c, we call ball of radius r centered on c the set of vertices

v such that d(c, v) ≤ r. In this paper, we will only consider balls of radius 1.
In a graph, a single error correcting code (or code for shorter) is a set of vertices such

that any two code’s vertices are at distance at least 3. This is equivalent to say that the
balls centered on these vertices are disjoint.
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Figure 1: A perfect code on Z
1
2Q1

?

Figure 2: There exists no perfect code on Z
1
2Q2

A code is said to be perfect if any vertex of the graph is at distance at most one of a
code’s vertex. It also means that any vertex belongs to a ball centered on a code’s vertex
and thus that these balls form a tiling of the graph.

Figure 1 shows a perfect code in Z
1
2Q1. But a perfect code does not always exists as

figure 2 shows.
Let G be a finite graph. On Z

n
2G, we will say that a code is i-periodic (i ∈ {1, . . . , n})

if there exists a positive integer pi such that for any vertex x = (x1, x2, . . . , xn, v) (where
∀i, xi ∈ Z, v ∈ V (G)), the vertex (x1, x2, . . . , xi−1, (xi + pi), xi+1, . . . , xn, v) is in the code
if and only if x is in the code. pi is called the i-period. A code is periodic of period
(p1, p2, . . . , pn) if it is i-periodic of i-period pi for all i.

Proposition 1 Let S be a periodic code on Z
n
2G of period (p1, p2, . . . , pn). There exists

some set T of words t = (t1, t2, . . . , tn, v) with ∀i ∈ {1 . . . , n}, 0 ≤ ti < pi and v ∈ V (G)
such that S is the set of words

{(t1 + α1p1, t2 + α2p2, . . . , tn + αnpn, v)|t ∈ T, αi ∈ Z}

3 Perfect codes deduced from known

constructions

From the classical results on error correcting codes, we get:

Theorem 2 If n = 0, there exists a perfect code on Z
n
2Qk if and only if there exists an

integer p such that k = 2p − 1.

Examples of these perfect codes are the classical Hamming codes [6], but when k ≥ 15,
other perfect codes with the same length are known (for a survey on this topic, see [2]).

Theorem 3 There exists a i-periodic perfect code on Z
n
2G of i-period pi if and only if

a perfect code on the graph Z
n−1
2Cpi

2G exists.

Proof : Let S be a perfect code on Z
n−1
2Cpi

2G. Then one can easily check that the set
of words

{(x1, x2, . . . , xn−1, c + αpi, v)|(x1, x2, . . . , xn−1, c, v) ∈ S, α ∈ Z}
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layer x = 1
3

layer x = 0
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Figure 3: A perfect code on Z
2
2Q1

is a perfect code of Z
n
2G.

On the other hand, let us consider a perfect i-periodic code S on Z
n
2G of i-period pi.

Without loss of generality, we can suppose that i = n. The set of words

{(x1, x2, . . . , xn, v)|(x1, x2, . . . , xn, v) ∈ S, 0 ≤ xn < pn}

is a perfect code on Z
n−1
2Cpn2G. 2

Thus, there exists a periodic perfect code on the grid Z
n of period (p1, . . . , pn) if and

only if a perfect code on the graph Cp12 . . .2Cpn exists.
In 1968, Golomb and Welch [4] proved the existence in Lee metric of perfect one error

correcting codes for any word length n over an alphabet of 2n + 1 elements. This is a
perfect code on the graph Cn

2n+1, and this implies the following well known result.

Theorem 4 If k = 0, for any n ∈ N, there exists a periodic perfect code on Z
n
2Qk.

4 Constructing perfect codes

A perfect code on Z
2
2Q1 exists (see figure 3). We can consider this construction as a

tiling of Z
2 with balls of radius 1 and of radius 0. The set of balls of radius 1 is obtain

from the set of balls of radius 0 by a translation. With this approach, such a tiling can
be generalized for any n on Z

n
2Q1.

But it is a special case of a more general construction we present hereby.

Theorem 5 There exists a perfect code on Z
n
2Qk whenever there are some α, β ∈ N

∗

such that k = 2α − 1 and n = β2α−1 .

Proof : Let k = 2α − 1 and n = β2α−1. We will construct a perfect code on Z
n
2Qk.

From theorem 2, there exists a perfect code A0 on Qk. We denote by e1, . . . , ek the k
vertices of Qk at distance 1 of (0, . . . , 0) and by Ai the set {c + ei|c ∈ A0}. By definition
of a perfect code, any Ai is also a perfect code on Qk and A0, A1, . . . , Ak is a partition of
V (Qk). To prove the theorem, we will construct a mapping from Z

n that characterizes a
perfect code on Z

n
2Qk. Denote by x = (x1, x2, . . . , xn) an element of Z

n.
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THE CASE β EVEN:

Let β = 2p. We have n = p(k + 1).
We define the following mapping from Z

p(k+1) to Z/(k + 1)(2p + 1)Z:

f(x) =
∑k

i=0

∑p
j=1((2p + 1)i + j)xip+j mod (k + 1)(2p + 1)

That is f(x) = x1 + 2x2 + . . . + pxp

+(2p + 2)xp+1 + (2p + 3)xp+2 + . . . + (3p + 1)x2p

+ . . .
+(k(2p + 1) + 1)xkp+1 + . . . + (k(2p + 1) + p)x(k+1)p

mod(k + 1)(2p + 1)

We claim that the set C = {(x, v)|∃i ∈ {0, . . . , k} with f(x) = i(2p + 1), v ∈ Ai} is a
perfect code of Z

n
2Qk. To prove this, we will use the following lemma.

Lemma 6 For any x ∈ Z
n and θ ∈ {1, . . . , (k + 1)(2p + 1) − 1}, there exists exactly

one neighbour y of x such that f(y) = f(x) + θ if θ 6= 0 mod 2p + 1 and no neighbour if
θ = 0 mod 2p + 1.

Proof : Let θ ∈ {1, . . . , (k + 1)(2p + 1) − 1} satisfy θ 6= 0 mod 2p + 1. There exist
i ∈ {0, . . . , k}, j ∈ {1, . . . , 2p} such that θ = (2p + 1)i + j. If j ≤ p then f(x1, . . . , xip+j +
1, . . . , xn) = f(x) + θ. Else, f(x1, . . . , x(k−i)p+(2p+1−j) − 1, . . . , xn) = f(x) + θ (notice that
k − i ∈ {0, . . . , k} and 2p + 1 − j ∈ {1, . . . , p}). We have thus considered (k + 1)2p = 2n
distinct neighbours of x, so every neighbour of x. Therefore there are no neighbour left
for the case θ = 0 mod 2p + 1. 2

Suppose that C is not a code with minimum distance 3. Then there exist two distinct
vertices (x, v) and (x′, v′) ∈ C at distance less or equal to 2. Let i and i′ be the integers
such that f(x) = i(2p + 1) and f(x′) = i′(2p + 1). We have v ∈ Ai and v′ ∈ Ai′ .

1st case : x = x′. Thus v and v′ are in a same Ai and v 6= v′ so d(v, v′) ≥ 3 : a
contradiction.

2nd case : d(x, x′) = 1. From lemma 6, f(x) − f(x′) 6= 0 mod 2p + 1 but f(x) − f(x′) =
(i − i′)(2p + 1) : a contradiction.

3rd case : d(x, x′) = 2. Then v = v′; and since A0, . . . , Ak is a partition of V (Qk),
i = i′ and f(x) = f(x′). Let u be a common neighbour of x and x′. We have
f(u) − f(x) = f(u) − f(x′) which is impossible by lemma 6.

We only have to prove now that this code is perfect. Let (x, v) be a vertex of Z
n
2Qk.

If f(x) = i(2p + 1) then Ai being a perfect code, there exists v′ ∈ Ai (so (x, v′) ∈ C)
such that d((x, v), (x, v′)) ≤ 1. Else, since A0, . . . , Ak is a partition of V (Qk), there exists
i ∈ {0, . . . , k} such that v ∈ Ai. By lemma 6, there exists a neighbour x′ of x such that
f(x′) = i(2p + 1). Thus, (x′, v) ∈ C .
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THE CASE β ODD:

Let β = 2p + 1. Notice that k+1
2

is an integer. We have n = (2p + 1)k+1
2

.
We define the following mapping from Z

n to Z/(k + 1)(2p + 2)Z:

g(x) =
∑k

i=0

∑p
j=1((2p + 2)i + j)xip+j

+
∑k+1

2
l=1 (p + 1)(2l − 1)x(k+1)p+l mod (k + 1)(2p + 2)

That is g(x) = x1 + 2x2 + . . . + pxp

+(2p + 3)xp+1 + (2p + 4)xp+2 + . . . + (3p + 2)x2p

+ . . .
+(k(2p + 2) + 1)xkp+1 + . . . + (k(2p + 2) + p)x(k+1)p

+(p + 1)x(k+1)p+1 + . . . + k(p + 1)x(k+1)p+ k+1
2

mod(k + 1)(2p + 2)

We claim that the set C = {(x, v)|∃i ∈ {0, . . . , k} with g(x) = i(2p + 2), v ∈ Ai} is a
perfect code of Z

n
2Qk. To prove this, we will use the following lemma.

Lemma 7 For any x ∈ Z
n and θ ∈ {1, . . . , (k + 1)(2p + 2) − 1}, there exists exactly

one neighbour y of x such that g(y) = g(x) + θ if θ 6= 0 mod 2p + 2 and no neighbour if
θ = 0 mod 2p + 2.

Proof : Let θ ∈ {1, . . . , (k + 1)(2p + 2) − 1} satisfy θ 6= 0 mod 2p + 2. There exist
i ∈ {0, . . . , k}, j ∈ {1, . . . , 2p + 1} such that θ = (2p + 2)i + j.

• If j < p + 1 then g(x1, . . . , xip+j + 1, . . . , xn) = g(x) + θ.

• If j > p + 1 then g(x1, . . . , x(k−i)p+(2p+2−j) − 1, . . . , xn) = g(x) + θ (notice that
k − i ∈ {0, . . . , k} and 2p + 2 − j ∈ {1, . . . , p}).

• If j = p + 1 then θ = (p + 1)(2i + 1) and

– if i < k+1
2

, g(x1, x2, . . . , x(k+1)p+i+1 + 1, . . . , xn) = g(x) + θ

– if i ≥ k+1
2

, g(x1, x2, . . . , x(k+1)p+k−i+1 − 1, . . . , xn) = g(x) + θ (notice that k −
i + 1 ∈ {1, . . . , k+1

2
}).

We have thus considered (k+1)(2p+1) = 2n distinct neighbours of x, so every neighbour
of x. Therefore, there are no neighbour left for the case θ = 0 mod 2p + 2. 2

Suppose that C is not a code with minimum distance 3. Then there exist two distinct
vertices (x, v) and (x′, v′) ∈ C at distance less or equal to 2. Let i and i′ be the integers
such that g(x) = i(2p + 2) and g(x′) = i′(2p + 2). We have v ∈ Ai and v′ ∈ Ai′.

1st case : x = x′. Thus v and v′ are in a same Ai and v 6= v′ so d(v, v′) ≥ 3 : a
contradiction.

2nd case : d(x, x′) = 1. From lemma 7, g(x) − g(x′) 6= 0 mod 2p + 2 but g(x) − g(x′) =
(i − i′)(2p + 2) : a contradiction.
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3rd case : d(x, x′) = 2. Then v = v′; and since A0, . . . , Ak is a partition of V (Qk),
i = i′ and g(x) = g(x′). Let u be a common neighbour of x and x′. We have
g(u) − g(x) = g(u) − g(x′) which is impossible by lemma 7.

We only have to prove now that this code is perfect. Let (x, v) be a vertex of Z
n
2Qk.

If g(x) = i(2p + 2) then Ai being a perfect code, there exists v′ ∈ Ai (so (x, v′) ∈ C)
such that d((x, v), (x, v′)) ≤ 1. Else, since A0, . . . , Ak is a partition of V (Qk), there exists
i ∈ {0, . . . , k} such that v ∈ Ai. By lemma 7, there exists a neighbour x′ of x such that
g(x′) = i(2p + 2). Thus, (x′, v) ∈ C . 2

Proposition 8 There exists a i-periodic perfect code on Z
n+1
2Qk of i-period 4 if and

only if a perfect code on the graph Z
n
2Qk+2 exists.

Proof : This proposition is an immediate consequence of theorem 3 since Q2 = C4. 2

Corollary 9 If there exists an integer p such that 2n + k = 2p − 1, then their exists a
perfect code on Z

n
2Qk.

Proof : This is a consequence of proposition 8 and theorem 2. 2

Corollary 10 There exists a perfect code on Z
n
2Qk whenever there are some α, β, γ ∈ N

such that k = 2α − 2γ − 1 and n = β2α−1 + γ.

Proof : This is a consequence of theorem 5, proposition 8, and corollary 9. 2

5 Nonexistence of perfect codes

Theorem 11 Suppose that k ≥ 2n. Then there exists a perfect code on Z
n
2Qk if and

only if there exists an integer p such that 2n + k = 2p − 1.

Proof : From corollary 9, we know that a perfect code exists when n and k satisfy the
condition.

For x = (x1, . . . , xn) ∈ Z
n, let Qk(x) be the set of vertices (u1, . . . , un+k) of Z

n
2Qk

such that ui = xi for any 1 ≤ i ≤ n. Suppose there exists a perfect code C on Z
n
2Qk.

Since C is a perfect code, any vertex has to be in exactly one ball centered on a vertex
of C. A ball centered on a vertex in Qk(x) contains k+1 vertices in Qk(x). A ball centered
on some vertex in a Qk(y) such that d(y, x) = 1 contains exactly one vertex in Qk(x).

We consider γ the minimum number of vertices of the code we can find in a Qk(x).
Let x ∈ Z

n satisfy |Qk(x)∩C| = γ. Let (yi)1≤i≤2n be the vertices of Z
n at distance 1 from

x. We define ai = |Qk(yi) ∩ C| − γ. Let a = max(ai) and y be a yi such that ai = a.
Suppose a = 0, and thus that every ai is null. We consider the vertices of Qk(x).

(k + 1)γ of them are in balls centered on vertices of Qk(x), and 2nγ in balls centered on
some vertex of Qk(yi) for some i. Thus we have (k + 1)γ + 2nγ = 2k. So k + 1 + 2n is a
factor of 2k, and there is some p such that 2n + k = 2p − 1.
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Figure 4: Nonexistence of a perfect code on Z
2
2Q2

Now suppose a > 0. Counting the vertices of Qk(x), we get :

(k + 1)γ +
2n∑

i=1

(ai + γ) = 2k (1)

and by counting those of Qk(y) :

(k + 1)(γ + a) +
2n∑

i=1

(γ + bi) = 2k (2)

where bi are nonnegative integers defined in a way similar to the ai’s. Doing (2) − (1),
we obtain a(k + 1) +

∑2n
i=1 bi =

∑2n
i=1 ai. Then, since

∑2n
i=1 bi ≥ 0 and

∑2n
i=1 ai ≤ 2na, we

have a(k + 1) ≤ 2na and so k < 2n. 2

Proposition 12 There exist no perfect code on Z
2
2Q2 nor on Z

3
2Q2.

Proof : Notice that any Q2(x) may contain 1 vertex of the code (Q2 of type ‘•’) or no
vertex (type ‘∅’). A Q2 of type ‘•’ has exactly 1 neighbour of type ‘•’ while a type ‘∅’
has exactly 4 neighbours of type ‘•’. See figure 4 for Z

2
2Q2. A similar but tedious case

analysis proves the nonexistence of a perfect code on Z
3
2Q2. 2

6 Conclusion and open problems

We recapitulate our results in table 1 where
√

means existence:

a by theorem 2

b by theorem 4

c by theorem 2 and proposition 8

d by theorem 5

e by theorem 5 and proposition 8

and − means nonexistence by theorem 11 except for −f that are proven by proposition 12.
Clearly, any empty case fulfilling would be interesting. Furthermore, this table suggest

that there are no perfect code on Z
n
2Qk when k is even. By proposition 8, it would be

sufficient to prove this nonexistence when k = 2.
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n\k 0 1 2 3 4 5 6 7 8 9 10 11 . . .
0

√ √
a − √

a − − − √
a − − − − . . .

1
√

b

√
c,d − − − √

c − − − − − − . . .

2
√

b

√
d −f

√
c,d − − − − − − − √

c . . .

3
√

b

√
c,d −f − − − √

c − − . . .

4
√

b

√
d

√
d

√
c,d − − − − . . .

5
√

b

√
c,d

√
c − − . . .

6
√

b

√
d

√
c,d . . .

7
√

b

√
c,d . . .

8
√

b

√
d

√
d

√
d . . .

9
√

b

√
c,d

√
e . . .

Table 1: Existence of perfect codes on Z
n
2Qk
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