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Abstract

A Sunflower is a subset S of a lattice, with the property that the meet of any
two elements in S coincides with the meet of all of S. The Sunflower Lemma of
Erdös and Rado [2] asserts that a set of size at least 1 + k!(t − 1)k of elements of
rank k in a Boolean Lattice contains a sunflower of size t. We develop counterparts
of the Sunflower Lemma for distributive lattices, graphic matroids, and matroids
representable over a fixed finite field. We also show that there is no counterpart for
arbitrary matroids.

1 Introduction

Erdös’ Sunflower Lemma, originally presented in [2], has been called “one of the most
beautiful results in extremal set theory” ( [3], p. 79). In this note we offer a modest
generalization. First, a few standard definitions. Let m be a natural number, and denote
by [m] the set of integers {1, 2, . . .m}. A family F is simply a collection of subsets of
the ground set [m]; F is said to be k-uniform if each of its members has k elements.
A sunflower S of size t is a family {A1, A2, . . . At} with the property that every pair of
distinct sets in S have the same intersection, i.e., Ai ∩ Aj = Ar ∩ Aq for distinct pairs of
distinct subscripts i, j and r, q. Denote by the core of S the set Y :=

⋂
Aj , so Y = Ai∩Aj

for each pair of distinct i, j. The t sets Ai\Y are required to be nonempty and distinct,
and are called the petals of S. Here is the original lemma ( [3], p. 79-80); we reproduce
the short proof to make the presentation more self-contained.

Lemma 1.1. The Sunflower Lemma: Let F be a k-uniform family of sets. If |F | >
k!(t − 1)k, then F contains a sunflower with t petals.

Proof. Proceed by induction on k. If k= 1 then F has, by assumption, more than t − 1
petals, so it has a sunflower with t petals and an empty core. Let T be a maximal family
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of pairwise disjoint members of F . If |T | ≥ t, then T itself is the desired sunflower.
Otherwise Z :=

⋃
X∈T X is a set of size at most (t − 1)k, which, by maximality, meets

every member of F . By the pigeonhole principal, some element z ∈ Z must lie in at least
|F |/|Z| > k!(t − 1)k/(k(t − 1)) = (k − 1)!)(t − 1)k−1 elements of F . Let Fz denote the
subfamily of F consisting of those members of F that contain z. Define Gz := {A\z : A ∈
Fz}. Then Gz is (k − 1)-uniform, and, by induction, contains a sunflower of the required
size.

We propose to repeat this argument, with as little variation as possible, in a few
other settings. In each new setting considered here, we require an explanatory preamble
indicating what a pertinent sunflower is, followed by the above proof, mutatis mutandis.
Paraphrasing the above proof, here is an outline of the argument we plan to follow for
each setting:

(i) Suppose that F is a k-uniform family of size at least k!(t − 1)k.

(ii) Seek a maximum sunflower S in F with an empty core. If it is of size at least t,
we’re done.

(iii) Otherwise, the join Z of all the members of S is of low rank, and meets all members
of F .

(iv) It follows that Z dominates a rank-1 object z meeting a relatively large percentage
of the members of F . Careful removal of z from these members of F finishes the
inductive argument.

Any family of size 1 or 2 is a sunflower, so the content of the lemma applies when
t > 2, which is the case to which we can reasonably confine our attention.

2 The Divisor Lattice

We start with the simplest, most modest, and most concrete of generalizations. Let M be
a large unspecified integer. Following Stanley [6], we denote by DM the set of divisors of
M , ordered by the relation a|b ⇐⇒ a ≤ b. By an antichain we then mean a set of divisors
of M , none of which divides another. By the rank r(d) of d ∈ DM is meant the number
of prime factors of d, counting multiplicity. For example, r(12) = r(2 × 2 × 3) = 3. Call
a set S ⊆ DM k-uniform if each element of S has rank k. By a sunflower we mean a set
S ⊆ DM , with the property that the Greatest Common Divisor (GCD) of any pair is the
GCD of the whole collection. Denote the GCD of all the members of S by Y , which we
call the core of S.

Lemma 2.1. The Sunflower Lemma: Let F be a k-uniform family of divisors of M . If
|F | > k!(t − 1)k, then F contains a sunflower with t petals.
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Proof. Proceed by induction on k. For the base case, if k = 1, then F itself is a sunflower
consisting of |F | ≥ t distinct prime numbers. Assume F to be k-uniform for k > 1. Let S
be a maximal sunflower with empty core. If |S| ≥ t we’re done, so assume |S| < t. Observe
that the least common multiple L of the members of S is a divisor of M , and has rank at
most k(t − 1). By the maximality of S, L has at least one prime factor in common with
each member of F . Therefore, by the pigeonhole principle, some prime factor z of L occurs
in at least |F |/|Z| ≥ (k!)(t−1)k/(k(t−1)) elements of F . Let Fz denote the subfamily of
F consisting of those members of F divisible by z. Define Gz := {A/z : A ∈ Fz}. Then
Gz is (k − 1)-uniform, and, by induction, contains a sunflower of the required size.

Remark: It is essential to this argument that we can pass from Fz to Gz, in this case
by division. Analogues of division exist for distributive lattices as we show next, but are
more problematic for general lattices. After considering some ”non-examples”, we arrive
at a form of the Sunflower Lemma for Graphic matroids, and for each class of matroids
characterized by representability over a particular Galois field.

3 Distributive Lattices

This case generalizes the preceding, since divisor lattices are distributive. Recall that a
lattice L is distributive if it obeys the distributive laws, i.e., given a, b, c ∈ L, we have
(a ∧ b) ∨ c = (a ∨ c) ∧ (a ∨ b) and (a ∨ b) ∧ c = (a ∧ c) ∨ (a ∧ b). As will prove handy, the
Fundamental Theorem of Distributive Lattices ( [1], p. 33; [6], p. 106) states that each
distributive lattice is isomorphic to the lattice of ideals of the poset of its join-irreducible
elements. To simplify the discussion we confine our attention to finite lattices. In a
distributive lattice, the rank of an element a is the number of join-irreducibles that it
dominates. All rank-1 elements of L are join-irreducible. There may, as in the case of the
divisor lattice, be others. Observe that if L is any lattice (distributive or not), a, b ∈ L,
and a ∧ b 6= 0̂, then there is an atom of L lying beneath both a and b – any minimal
nonzero element will do.

As elsewhere, by a sunflower in L we mean a set of elements of L, any two of which
have the same meet.

Theorem 3.1. The Sunflower Lemma: Let F be a set of elements of rank k in a dis-
tributive lattice L. If |F | > k!(t − 1)k, then F contains a sunflower with t petals.

Proof. Let S be a maximal subcollection of F , any two of which meet at the zero element of
L. We can assume that |S| < t, since otherwise we’re done. Observe that the join Z of all
the members of S is an element of rank at most k(t−1). By maximality, rank(Z ∧a) > 0
for each a in F . Since every atom x for which Z ≥ x is join-irreducible, there are at
most k(t − 1) atoms dominated by Z. Denote by A the set of atoms of L dominated by
Z. By the preceding statement, each element of F meets ( i.e., has nonzero meet with)
at least one member of A. So, by the pigeonhole principle, some member z of A meets
at least |F |/|A| ≥ (k!)(t − 1)k/(k(t − 1)) elements of F . Again let Fz be the subfamily
of F consisting of those elements that dominate z. Let Q be the set of join-irreducibles
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of L, and let M be the distributive lattice of ideals of the poset Q\z. We define a set
homomorphism g : 2Q → 2Q\z defined by g(X) := X\x, so g fixes those subsets of Q
that omit z. Consider the lattice homomorphism f : L → M induced by g, i.e., f is the
restriction of g to the ideals of Q. Observe that the restriction of f to Fz is an injection (
here we identify L with the lattice of ideals of Q.) Denote the image f(Fz) by Gz. Then
Gz is a (k − 1)-uniform set of elements in the distributive lattice of ideals of Q\z, so by
induction it contains a sunflower Y of the required size. But then f−1(Y ) is the sunflower
we seek in L.

The reader may reasonably object that our careful selection of an atom dominated by
many members of F is essentially unnecessary; any join-irreducible dominated by a large
number of members of F would do. The method given here was chosen to emphasize the
similarities with the original, set-theoretic form of the Sunflower Lemma.

4 Two Non-Examples

Non-example 1: We construct a lattice of rank 3 with the property that, even though
the number of elements of rank 2 is as large as we please, there are no sunflowers of size
greater than 2 to be found among the elements of rank 2. Here’s how: Let Kn be the
complete graph on n vertices. The atoms of our lattice are the edges of the graph, and
the rank-2 elements of the lattice are the vertices of the graph. The join of two edges is
their common vertex where applicable, and the 1̂ element otherwise. Note that any two
vertices share a common atom, and that no two distinct pairs of vertices dominate the
same edge.

Non-example 2: Let m be a large prime power, and consider the finite projective
plane PG(2, m) over the Galois field GF (m). PG(2, m) contains p := m2 + m + 1 points.
Pick nine lines at random. Now, if the Sunflower Lemma applied here, then we would
be assured that three of these lines meet at a point, because lines have rank k = 2,
and 9 > 2!(3 − 1)2 = 8. To phrase this in the language of probability, the Sunflower
lemma asserts that the probability that some three of these nine lines form a Sunflower
is 1. Since the intersection of any two distinct lines is a point, there must then be
some point x common to all three lines. Fix a point x of the geometry. Now, each
point is incident to m + 1 lines, so the probability that three or more points contain
x is

∑9
k=3

(
m+1

k

)(
p−(m+1)

9−k

)
/
(

p
9

)
< 29

(
m+1

3

)(
m2

6

)
/
(

m2

9

)
< cm−3 for some positive constant

c. But then the probability that any point appears in three or more lines is less than
pcm−3 = θ(1/m).

From the standpoint of collecting sunflowers, the second Non-example is particularly
discouraging, because projective planes possess so many nice structural properties. Pro-
jective planes are both binomial posets and geometric lattices. What went wrong?

The answer is: In each of our Non-examples, the number of atoms is large relative to
the rank of the lattice. So, if we confine our attention to classes of geometric, and perhaps
even submodular, lattices in which the number of atoms is bounded by a function that
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grows relatively slowly with the rank of the lattice, perhaps we can improve our prospects
for success. This tack we now take.

5 Graphic Matroids

Let G = (V, E) be a graph. Recall that the cycle matroid M(G) of G is described by the
rule: a set of edges S ⊆ E is independent iff it is acyclic. For more details on graphic
matroids see [5]. As is true of any matroid, the lattice of flats of a graphic matroid is
a geometric lattice ( [1], chapters II.3 and VII.3), i.e., semimodular and graded. In the
language of graph theory, a flat in a graphic matroid M(G) is any set of edges that can
be obtained by the following recipe: First, pick a subforest F0 of G. Second, adjoin any
remaining edges of G connecting two vertices incident to F0. The resulting collection F1

of edges is said to be a flat of M(G); F0 is said to be a basis of this flat. The number
of edges in the basis F0 is the rank of the flat F1 in L(M(G)), the lattice of flats of the
matroid M(G). To avoid technicalities involving parallel edges, we use the word atom
instead of edge to denote a rank-1 flat. Note that we are not directly studying the graph
G or even its cycle matroid M(G), but rather the lattice of flats L(M(G)).

Lemma 5.1. Let G be a graph, M(G) its cycle matroid, and L(M(G)) its lattice of flats.
The number of atoms dominated by a flat of rank k in the lattice of flats of a graphical
matroid is at most

(
k+1
2

)
.

Proof. Let F1 be a flat spanned by the basis F0, where the latter constitutes a forest of k
edges. We can proceed by induction on the number of components of F0. ( It is true that
all bases of F1 have the same number of components, a fact not required for the proof).
If F0 consists of a single component, then it is a tree with k edges. It follows that the
set X of vertices of G incident to F0 has k + 1 elements. The greatest possible number
of edges in G incident to X occurs if the induced subgraph of G on X is complete, in
which case we get

(
k+1
2

)
edges dominated by F1. As each rank-1 flat of M(G) has a basis

consisting of a single edge, there are at most
(

k+1
2

)
atoms of M(G) dominated by F1. For

the inductive step, the important arithmetic observation is
(

k
2

) ≥ (
i
2

)
+

(
k−i
2

)
for each i

between 0 and k.

In the case of a Graphic Matroid M(G), by a k-uniform family we mean a family of
flats of rank k in L(M(G)). The rank of a flat X is the cardinality of any basis, (i.e.,
maximal independent subset), of X. Here a sunflower is a k-uniform family F of flats,
with the property that any two members of F have the same intersection. Note that
the meet of a pair of flats in L(M(G)) is simply their intersection. For our purposes,
the single most interesting fact about the lattice of flats is its submodularity: Given a
collection {Xi} of flats, where the basis of Xi is Bi, the rank of ∨Xi = rank(∪Bi) ≤
| ∪ Bi| ≤

∑
Bi =

∑
rank(Xi).

We further require the following technical lemma from the theory of matroids ( [5],
Corollary 3.3.3, p. 118, also [1], Proposition 6.35.ii, p. 286):
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Lemma 5.2. Let M be matroid, L(M) its lattice of flats, and X a flat of M . Then the
sublattice of flats containing X is isomorphic to the lattice of flats of the contraction M/X.
In symbols, if [X, 1] denotes the interval of flats from X to M , then [X, 1] ∼= L(M/X).

The proximate case of interest is that where M is the cycle matroid M(G) of a graph
G, and where X is a rank-1 flat in M(G).

Theorem 5.3. Sunflower Lemma for Graphic Matroids: Let t > 2, and let F be a k-
uniform family of size at least [

∏
1≤j≤k

(
(t−1)j+1

2

)
] + 1 in the graphic matroid M(G) for

some graph G. Then there is a sunflower of size t in F .

Proof. We proceed by induction on k. For the base case, if k = 1, then F itself is a
sunflower consisting of |F | ≥ t pairwise disjoint flats. Assume F to be k-uniform for
k > 1. Let S be a maximal sunflower with empty core, i.e., a set of pairwise disjoint flats.
If |S| ≥ t we’re done, so assume |S| < t. Observe that the join Z of all the members of S is
a flat of rank at most (t−1)k by submodularity. By the maximality of S, rank(Z∩Y ) > 0
for each flat Y in F . Since the rank of Z is at most (t − 1)k, by Lemma 5.1 there are at
most

(
(t−1)k+1

2

)
atoms of M(G) dominated by Z. Since every member of F dominates at

least one of these atoms, by the pigeonhole principal there is an atom z in Z lying below

at least |F |/rank(Z) ≥ [
Q

1≤j≤k ((t−1)j+1
2 )

((t−1)k+1
2 )

] + 1 members of F . Denote by Fz the collection

of members of F lying above the atom z. Denote by Gz the collection {A/z : A ∈ Fz},
where A/z denotes matroid contraction. Now, Gz isn’t a subset of L(M(G)), but it is
a k − 1-uniform family in the lattice of flats of the graphic matroid M(G)/z. So, by
induction, Gz contains a sunflower T of the required size. Since the function f : Fz → Gz

given by f(A) = A/z is, by the prior Lemma, injective, f−1(T ) is the required sunflower
in F .

Remark: So far we have used the same proof three times, but the semantic content of
“removal of an atom” varies enormously from case to case, viz., remove an element from
a set, or divide by a prime factor, or, as here, contract a matroid by a rank-1 flat. These
cases are unified near the end of the note, at some cost in concreteness.

6 Matroids representable over a fixed q-element field

The standard designation for matroids representable over a q-element field is L(q). A
distinguishing trait of these matroids is that lines that contain q + 2 or more points are
forbidden, although lines that containt q + 1 points are possible. The class L(q) adheres
to other restrictions that elude our present interest, so we will confine the discussion to
the somewhat larger class U(q) of matroids defined by the rule that q + 2 - point lines
are forbidden. The classes L(q) and U(q) coincide for q = 2. For larger prime powers,
U(q) is strictly bigger [4]. Naturally, any theorem we can construct for the larger class
will work for the smaller class. An additional advantage of U(q) is that q need not be a
prime power. The following lemma appears in stronger, but more technical form in [4],
Theorem 4.3, p.32:
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Lemma 6.1. Let M be a matroid of rank k in U(q). Then the lattice L(M) of flats of

M has at most qk−1
q−1

atoms.

Proof. If M has rank 2, then it has at most q+1 atoms by the definition of U(q). We
proceed by induction on the rank of M , which we suppose to be at least 3. Let x be any
atom of M . The lattice interval of flats lying between x and 1 (i.e., the set of flats of
M containing x, ordered by inclusion and viewed as an interval of L(M) ), is a lattice of

rank k-1 in U(q), so by induction it has at most qk−1−1
q−1

atoms, each of which is simply
a rank-2 flat of M covering x. Each flat y covering x covers at most k other atoms of
M , again by the definition of U(q). Let z be some other atom of M . By submodularity,
rank(x∨ z) = 2, so there is some flat y of rank 2 dominating both x and z. Consider the
subgraph of the Hasse diagram of L(M) induced on the vertices of rank 1 or 2. Every

atom can be of distance at most 2 from x, but then there can be at most q(qk−1−1)
q−1

other

atoms of M . But 1 + q(qk−1−1)
q−1

= qk−1
q−1

.

Theorem 6.2. Sunflower Lemma for Matroids in U(q): Let t > 2, and let F be a k-

uniform family of size at least
∏

1≤j≤k
qjt−1
q−1

+ 1 in the matroid M(G) ∈ U(q). Then there
is a sunflower of size t in F .

Proof. Repeat the proof for graphical matroids, changing only the bound on the number
of atoms dominated by a flat of rank j.

7 A Generalization and an Application

A key feature of all proofs in this note is reliance on the fact that there aren’t too many
atoms in play. We may formalize this reliance with a definition: A class C of lattices will
be deemed oligatomic if it follows these rules:

(i) Every interval of a member of C is in C.

(ii) Every member of C is submodular.

(iii) There is a bound r + 1 on the number of atoms in a rank-2 member of C.

The significance of the number ”2” in item(iii) is that, by the same argument as given

in Lemma 6.1, there can then be at most rk−1
r−1

atoms in a member of C of rank k. We note
that the classes of lattices mentioned in each section heading of this note are oligatomic.
Here is the generalization to which the section heading refers:

Theorem 7.1. A generic Sunflower Lemma: Let C be an oligatomic class of lattices, and
let rk denote the maximum number of atoms occurring in a member of C of rank k. Let
k and t be integers. Suppose L ∈ C, and suppose F ⊂ L to be a k-uniform family of size
greater than

∏
1≤j≤k rj(t−1). Then F contains a sunflower of size t.

Proof. Same proof.
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Now for the application. Consider a formal meet f := X ∧ Y . Given a sunflower S
in some lattice L, the evaluation map f : S(2) → L is, by the definition of a sunflower, a
constant map. Now consider a three-term formal meet g := X ∧ Y ∧ Z. We can rewrite
this as g = X∧Y ∧Z = (X∧Y ∧Z)∧(X∧Y ∧Z) = (X∧Y )∧(Y ∧Z)∧(X∧Z). But then,
evaluation of g at any element of S(3) yields the same answer g(x, y, z) = f(x, y). Likewise,
if we construct more elaborate formal polynomials of the form p :=

∨
i∈I

∧
u∈S(ri), as long

as every meet occuring in this polynomial has at least ri ≥ 2 terms for all i, evaluation of
the polynomial in S yields the same answer f(x, y). [ There is a technicality to consider
– what happens when there are monomials in p containing more terms than |S|? One
solution is to say, if p can be evaluated at all assigning distinct values to the variables in
each of its monomials, then p evaluates to the familiar value f(x, y) ]. Call a polynomial
of this form, in which each monomial

∧
u∈S(ri) has at least two terms, admissible .

The upshot is that a sunflower is a species of algebraic variety. By this we mean that,
given a finite set E of admissible polynomials and a natural number k, for all sufficiently
large values of t, and given any sufficiently large k-uniform family F , we may find a
subfamily S ⊂ F of size t such that all polynomials in E evaluated in S have the same
value, i.e., no matter which polynomial p we pick from E, and no matter which distinct
elements of S we assign to the terms of each monomial in p, we get the same value. For
S, we may take any sunflower of size at least as large as the largest monomial appearing
in E; this is the reason for the stipulation that t be “sufficiently large”.

8 Concluding Remarks

The matroid-theoretic version of the lemma given here guarantees a sunflower of size
about θ logq(|F |)

k2 , as opposed to the putative lower bound of about θlog(|F |) obtained in
both the set-theoretic and distributive cases. For a particular class C of submodular
lattices, one may define a Ramsey-type function f(C, k, t) indicating the maximum over
L ∈ C of the maximum size of a k-uniform family F of elements member of L without a
sunflower S of size t contained in F . The point of such a function is to identify classes in
which relatively large sunflowers are guaranteed to exist. Such classes are distinguished
by relatively low values of f . Also, f obeys a kind of monotonicity: if D is a superclass
of C, then f(D, k, t) ≥ f(C, k, t).

Among the classes of non-free matroid treated in this note, Graphic Matroids yield the
largest sunflowers. This suggests two possibile directions in which to extend the results
presented here: by treating classes of matroid closely related to Graphic Matroids, or by
treating Graphic Matroids for specific classes of Graph.

So, here are three concrete cases to consider:

(i) Regular Matroids. These are the matroids representable over any field, and consti-
tute a relatively small superclass of the Graphical Matroids. If we define R to be
the class of Regular Matroids and G to be the subclass of Graphical Matroids, is it
true that f(D, k, t) = f(C, k, t)?
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(ii) Graphic Matroids for sparse graphs and random graphs. The idea here is as follows:
If G is acyclic, then its cycle matroid is simply a boolean lattice, in which the
original, strongest form of the Sunflower Lemma prevails. Likewise, one would
expect f(C, k, t) to be relatively low for a class C of graphs in which the number of
cycles relatively low. One can’t simply tie f(C, k, t) to the edge density of the graphs
in C, because a dense subgraph can yield a large Sunflower-free family. Perhaps an
ideal result along these lines would be as follows: Given a random graph G :=
G(n, p), present a concrete upper bound on the likelihood that M(G) contains a
family of flats F of size r, and such that F contains no Sunflower of size t. Such a
result would require tools more substantial than those employed here, but Stochastic
Sunflower theory seems potentially worthwhile.

(iii) Graphic Matroids for graphs of low chromatic number. Again, it is desirable to use
the structure of the graphs under study in C to bound f(C, k, t).
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