Comments by the author on Volume 12, article R67:

Dec 13, 2005

As pointed out by John Talbot, the principal result stated in this note is known, and may be found in [3]. Lovász provides sharper lower and upper bounds on $g(k)$, viz., $\binom{2 k-3}{k-1}<g(k) \leq(2 r-1)\binom{2 k-3}{k-1}$. He also makes reference to a prior (1964), weaker variant of this result due to Calczynska and Karlowicz. Lovász's result was subsequently sharpened by Tuza [5] as follows: $2\binom{2 k-4}{k-2}<g(k) \leq\binom{ 2 k-1}{k-1}+\binom{2 k-4}{k-1}$. Related papers include [1] and [4]; the latter indicates that $g(3)=7$ and $g(4)=16$ are the largest known values of g. Lovász's upper bound is also presented in [2].

So, the chief surviving novelties of R67 are the generalization to lattices, and the enumeration of pedestals for $k \leq 3$.

References

[1] N. Alon and Z. Füredi, On the kernel of intersecting families, Graphs and Combinatorics 3(1987), 91-94.
[2] Bela Bollobàs, Combinatorics: Set Systems, Hypergraphs, Families of Vectors, and Combinatorial Probability, Cambridge University Press 1986 pp.93-94.
[3] L. Lovász, Combinatorial Problems and Exercises, Second Edition, North-Holland, Amsterdam, 1993, Exercise 13.27 (first published 1979).
[4] J. Talbot, The number of k-intersections of an intersecting family of r-sets, J. Combin. Theory Ser. A, 1062 (2004), 277-286.
[5] Zs. Tuza, Critical hypergraphs and intersecting set-pair systems, J. Combin. Theory Ser. B 39 (1985) pp. 134-145.

