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Abstract

Denote by f(k,m) the number of isomorphism classes of maximal intersecting
k-uniform families of subsets of [m]. In this note we prove the existence of a constant
f(k) such that f(k,m) ≤ f(k) for all values of m.

1 Introduction

Let m be a natural number. By [m] we mean the set of integers {1, 2, . . .m}. A family F
of subsets of [m] is said to be k-uniform if every member of F has k elements. In symbols,
this is sometimes (as in, e.g., [1, 5]) written as F ⊆ [m](k) or F ⊆ (

[m]
k

)
; in what follows

we adopt the first of these. F is said to be intersecting if the intersection of any two of
its members is nonempty. An intersecting k-uniform family F is said to be maximal if it
is maximal with respect to its being an intersecting k-uniform family. Two families F1

and F2 are said to be isomorphic if each can be obtained from the other by permuting
the ground set [m].

Lemma 1.1. The number of pairwise nonisomorphic intersecting k-uniform families
grows monotonically with m, and is at least

(
m−1
k−1

)
.

Proof. We construct a collection S of
(

m−1
k−1

)
pairwise nonisomorphic families. There are(

m−1
k−1

)
subsets of [m] containing the element 1. Order these at whim. Let Fj consist of the

the first j of these for j ∈ {1, 2, . . . (m−1
k−1

)}. Each family Fj is k-uniform and intersecting,
since any two sets in Fj contain the common element 1. Since the families Fi and Fj

have different cardinality for i 6= j, they are nonisomorphic.
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The purpose of this trivial lemma is as follows: If we replace the phrase “pairwise
nonisomorphic intersecting k-uniform families” by “pairwise nonisomorphic maximal in-
tersecting k-uniform families”, we get a different, perhaps surprising, answer:

Theorem 1.2. The number of pairwise nonisomorphic maximal intersecting k-uniform
families of subsets of [m] is bounded by a constant f(k) not depending on m.

The next section introduces the chief device by which we treat these problems. Section
Three presents our proofs. The concluding section offers some conjectures on how the
bounds given here can be improved.

2 The Pedestal of a k-Uniform Family

Definition 2.1. Given a family F ⊆ [m](k), define its pedestal P (F) ⊆ 2[m] to be the
collection of those minimal subsets S of [m] satisfying the following rules:

i To avoid trivialities,|S| ≤ k.

ii Every k-superset of S is in F .

Note that the members of F satisfy both rules i and ii, but are typically not minimal
with respect to this property.

Here are a couple of examples of pedestals:

Example 2.2. For m ≥ 2k, the Erdős-Ko-Rado theorem states that a maximum intere-
secting family F ⊆ [m](k) is of the form Fx := {A ∈ [m](k) : x ∈ A} for some x ∈ [m].
Such a family is often called an EKR family in honor of the theorem. The pedestal of the
EKR Fx is simply {{x}}.
Example 2.3. The Theorem of Hilton and Milner [5, 7] states that, for sufficiently large
values of m, the second-biggest class of intersecting k-uniform families are, up to isomor-
phism, of the form H := {A ∈ [m](k) : 1 ∈ A; [2, k + 1] ∩ A 6= �}⋃{[2, k + 1]}. The
pedestal P (H) is then P (H) = {{1, j} : j ∈ [2, k + 1]}⋃{[2, k + 1]}.

In words, Hilton-Milner sets are described as follows: start with an EKR family F ;
adjoin a new set X not in F , and then remove from F all members that have empty
intersection with X.

Remarks on P (F):

i In general, P (F) is not k-uniform.

ii P (F) is an antichain because of the word “minimal” in its definition.

iii If F is intersecting and m ≥ 2k, then P (F) is intersecting. This is the only case
of immediate interest, although the definition of “pedestal” doesn’t depend on the
fact that F is intersecting.
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iv If F is maximal, then P (F) is maximal among those antichains in 2[m] consisting
entirely of sets of size at most k (this size restriction is sometimes conveyed as
P (F) ⊂ [m]≤(k)). A finite projective plane PG(2, q), is its own pedestal, i.e., that
P (PG(2, q)) = PG(2, q). PG(2, q) is a maximal intersecting q+1-regular antichain,
but is not maximal in the larger class of intersecting antichains in 2[m] [8], p. 159 .

v P (F) omits explicit reference to [m], so one may reverse the process of its con-
struction as follows: Fix an intersecting (though not necessarily uniform) family
P, and fix an integer k at least as large as the largest member of P. For m ≥ 2k
we may then define the unique family Fm(P) as follows: Let Jm(P) ∈ 2[m] denote
the collection of those subsets of [m] containing at least one member of P. Then
Fm(P) := [m](k)∩Jm(P) is the unique k-uniform family F of subsets of [m] satisfying
P (F (P)) = P.

Suppose k and P given. Define the growth function fP : N → N by the rule fP(m) =
|Fm(P)|. The function fP is roughly a polynomial in m with rational coefficients, because,
owing to the classical theory of inclusion-exclusion, it is a finite integral combination of
binomials in m, (c.f., e.g., [10], Chapter 2). By “roughly” we mean “ignoring conundra
involving the domain of definition, as for values of k too small to allow P to be the pedestal
of a k-uniform family”. Such conundra may be resolved by introducing an equivalence
relation on ∼=, where two functions fi : N → N, i := 1, 2 may be said to satisfy f1

∼= f2 if
they agree on all but a finite number of terms. This formalism permits us to define the
growth polynomial pP ∈ Q[m] to be the unique polynomial equivalent to fP . Then pP
has degree d and leading coefficient ad, where k − d is the smallest size of a member of
P, and ad is the number of sets of size k − d in P. This affords a relatively easy way of
estimating the growth of Fm(P) with m.

Here are a few examples of growth polynomials.

i Let P := {{x}}, the familiar pedestal of an EKR family. Then |F (P)| =
(

m−1
k−1

)
.

This example shows why we must regard p as a polynomial with rational, rather
than integral coefficients. For example, when k = 3 we get p(m) = m2/2−3m/2+1.

ii Let P := {{x, y1}, {x, y2}, {y1, y2}}. This is a sort of Hilton-Milner pedestal. In this
case pP = 3

(
m−2
k−2

) − 2
(

m−3
k−3

)
.

iii Let P := {{x, y1}, {x, y2}, {x, y3}, {y1, y2, y3}}. This is another sort of Hilton-Milner
pedestal. In this case again pP = 3

(
m−2
k−2

) − 2
(

m−3
k−3

)
. This shows that it is possible

for two nonisomorphic pedestals to have identical growth polynomials. In this case,
the two given pedestals have different growth functions, for the trivial reason that
that their unions have size 3 and 4 respectively, so fP(3) equals zero here and one
in the preceding example.

iv Given a k -uniform family that coincides with its pedestal, P, the polynomial pP is
constant. We observed above that finite projective planes constitute one such set of
families.
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v Here is another family of families each of which coincides with its pedestal. Let n
be an integer equal to 2 mod 4. Define F ⊂ [n](n/2) as follows: F := {A ∈ [n](n/2) :∑

a∈A a is odd }. In words, F consists of those sets the sum of whose terms is odd.
We argue that F is an intersecting family as follows: suppose to the contrary that
F contained both a set A and its complement. Then their union would be all of [n],
and the sum of the terms in [n] would then satisfy

∑
a∈[n] a is even. But n = 2 mod

4, so
∑

a∈[n] a is odd. But no n/2− 1-subset of [n] can exhaust all of either the odd

or even elements of [n], so F is its own pedestal. Again, pP (F) is constant.

While not used in the sequel, the growth polynomial is mentioned here because it
constitutes perhaps the most interesting invariant of a pedestal, and may sometimes be
used in, for example, the determination of b + 1-fold chromatic number of Kneser graphs
Ka:b for small values of b.

Definition 2.4. Given a family F ⊆ [m](k), define S(F), the span of its pedestal, to be
S(F) :=

⋃
A∈P (F) A.

Lemma 2.5. Suppose F ⊆ [m](k) to be a maximal intersecting family, where m ≥ 2k.
Then, given any A ∈ P (F), x ∈ A, there is some D ∈ P (F) such that A ∩ D = {x}.
Proof. Suppose otherwise. Let Y be the family obtained on replacing A by A\x in P (F).
Consider the collection of k-supersets of members of Y . This collection contains F prop-
erly, contradicting the maximality of F .

We can now state the principle technical result mentioned above:

Theorem 2.6. Given k, there is an integer g(k) such that, given any natural number m
and any maximal intersecting family F ⊆ [m](k), it is true that |S(F)| ≤ g(k).

Happily, we have discovered two wholly independent proofs of this claim, which con-
stitute the body of Section 3 of this note. The first uses Ramsey’s theorem and Bollobàs’s
well-known Sperner-type theorem dating back to 1965. The second uses Erdős’s Sunflower
lemma, and yields a vastly better, though not sharp, bound. For reference, here are these
three results in the required form:

Theorem 2.7. Ramsey’s Theorem [2] p. 188: Let K[m] denote the complete graph with
vertex set [m]. Suppose the edges of E(K[m]) two-colored (i.e., suppose that we are given
a function c : E(K[m]) → {red, blue}, where E(K[m]) denotes the edge set of K[m].) Then
there is a subset S of the vertex set [m] such that:

i S is at least as big as the base-4 logarithm of m.

ii The restriction of c to the subgraph of K[m] induced on S is constant. In other words,
all edges both ends of which lie in S have the same color.
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Theorem 2.8. Bollobàs’s Theorem( [8], p. 102): Let {A1, A2, . . . At} be an a-uniform
family of subsets of [m]; let {B1, B2, . . . Bt} be a b-uniform family of subsets of [m]. Sup-
pose that Ai ∩ Bj = � iff i = j. Then t ≤ (

a+b
b

)
.

Definition: A sunflower with t petals and a core Y is a family {A1, A2, . . . At} with
the property that the intersection of any two of these sets is Y , i.e., Ai ∩ Aj = Y for
distinct i, j ( [8], p. 79). The petals are the sets Bi := Ai\Y : i ∈ [t], and are required to
be nonempty (and necessarily pairwise disjoint).

Lemma 2.9. Erdős’s Sunflowers Lemma: ( [8], p. 79): Let F be an r-uniform family of
sets. If |F| > r!(t − 1)r, then F contains a sunflower with t petals.

3 Proofs of Theorems

Disclaimer : As noted above, the first proof of Theorem 2.6 relies on the theorems of
Ramsey and Bollobàs, and yields a poor bound. The second proof uses Erdős’s Sunflower
Lemma. We follow the precedent ( [4]) of displaying Ramsey-theoretic proofs alongside
more efficient proofs using other methods; the reader in a hurry should skip directly to
the second proof.

3.1 First Proof of Theorem 2.6

Suppose we are given a maximal intersecting k-uniform family F , its pedestal P (F), and
span S(F). Define U := k24k. Define T to be a tower of k 32’s (i.e., T := (32)32...32

,
containing k instances of 32. Suppose that S(F) is of size at least T U , We want to show
a contradiction, the purport of which is that S(F) can’t really be that big.

The argument here involves edge-coloring a succession of complete graphs KVt , where
the vertex set Vt of the t’th graph is a collection of t-subsets of S. Begin by defining
V1 := {{x} : x ∈ S(F)}. Let KV1 be the complete graph on V1.

We now set t := 1, and iterate the following argument k times: Introduce a red-blue
coloring on the edges of KVt as follows:

(Coloring Step): Color the edge {a, b} red if there is some A ∈ P (F) containing a and
meeting b, or meeting a and containing b, blue else. Note that in the case t = 1 these
two tests are indistinguishable, but otherwise not. Also observe, that, if this process lasts
until t = k, all edges are necessarily blue, at which point things will grind to a halt as
explained in (ii) below. Let H be a maximum monochromatic induced subgraph of KVt .
There are two cases to consider.

(i) If H is red, pick a maximum matching M in H . The purpose of the matching is
to preserve the disjointness of the vertices of KVt as we induct on t. Initialize Vt+1 = �.
For each edge e = {a, b} in the matching, do the following: We know that, since e is red,
either there is some A ∈ P (F) containing a and meeting b, or meeting a and containing
b. Without loss of generality, assume that we have A ∈ P (F) containing a and meeting
b. Pick y ∈ b ∩ A, and add a ∪ {y} to Vt+1.
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Observe that when we have performed this step for each edge in M , Vt+1 is a collection
of pairwise disjoint t + 1-subsets of S(F), each of which occurs as a subset of some
A ∈ P (F). Also, |Vt+1| = |M | = |V (H)|/2 ≥ blog4(|Vt|)/2cby Ramsey’s theorem. ( This
is the reason for using a tower of big numbers in estimating the size of V1: at each step
we take a base-4 logarithm, halve the size of what’s left, and round down.)

Having defined Vt+1, define KVt+1 to be the complete graph on this vertex set, incre-
ment t, and return to the Coloring Step above.

(ii) If H is blue, then endeavor to invoke Bollobàs’s theorem mentioned above. To this
end, associate with each vertex x of H an element Ax ∈ P (F), where x ∈ Ax. In each case,
pick yx ∈ x, and, using Lemma 2.5 above, pick Dx ∈ P (F) such that Ax ∩ Dx = {yx}.
Define Bx := Dx\yx. Consider the set set W := {Ax, Bx : x ∈ V (H)}.

We claim that Ar ∩ Bs = � iff r = s. Here are the verifications:

a If r = s, then Ar and Br are disjoint by construction: Br was constructed by
removing from Dr the one element it shared with Ar.

b if r 6= s, then ys is not an element of Ar because the edge {r, s} is blue in H . Ar and
Ds meet because P (F) is an intersecting set family. It follows that Ar and Ds\ys

likewise meet.

There remains one obstacle to invocation of Bollobàs’s theorem. The theorem applies
only to the case where every set Ax is of the same size a, and every set Bx is of the
same size b. However, every set in P (F) is of size between 1 and k, so for each pair
(i, j) ∈ [k] × [k] we may construct W(i,j) := {Ax, Bx : x ∈ V (H), |Ax| = i, |Bx| = j}. By
the pigeonhole principle and our judicious choice of U in the first paragraph of this proof,
there is some combination (i, j) for which |W(i,j)| violates Bollobàs’s theorem, which is
the desired contradiction.�

3.2 Second Proof of Theorem 2.6

Suppose |P (F)| > k!(k)k+1. Each element of P (F) is a set of size between 1 and k.
Partition P (F) according to the size of its members, yielding at most k families. The
largest block X of this partition is a uniform family containing at least k!(k)k members.
By Erdős’s Sunflower lemma, X contains a sunflower Q with k + 1 petals and core Y . Y
is nonempty because Q is a subset of P (F), which is an intersecting family. Let A be
any member of Q, B := A\Y . Fix x ∈ B. By Lemma 2.5 we can find D ∈ P (F) such
that A∩D = {x}. Since P (F) is intersecting, D must also meet each of the k remaining
members of Q. However, since A∩D = {x}, Y ∩D = �. It follows that D must contain
at least one element from each of the k + 1 pairwise disjoint petals of Q. But |D| ≤ k, a
contradiction. �

3.3 Proof of Theorem 1.2

|S(F)| ≤ g(k) by Theorem 2.6; this is the ground set on which P (F) is defined. Each set
in P (F) has size at most k. The number of sets of size at most k defined on this ground
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set is T :=
∑

i∈[k]

(
g(k)

i

)
< 2g(k. Since P (F) is an intersecting family, its size is bounded

by the EKR Theorem, and satisfies U := |P (F)| ≤ (
g(k)−1

k−1

)
. It follows that the number

of ways in which P (F) can be defined is bounded above by
(

T
U

)
< 2T . The number of

distinct isomorphism classes is bounded by this number. �
This upper bound may be lowered greatly in various ways as follows:

i Almost all hypergraphs are rigid, so one can divide by a factor of about g(k)! It
would take some work, here deferred, to make this claim wholly precise.

ii The Sunflower Lemma does not stipulate that the family in question (P (F) here)
is intersecting. Stronger variants are available for intersecting families, improving
the bound on g(k) by a factor of about k.

4 Generalizations

The results presented so far concern set systems, and may be couched in the language of
Boolean Lattices. Some of these results admit generalizations to larger classes of lattices.
The goal of this section is to present these generalizations. Suppose L to be an arbitrary
lattice. Given F ⊂ L, we say that F is intersecting if the meet of any two elements
A, B ∈ F satisfies A ∧ B > 0̂L. In the case where L is a Boolean Lattice, this coincides
with the usual stipulation that F be an intersecting family.

By a graded lattice we mean a lattice each of whose elements has a well-defined rank.
In a graded lattice L, we may say that F ⊂ L is k-uniform if the rank of each A ∈ F is
k. Thus, the notion of a maximal intersecting k-uniform family in an arbitrary graded
lattice L is clear: it is simply a set F ⊂ L which is maximal with respect to the property
that it is both intersecting and k-uniform. All lattices considered here are finite. Recall
that in

To permit the definition of “pedestal” in this more general setting, we introduce the
following notation: given a ∈ L of rank at most k, let U(a) ⊂ L denote the set of all
elements of L of rank k dominating a. In this more general setting, given a k-uniform
family F , define its prepedestal as PP (F) := {a ∈ L : U(a) ⊂ F}, and define the pedestal
of F to be the set of minimal elements of the prepedestal.

Two families F1,F2 ⊂ L are declared isomorphic if each lies in the orbit of the other
under the action of Aut(L), the automorphism group of L. For arbitrary lattices it may
happen that Aut(L) is trivial, in which case it is difficult to say much. Indeed, in a rigid
lattice we may construct a large family of pairwise nonisomorphic maximal intersecting
1-uniform families as follows: identify with each atom a ∈ L the set {a}; the set of such
sets is then a collection of pairwise nonisomorphic families. To avoid this sort of problem,
we define a homogeneous lattice to be one whose automorphism group acts on the set
A ⊂ L : A = {a ∈ L, a is an atom } as the symmetric group SA.

While most of the preliminary results stated in this section hold for more general classes
of lattices, we confine the statement of these claims to the class of finite homogeneous
distributive lattices, which we refer to as admissible lattices. Some of the arguments above,
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such as the EKR theorem, required that the ground set be large enough. The analogous
stipulation here is that, given k, we say that an admissible lattice L is k-admissible if,
given any a ∈ L of rank k, there is some b ∈ L of rank k such that a ∧ b = 0.

It transpires [9] that the Sunflower lemma, the main tool of the last section, holds for
a large class of lattices, including distributive lattices. Indeed, for each k, essentially all
the results of this paper hold for the class of k-admissible lattices.

Lemma 4.1. Let k be an integer, and let L be a k-admissible lattice. Suppose F ⊂ L is
a maximal intersecting k-uniform family. Then any a ∈ P (F) is a join of atoms in L.

Proof. Suppose otherwise. Let b ∈ P (F), and let b∗ denote the join of all atoms dominated
by b. Suppose b 6= b∗. Then b∗ < b, so we consider the effect of replacing b by b∗ in P (F).
Now, since F is intersecting, any x in F satisfies x ∧ b > 0̂L. But then x must dominate
some atom lying below b, so x ∧ b∗ > 0̂L as well. Conversely, let y ∈ U(b∗). Then
y dominates all the atoms lying beneath b, so y meets each x in F . We arrive at a
contradiction: replacement of b by b∗ in P (F) yields an intersecting family at least as
large as F , so either F isn’t maximal or b isn’t minimal.

The preceding lemma allows us to repeat most of the arguments of the preceding
sections, because, given any family F we can now simply identify each element A of its
pedestal with the set of atoms dominated by A. In particular, we define the span S(F)
of the pedestal to be the union of these sets of atoms, so S(F) is likewise a set of atoms
of the ambient lattice.

We now state the principal results of the preceding sections in lattice form, noting
that the proofs are unaltered.

Lemma 4.2. Suppose F to be a maximal k-uniform intersecting family in a k-admissible
lattice L. Then, given any A ∈ P (F), x an atom of L dominated by A, there is some
D ∈ P (F) such that A ∩ D = {x}.
Theorem 4.3. Given k, there is an integer g(k) such that, given any k-admissible lattice
L and any maximal k-uniform intersecting family F ⊂ L, it is true that |S(F)| ≤ g(k).

Theorem 4.4. The number of pairwise nonisomorphic maximal intersecting k-uniform
families of subsets of a k-admissible lattice L is bounded by a constant f(k) not depending
on L.

5 Concluding Remarks

As usual, Ramsey theory is effective at proving the existence of an upper bound, but not
of providing a sharp upper bound. The author suspects that the true value of g(k) is
k2 −k +1, given by the finite projective planes. In case the k = 3, the author has verified
that all maximal intersecting families defined on a ground set of less than 12 elements
satisfy the condition that the size of the span is at most 32 − 3 + 1 = 7. Indeed, there
appear to be only 15 distinct pairwise nonisomorphic pedestals for k ≤ 3, viz:
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{1}
{12}, {13}, {14}, {234}
{12}, {13}, {23}
{12}, {13}, {234}, {235}, {145}
{12}, {134}, {135}, {245}, {236}, {146}, {156}
{12}, {134}, {234}, {135}, {235}, {145}, {245}
{12}, {134}, {234}, {135}, {245}, {236}, {146}
{123}, {124}, {134}, {125}, {135}, {245}, {345}, {236}, {146}, {156}
{123}, {124}, {134}, {125}, {235}, {345}, {136}, {236}, {246}, {156}
{123}, {124}, {134}, {234}, {125}, {135}, {235}, {145}, {245}, {345}
{123}, {124}, {134}, {234}, {125}, {135}, {245}, {345}, {236}, {146}
{123}, {124}, {134}, {234}, {125}, {345}, {136}, {246}, {237}, {147}
{123}, {124}, {134}, {235}, {245}, {345}, {236}, {246}, {346}, {156}
{123}, {124}, {135}, {245}, {345}, {236}, {146}, {346}, {156}, {256}
{123}, {145}, {246}, {356}, {347}, {257}, {167}

The gap between this experimental bound of 15 and that assured by the theorem
above is nothing if not large.

Not treated here is the expected growth of the “length” L(P (F)) := |P (F)|. The
author supposes this to be strictly exponential in k, i.e., one guesses that there exist real
numbers a, b such that ak < E[L(P (F))] < bk.

A finite projective plane PG(2, q) is its own pedestal. There are many other families
with this property, but the author does not know whether almost all families have this
property.

The number of pairwise nonisomorphic k-uniform intersecting families admits a su-
perexponential lower bound, as the following argument shows. For any natural number k,
consider the h(k) :=

(
2k
k

)
/2 ways of partitioning [2k] into two subsets of equal size. Evi-

dently there are 2h(k) ways to select one block from each of these partitions. For m > 2k,
each such selection S may be extended to a maximal k-uniform family S ′ in one or more
ways. The point is that distinct selections S, T give rise to distinct maximal intersecting
extensions. Thus, even when k = 4, this yields a computationally daunting number of
distinct families (at least 235). Note that k! = o(2h(k)), so the computation of isomorphism
classes of maximal intersecting k-uniform families is likewise daunting.
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