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Abstract

Steiner triple systems are known to exist for orders n ≡ 1, 3 mod 6, the ad-
missible orders. There are many known constructions for infinite classes of Steiner
triple systems. However, Steiner triple systems that lack prescribed configurations
are harder to find. This paper gives a proof that the spectrum of orders of 5-sparse
Steiner triple systems has arithmetic density 1 as compared to the admissible orders.

1 Background

Let v ∈ N and let V be a v-set. A Steiner triple system of order v, abbreviated STS(v),
is a collection B of 3-sets of V , called blocks or triples, such that every distinct pair of
elements of V lies in exactly one triple of B. An STS(v) exists exactly when v ≡ 1 or
3 mod 6, the admissible orders. Wilson [13] showed that the number of non-isomorphic
Steiner triple systems of order n is asymptotically at least (e−5n)n2/6. Much less is known
about the existence of Steiner triple systems that avoid certain configurations. An r-
configuration of a system is a set of r distinct triples whose union consists of no more than
r + 2 points. A Steiner triple system that lacks r-configurations is said to be r-sparse.
In other words, a Steiner triple system where the union of every r distinct triples has at
least r + 3 points is r-sparse.

In 1976, Paul Erdős conjectured that for any r > 1, there exists a constant Nr such
that whenever v > Nr and v is an admissible order, an r-sparse STS(v) exists[4]. The
statement is trivial for r = 2, 3. For r = 4, there is only one type of 4-configuration, a
Pasch. Paschs have the form:

{a, b, c}, {a, d, e}, {f, b, d}, {f, c, e} (1)

∗Thanks to the editors of this journal for considering this for publication.
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In this paper, Paschs are written in the order presented above. Viewing a Steiner triple
system as a 3-regular hypergraph with the point-set of the graph being the points of
the Steiner triple system and the edge-set being the triples, we can graphically represent
the system by plotting the point set as vertices and connecting the three vertices of an
edge (triple) by a smooth line. With this in mind, a Pasch as in (1) can be graphically
represented as:
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4-sparse, or anti-Pasch, Steiner triple systems were shown to exists for all admissible
orders v except for v = 7, 13 [6].

There are two types of 5-configurations where the 5 blocks in the configuration contain
7 points, mias and mitres. A mia comes from a Pasch with the addition of an extra triple
containing one new point not in the Pasch:

{a, b, c}, {a, d, e}, {f, b, d}, {f, c, e}, {a, f, g}.

A mitre has the form

{a, b, c}, {a, d, e}, {a, f, g}, {b, d, f}, {c, e, g}. (2)

The element a that occurs in three of the triples of the mitre is called the center of the
mitre. A mitre as in (2) has the graphical representation as:
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Generally, mitre configurations in this paper are written out with the first three triples
being the triples with the center and the first three elements of the first three triples are
the center. Steiner triple systems that do not contain mitres are called anti-mitre. Since
all 5-configurations are derived from mitres or Paschs, 5-sparse Steiner triple systems are
exactly those systems that are both 4-sparse (anti-Pasch) and anti-mitre.

Here is an outline of what the various sections of this article covers:

• Section 2 introduces meager systems and how they relate to 5-sparse Steiner triple
systems.
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• Section 3 describes meager systems of order mn + 2 for many values of m and n.

• Section 4 introduces super-disjoint Steiner triple systems and provides an example
of such systems of order 3n under certain restrictions for n.

• Section 5 introduces average-free Steiner triple systems and manipulates the super-
disjoint Steiner triple system from Section 4 to form an infinite class of average-free
5-sparse Steiner triple systems.

• By using an analytic technique on the results of the earlier sections, Section 6 shows
that the spectrum of 5-sparse Steiner triple systems admit almost all admissible
numbers.

Here is a list of known results on orders of 5-sparse Steiner triple systems:

Definition 1.1. Let G be a finite abelian group. A Steiner triple system on G is said to be
transitive if whenever {x, y, z} is a triple, then so is {x+a, y+a, z+a} for {x, y, z, a} ∈ G.
If the group is cyclic, then the Steiner triple system is referred to as cyclic Note that this
definition can be extended to Latin squares (cf Definition 1.6) as well.

Theorem 1.2. (Colbourn, Mendelsohn, Rosa and S̆irán̆) [2] Transitive 5-sparse Steiner
triple systems exists of order v = pn where p is a prime, p ≡ 19 mod 24.

Theorem 1.3. (Ling) [10] If there exists a transitive 5-sparse STS(u), u ≡ 1 mod 6 and
a 5-sparse STS(v), then there exists a 5-sparse STS(uv).

Theorem 1.4. (Fujiwara) [5] There exists 5-sparse Steiner triple systems of order n ≡
1, 19 mod 54 except possibly for n = 109.

We also have many small orders of 5-sparse Steiner triple systems realized:

Theorem 1.5. (Colbourn, Mendelsohn, Rosa and S̆irán̆) [2] Transitive 5-sparse STS(v)
exist for admissible orders v, 33 ≤ v ≤ 97 and v = 19.

Here are some definitions that we use in the following sections:

Definition 1.6. A Latin square of order n is an n × n matrix M = (mxy) with entries
from an n-set V , where every row and every column is a permutation of V . Labeling the
rows and columns by V , it is convenient to view a Latin square as a pair (V, B), where B
is a set of ordered triples on V such that (x, y, z) ∈ B if and only if mxy = z for x, y, z ∈ V .

Definition 1.7. A symmetric Latin square of order n is a Latin square (V, B) such that
whenever (x, y, z) ∈ B then so is the triple (y, x, z) ∈ B.

Definition 1.8. A partial Latin square of order n is a triple system (V, B) obtained from
a partial n× n matrix with entries from an n-set V , where every element of V appears in
each row at most once and in each column at most once.
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Definition 1.9. A triple (x, y, z) of a Latin square or a partial Latin square (V, B) is
called super-symmetric if all the permutations of the triple (x, y, z), i.e. (x, y, z), (x, z, y),
(y, x, z), (y, z, x), (z, x, y) and (z, y, x) are in B as well.

Definition 1.10. An idempotent Latin square (V, B) on a set V is one with the property
that (x, x, x) ∈ B for all x ∈ V .

Definition 1.11. We define a deleted symmetric square on a set V to be a partial Latin
square that can be obtained from an idempotent, symmetric Latin square (V, B) by re-
moving the triples (x, x, x) for all x ∈ V .

Definition 1.12. Two deleted symmetric squares (V, B1) and (V, B2) on an n-set V
are said to be really disjoint if B1

⋂
B2 = ∅ and for all (x, y, z) ∈ B1, none of the six

permutations of {x, y, z} is in B2.

2 Meager Systems

Definition 2.1. A (partial) Latin square on a set V that has no subsquares of order 2,
i.e. does not contain four triples of the form:

(x, y, z), (x, a, b), (w, y, b), (w, a, z)

for x, y, z, w, a, b ∈ V is said to be N2.

Definition 2.2. Let B0, B1 and B2 be N2 deleted symmetric squares of order n, on an
n-set V , where the index i of the square Bi is taken as an element of Z/3Z. If the systems
avoid each of the following configurations:

(x, y, z) ∈ B0, (x, z, w) ∈ B1 and (x, w, y) ∈ B2 (Q)

(x, y, z), (x, z, y) ∈ Bt , (y, z, x) ∈ Bt+2 (M1)

(x, y, z), (y, v, x), (x, v, w) ∈ Bt , (z, w, x) ∈ Bt+1 (M2)

(x, y, z), (y, w, x) ∈ Bt, , (x, z, v) ∈ Bt+1 and (x, v, w) ∈ Bt+2 (M3)

where x, y, z, v, w ∈ V and t ∈ Z/3Z, then the system is called a meager system of order
n. We denote the system by (V, B0, B1, B2). If B0 = B1 = B2, then we simply refer to
(V, B0) as a meager square of order n.

Note that if (V, B0, B1, B2) is a meager system, then so is (V, Bt, Bt+1, Bt+2) for any
t ∈ Z/3Z.
The usefulness of meager systems in constructing 5-sparse Steiner triple systems is ap-
parent by the following lemma:

Lemma 2.3. Suppose there is a meager system of order n. Then there exists a 5-sparse
Steiner triple system of order 3n.
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Proof. Let (V, B0, B1, B2) be a meager system of order n. We construct a Steiner triple
system of order 3n on Z/3Z×V as follows: Include triples {tx, ty, (t+1)z} for (x, y, z) ∈ Bt

and t ∈ Z/3Z and triples {0x, 1x, 2x} for x ∈ V .
If there is a Pasch in the construction, then the Pasch must have one of the two forms:

1. {t, t, t + 1}, {t, t, t + 1}, {t, t, t + 1}, {t, t, t + 1} for some t ∈ Z/3Z

2. {0, 1, 2}, {0, 0, 1}, {2, 1, 1}, {2, 0, 2}.

In the first case, the Pasch would have come from a subsquare of order 2 from Bt which
is impossible since Bt is assumed to be N2. In the second case, filling in the subscripts
would lead to the Pasch

{0x, 1x, 2x}, {0x, 0y, 1z}, {2w, 1x, 1z}, {2w, 0y, 2x}

but the last three triples give a configuration Q which cannot happen. Thus there are no
Paschs.

If there is a mitre in the construction, then without loss of generality, the mitre could
only have one of the following forms:

1. {0, 0, 1}, {0, 1, 0}, {0, 2, 2}, {0, 1, 2}, {1, 0, 2}.

2. {0, 1, 2}, {0, 0, 1}, {0, 0, 1}, {1, 0, 0}, {2, 1, 1}.

3. {0, 1, 2}, {0, 1, 0}, {0, 2, 2}, {1, 1, 2}, {2, 0, 2}.

1. Form 1 holds. Filling in the subscripts in the first form gives us the mitre:

{0x, 0y, 1z}, {0x, 1y, 0z}, {0x, 2y, 2z}, {0y, 1y, 2y}, {1z, 0z, 2z}.

Then we have (x, y, z), (x, z, y) ∈ B0 and (y, z, x) ∈ B2, but this is an M1 configu-
ration.

2. Form 2 holds. Filling in the subscripts in the second form gives us the mitre:

{0x, 1x, 2x}, {0x, 0y, 1z}, {0x, 0v, 1w}, {1x, 0y, 0v}, {2x, 1z, 1w}.

Thus we have (x, y, z), (y, v, x), (x, v, w) ∈ B0 and (z, w, x) ∈ B1, but this is an M2

configuration.

3. Form 3 holds. Lastly, filling in the subscripts for the third form gives us the mitre:

{0x, 1x, 2x}, {0x, 1v, 0z}, {0x, 2w, 2y}, {1a, 1e, 2d}, {2a, 0c, 2b}.

Thus (x, y, z), (y, w, x) ∈ B2, (x, z, v) ∈ B0 and (x, v, w) ∈ B1 which is an M3

configuration.

Hence the resulting Steiner triple system could not have any mitres as well. Thus it is
5-sparse.
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The meager system avoiding M1, M2 and M3 configurations assured that no mitres will
occur in the construction. The squares being N2 and avoiding Q configurations assured
that the result will lack Paschs.1

It is easy to check that meager systems of order m do not exist for any odd m ≤ 7,
however we will see in the following section that a plethora of meager systems exist.

3 mn + 2 Meager Construction

In this section we give a construction of a meager system of order mn+2 from a 4-sparse
Steiner triple system of order m + 2 where n is any odd number, n ≥ 5. We will utilize
special Latin squares called Valek squares in the meager system constructions:

Definition 3.1. Let V be an n-set and let ∞ be a point not in V . A Valek square
of order n on V is a symmetric Latin square on V that contains a transversal along its
main diagonal, say (x, x, σ(x)) where σ is some permutation on V , such that if the main
diagonal entries were deleted and triples {(∞, x, σ(x)) |x ∈ V } were introduced to the
Latin square, then the resulting partial Latin square of order n + 1 will be N2.

It turns out that Valek squares of order n exist for all odd n except for n = 3. To
see this, we use the fact that an idempotent symmetric N2 Latin square of odd order n is
Valek if whenever (x, y, z) and (x, z, y) are triples in the square, then x = y = z.

Lemma 3.2. Valek squares of odd order n exist whenever 3 - n.

Proof. Let n be an odd number such that 3 - n. Consider the symmetric N2 Latin square
on Z/nZ with triples (x, y, z) where 2z = x + y, x, y, z ∈ Z/nZ. Note that if (x, y, z) and
(x, z, y) are triples, then 3x = 3y which implies that x = y = z.

To cover the remaining cases, we utilize the following lemma:

Lemma 3.3. If an idempotent Valek square of order n exists, then an idempotent Valek
square of order 3n exists.

Proof. Let (Z/nZ, T ) be an idempotent Valek square of order n. Consider the following
Latin square of order 3n on Z/3Z × Z/nZ. Include the triples:

1. ((i, x), (i, y), (i, z)) for (x, y, z) ∈ T , i ∈ Z/3Z.

2. ((0, x), (1, y), (2, x + y))

3. ((1, x), (0, y), (2, x + y))

4. ((0, x), (2, y), (1, y − x + 1))

1The idea for using the forms {0, 0, 1}, {1, 1, 2} and {2, 2, 0} to produce a 5-sparse Steiner triple system
came from a popular Bose construction for 4-sparse Steiner triple systems that can be found in [7] and
generalized in [8].
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5. ((2, x), (0, y), (1, x− y + 1))

6. ((1, x), (2, y), (0, y − x + 2))

7. ((2, x), (1, y), (0, x− y + 2))

where x, y, z ∈ Z/nZ. It may be easier to visualize the Latin square with the following:
Let A, B and C be the Latin squares on Z/nZ with triples (x, y, x + y), (x, y, y − x + 1)
and (x, y, y− x + 2), respectively for x, y, z ∈ Z/nZ. Let BT and CT be the transposes of
the squares (i.e. the first two coordinates of the triples swapped). The constructed Latin
square has the form:

(0, T ) (2, A) (1, B)
(2, A) (1, T ) (0, C)
(1, BT ) (0, CT ) (2, T )

Note that the square is symmetric. Also, since the Latin square projected to the first
coordinate

0 2 1
2 1 0
1 0 2

is N2 and the Latin squares T , A, B, and C are N2, it follows that the constructed Latin
square is N2 as well. Furthermore, since T is idempotent, then so is our construction.
It remains to show that if ((a, x), (b, y), (c, z)) and ((a, x), (c, z), (b, y)) are triples in the
constructed Latin square, then a = b = c and x = y = z. Since this property holds along
the diagonal, we can reduce to the cases where (a, b, c) ∈ {(0, 1, 2), (1, 0, 2), (2, 0, 1)}. So,
assuming ((a, x), (b, y), (c, z)) and ((a, x), (c, z), (b, y)) are triples in the square, if (a, b, c) =
(0, 1, 2), then z = x + y and y = z − x + 1 which cannot happen. If (a, b, c) = (1, 0, 2),
then z = x + y and y = z −x + 2 which cannot happen. Lastly, if (a, b, c) = (2, 0, 1), then
z = x − y + 1 and y = x − z + 2 which cannot happen.

Theorem 3.4. Let n > 3 be an odd number. Then a Valek square of order n exists.

Proof. We can apply lemma 3.2 to get a Valek square of order n if 3 - n. If n = 9, we
have an idempotent Valek square of order 9 given by Table 1. For the remaining cases,
we can apply lemma 3.3 recursively.

The upcoming meager system construction is based on a generalization of a Steiner
triple system construction introduced in [12] and developed in [11] and independently
discovered by C. Demeng. The generalization is as follows:

Lemma 3.5. Let m and n be odd numbers with n > 1 and m ≥ 5. Suppose there exists a
4-sparse Steiner triple system (V

⋃
{∞1,∞2}, T ) of order n + 2 and suppose there exists

an N2 deleted symmetric square on (P
⋃
{∞1,∞2},S) of order m + 2. Then there exists

an N2 deleted symmetric square of order mn + 2 on (V × P )
⋃
{∞1,∞2}.
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0 8 7 6 5 3 4 1 2
8 1 3 0 6 2 7 5 4
7 3 2 5 1 4 0 8 6
6 0 5 3 2 7 8 4 1
5 6 1 2 4 8 3 0 7
3 2 4 7 8 5 1 6 0
4 7 0 8 3 1 6 2 5
1 5 8 4 0 6 2 7 3
2 4 6 1 7 0 5 3 8

Figure 1: Idempotent Valek Square of Order 9

Proof. Given the Steiner triple system and the N2 deleted symmetric square as described
in the hypothesis, we construct an N2 deleted symmetric square on (V ×P )

⋃
{∞1,∞2}.

Let T be the element of V such that {∞1,∞2, T} ∈ T . Define the graph G on V \ {T}
as the graph connecting X to Y if and only if {X, Y,∞i} ∈ T for some i. Then it is clear
that G is the union of a collection of disjoint even cycles. By traversing each cycle, we
can create a set of ordered pairs Ω where (X, Y ) ∈ Ω implies that X is adjacent to Y
in G and for every X ∈ V \ T there is exactly one Y and exactly one Z in V \ T such
that (X, Y ) ∈ Ω and (Z, X) ∈ Ω. For each (X, Y ) ∈ Ω, define R{X,Y } as a Valek square
of order m on P . For each {X, Y, Z} ∈ T where X, Y, Z /∈ {∞1,∞2} choose an ordered
triple from the elements {X, Y, Z} say, (X, Y, Z), and choose an N2 Latin square of order
m, LXY Z on P .2

Now create the deleted symmetric Latin square by including the following triples: (For
each unordered triple below, include all six ordered triples from the same elements.)

1. (Tx, Ty, Tz) for (x, y, z) ∈ S

2. (Tx, Ty,∞i) for (x, y,∞i) ∈ S

3. (Tx,∞i, Ty) for (x,∞i, y) ∈ S

4. (∞i, Tx, Ty) for (∞i, x, y) ∈ S

5. {Xa, Xb, Yc} for (X, Y ) ∈ Ω and (a, b, c) ∈ R{X,Y }.

6. {Xa, Yb,∞i} for (X, Y ) ∈ Ω with {X, Y,∞i} ∈ T and (a, a, b) ∈ R{XY }

7. {Xa, Yb, Zc} for (a, b, c) ∈ LXY Z .

Comment : The first four types of triples can be viewed as a copy of S. It is clear that
the above triples form a deleted symmetric square. See [11] for more detail on this.

Note that the constructed square is actually N2. To see this, suppose on the contrary
that there is a subsquare of order 2 composed of four triples, say D. There cannot exist

2By [3] we know that N2 Latin squares exist for all orders m with m 6= 2, 4.
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two triples of D of type 1 to 4 otherwise the remaining two would also have come from
types 1 to 4 and the subsquare would have been derived from a subsquare of order 2 from
S which cannot happen. Between any two triples of the subsquare of order 2, there is a
point in common. Thus we only have the following cases to consider:

1. D has a triple of type 1. Then there must be a triple of type 7 in D. Without loss
of generality, we may take the form of this type 7 triple to be (T, X, Y ) for some
X, Y ∈ V . Then the forms of the triples would be (T, T, T ), (T, X, Y ), (W, T, Z),
and (W, Y, T ) where Z ∈ V . Then these latter two triples are also of type 7. Hence
Y = Z which is impossible since these triples come from the Steiner triple system
triples of T .

2. D has a triple of type 2,3 or 4. Without loss of generality, we can assume that the
triple is of type 4. Then the other triples must be of type 6 or 7 and the forms of the
triples are: (∞i, T, T ), (∞i, X, Y ), (W, T, Y ), and (W, X, T ) where X, Y, W ∈ V .
Then X = Y which cannot happen.

3. D has no triples of type 1 to 4. Since the triples of the subsquare are each super-
symmetric, we can view the triples as unordered triples and investigate whether
there are any Paschs that arise:

4. The Pasch has a triple of type 6. Then there must be another triple of type 6.
Thus the forms of the triples must look like: {∞i, X, Y }, {∞i, A, B}, {W, X, B},
and {W, A, Y } with X, Y, A, B, W ∈ V and (X, Y ) ∈ Ω. Since T is N2, it must be
that A, B are not distinct from X, Y . Thus, it follows that {A, B} = {X, Y }. So,
without loss of generality, take A = X and B = Y . Then the last two triples are
from triples of type 5 and so W ∈ {X, Y }. In either case, filling in the subscripts
would give us a subsquare of order 2 which contradicts R{XY } being Valek.

5. The Pasch has no triple of type 6 and has a triple of type 5. The forms of the triples
must look like:

{X, X, Y }, {X, A, B}, {W, X, B}, {W, A, Y }
for some X, Y, A, B, W ∈ V with (X, Y ) ∈ Ω. If the forms of the latter three
triples are derived from triples of type 7, then A = X which cannot happen. Thus,
without loss of generality we can assume {X, A, B} is from a triple of type 5. If
{X, A, B} = {X, Z, Z} for some Z ∈ V , then W = Z and thus X = Y which is
impossible. Hence {X, A, B} = {X, X, Y }. Thus each triple has the form {X, X, Y }
Filling in the subscripts would give us a subsquare of order 2 from R{X,Y } without
using the main diagonal, which is impossible.

6. The Pasch only has triples of type 7. Projecting the triples to the forms would give
either all distinct triples - thus forming a Pasch from T which is impossible - or
the triples are all the same, say, {X, Y, Z}. In this case, filling in the subscripts
based on, say, LXY Z , would give us a subsquare of order 2 from LXY Z which is a
contradiction.
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Thus the construction gives us an N2 deleted symmetric square.

Applying Lemma 3.5, we can produce meager systems:

Lemma 3.6. Let m, n be odd numbers with m ≡ 1, 5 mod 6, m ≥ 7, m 6= 11 and n ≥ 5.
Then there exists a meager system of order mn + 2

Proof. The proof of Lemma 3.6 involves carefully constructing three deleted symmetric
squares as prescribed by Lemma 3.5. For details on this construction, please refer to the
appendix.

4 Super-Disjoint Steiner Triple Systems

Let (V, B) be a Steiner triple system of order n. There is a natural deleted symmetric
square (V, B̂) that comes from the Steiner triple system by replacing every unordered
triple of B with the corresponding six ordered ones. Formally, define the triples of the
square B̂, the derived system from B as:

B̂ = {(x, y, z) | {x, y, z} ∈ B.}

Suppose we have three Steiner triple systems on an n-set V with triple sets B0, B1

and B2. Let us investigate what conditions must hold on the triple sets to ensure that
(V, B̂0, B̂1, B̂2) is a meager system. Notice that Bi has no Paschs if and only if B̂i is N2.
Also, every triple in B̂i is super-symmetric. Thus the three systems avoid M1, M2 and
M3 configurations if and only if the triples are pairwise disjoint in the deleted symmetric
squares and thus in the triple sets of the Steiner triple systems. Q configurations are
avoided in the squares if there are no configurations {x, y, z} ∈ B0, {x, y, w} ∈ B1 and
{x, z, w} ∈ B2 for any x, y, z, w ∈ V . This motivates the following definition:

Definition 4.1. Three Steiner triple systems (V, B0), (V, B1) and (V, B2) are said to be
super-disjoint if the following two conditions hold:

1. The systems are pairwise disjoint (i.e. B0

⋂
B1 = B0

⋂
B2 = B1

⋂
B2 = ∅).

2. There are no configurations {x, y, z} ∈ B0, {x, y, w} ∈ B1 and {x, z, w} ∈ B2 for
any x, y, z, w ∈ V .

We refer to the configuration in (2) as a Qsym configuration. Notice that the definition
of super-disjointness is independent from the order that the Steiner triple systems are
taken. Below is a lemma that states the relation between super-disjoint Steiner triple
systems and meager systems of derived deleted symmetric squares:

Lemma 4.2. Suppose we have three 4-sparse super-disjoint Steiner triple systems on a
set V with triple sets B0, B1 and B2. Then (V, B̂0, B̂1, B̂2) is a meager system.
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There are many different constructions for 4-sparse Steiner triple systems that can be
utilized to produce infinite classes of three 4-sparse super-disjoint Steiner triple systems.3

We now look at one of these constructions:

Lemma 4.3. There exist three 4-sparse super-disjoint Steiner triple systems of order 3n
provided 7 - n, n odd, n ≥ 9 (and so, under such conditions, a meager system of order 3n
exists).

Proof. Given the above restrictions on n, we will construct three Steiner triple systems
of order 3n: Let G be an abelian group of order n. The Steiner triple systems will be on
the set Z/3Z×G. Let us label the triples of the three systems as B1, B2 and B3. Choose
elements of G: ai, bi and ci for i ∈ Z/3Z such that:

a0 + a1 + a2 = 0

b0 + b1 + b2 = 0

ci = (−ai − bi)/2

ci 6= aj + bk and ai 6= bi

where i, j, k ∈ Z/3Z, i, j, k distinct.
(E.g., taking G = Z/nZ, and a0 = 1, a1 = 2, a2 = −3, bi = −ai, and ci = 0 for

i ∈ {0, 1, 2} satisfies the above conditions.)
The triples in B1 are:

{tx, ty, (t + 1)z} where z = (x + y)/2 + at for t ∈ Z/3Z

{0x, 1x+a0 , 2x+a0+a1} where x, y, z are distinct elements of G

The triples in B2 are:

{tx, ty, (t + 1)z} where z = (x + y)/2 + bt for t ∈ Z/3Z

{0x, 1x+b0, 2x+b0+b1} where x, y, z are distinct elements of G

and the triples in B3 are:

{(t + 1)x, (t + 1)y, tz} where z = (x + y)/2 + ct for t ∈ Z/3Z

{2x, 1x+c1, 0x+c0+c1} where x, y, z are distinct elements of G

Since a0 + a1 + a2 = 0, b0 + b1 + b2 = 0 and c0 + c1 + c2 = 0, it is clear that the above
systems are Steiner triple systems. To show that the systems are 4-sparse, without loss of
generality, it is enough to show that the first system is 4-sparse since I will only be using
the fact that a0 +a1 +a2 = 0: Assume, to the contrary, that there is a Pasch configuration
in the first system. Since no two triples of a Pasch are disjoint, it is clear that it may
contain at most one triple of the form {0, 1, 2}. With this in mind, projecting the Pasch
to its form, the only possible Paschs are:

3[11] is particularly useful as a source of 4-sparse Steiner triple system constructions to be manipulated
as super-disjoint.
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1. {t, t, t + 1}, {t, t, t + 1}, {t, t, t + 1}, {t, t, t + 1} where t ∈ Z/3Z.

2. {0, 1, 2}, {0, 0, 1}, {1, 1, 2}, {2, 2, 0}

Filling in the subscripts in the first case yields:

{tx, ty, (t + 1)(x+y)/2+at}, {tx, tz, (t + 1)(x+z)/2+at}, {tw, ty, (t + 1)(w+y)/2+at}
{tw, tz, (t + 1)(w+z)/2+at}

where x, y, z, w ∈ G with w 6= x and the following equations hold:

(x + z)/2 + at = (w + y)/2 + at

and
(x + y)/2 + at = (w + z)/2 + at.

Thus x + z = w + y and w + z = x + y. This implies that 2x = 2w and so x = w (since n
is odd), a contradiction.

For the last case, filling in the subscripts gives us the following Pasch:

{0x, 1x+a0, 2x+a0+a1}, {0x, 0y, 1(x+y)/2+a0}, {1x+a0, 1(x+y)/2+a0 , 2z}, {2z, 2x+a0+a1 , 0y}

where x, y, z ∈ G and x 6= y. Also, the following equations hold:

z =
x + a0 + (x + y)/2 + a0

2
+ a1 and y =

z + x + a0 + a1

2
+ a2.

Eliminating the variable z and simplifying yields the condition 7x = 7y which implies
that x = y since 7 - n, a contradiction.

Lastly, we must show that the three Steiner triple systems are super-disjoint. Just
by considering each system’s form, it is clear that the third system of triples, B3, is
disjoint from B1 and B2 except for possibly the triples of the form {0, 1, 2}. Assuming
B3 has a triple of this form in common with B1, then for some x, y ∈ G, we have:
{0x+c0+c1 , 1x+c1, 2x} = {0y, 1y+a0 , 2y+a0+a1}. Then −c0 = a0 which implies that (a0 +
b0)/2 = a0 and so a0 = b0, a contradiction. A similar argument holds for showing that B3

is disjoint from B2. Also, since ai 6= bi for i ∈ Z/3Z, it is clear that B1 is disjoint from
B2. (Note that the triples of the form {0, 1, 2} between any two systems do not even have
two points in common.)

To see that a Qsym configuration does not exist between the three systems, let us
assume on the contrary. Then the three triples from B1, B2 and B3, respectively that
form the Qsym configuration can have at most one triple of the form {0, 1, 2} since any
two triples of a Qsym configuration have two points in common. Writing the Qsym config-
uration as in Definition 4.1 we have the following cases of the forms of triples of the Qsym

configuration from B1, B2 and B3, respectively:

the electronic journal of combinatorics 12 (2005), #R68 12



1. {t, t + 1, t + 2}, {t, t + 1, t}, {t, t + 2, t}

2. {t, t + 1, t}, {t, t + 1, t + 2}, {t, t, t + 2}

3. {t, t, t + 1}, {t, t, t + 1}, {t, t + 1, t + 1}
where t ∈ Z/3Z. By swapping B1 with B2 if necessary, we only need to consider the
first and third case. Filling in the subscripts in the first case gives us {tx, (t + 1)x+at , (t +
2)x+at+at+1}, {tx, (t + 1)(x+w)/2+bt , tw}, {tx, (t + 2)(x+w)/2+ct+2, tw} for some x, w ∈ G where
x+at = (x+w)/2+bt and x+at+at+1 = (x+w)/2+ct+2. This implies that ct+2 = bt+at+1,
a contradiction.
Filling in the subscripts for the third case, we have:

{tx, ty, (t + 1)(x+y)/2+at}, {tx, ty, (t + 1)(x+y)/2+bt}, {tx, (t + 1)(x+y)/2+at , (t + 1)(x+y)/2+bt}
for distinct elements x, y ∈ G where

(x + y)/2 + at + (x + y)/2 + bt

2
+ ct = x.

This implies that x = y, a contradiction.
Hence the construction gives us a set of three super-disjoint 4-sparse Steiner triple

systems of order 3n.

5 Average-free 5-sparse Steiner Triple Systems

This section gives a construction of a 5-sparse Steiner triple system of order mn + 2
from a 5-sparse average-free Steiner triple system of order m + 2 and a 5-sparse Steiner
triple system of order n + 2. Similar to the construction in Lemma 3.5, this upcoming
construction is based on a construction in [11].

Definition 5.1. Let G be an abelian group of odd order. Let {∞1,∞2} be two points
not in G. A Steiner triple system (G ∪ {∞1,∞2}, B) is said to be average-free (with
respect to G) if there are no triples {x, y, z} ∈ B where x, y, z ∈ G and 2z = x + y. We
also say that a triple {x, y, z} is average-free if 2z 6= x + y, 2x 6= y + z and 2y 6= x + z
and an average triple is a triple that is not average-free.

The following analysis of P∞1,∞2 is necessary before presenting the 5-sparse construc-
tion.

Definition 5.2. Let (V, B) be a Steiner triple system containing two points ∞1 and ∞2.
Let t be the point in the Steiner triple system such that {t,∞1,∞2} ∈ B. Let Ω be
a set of ordered pairs of elements from V \ {t,∞1,∞2} such that if (X, Y ) ∈ Ω, then
{X, Y,∞i} ∈ B for some i ∈ {0, 1} and for every X ∈ V \ {t,∞1,∞2} there is a unique
Z1 and a unique Z2 where (X, Z1), (Z2, X) ∈ Ω. Define a PΩ configuration as a set of four
triples of B that looks like:

{X, Y, Z}, {X, A, B}, {Y, A,∞i}, {Z, B,∞j}.
where (A, Y ), (B, Z) ∈ Ω and i, j ∈ {1, 2}.
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Lemma 5.3. Let (V, B) be a 4-sparse Steiner triple system containing two points ∞1 and
∞2. Let Ω be as in Definition 5.2. Given a PΩ configuration,

{X, Y, Z}, {X, A, B}, {Y, A,∞i}, {Z, B,∞j}

with (A, Y ), (B, Z) ∈ Ω, there is at most one other PΩ configuration that contains the
triple {X, Y, Z}.

Proof. Assume that we have a PΩ as above with the triple {X, Y, Z}. Without loss of
generality, we can take {Y, A,∞1} and {Z, B,∞2} to be triples of B. Let R, S, T, U be
points of V such that {X, R,∞1}, {X, S,∞2}, {Y, T,∞2} and {Z, U,∞1} are triples of B.
It follows that (Z, U), (Y, T ) ∈ Ω. Since B has no Paschs, there are only three possibilities
of other P∞1,∞2 with {X, Y, Z}:

{X, U, T}, {X, Z, Y }, {Z, U,∞1}, {Y, T,∞2}
{Y, U, S}, {Y, Z, X}, {Z, U,∞1}, {X, S,∞2}
{Z, R, T}, {Z, X, Y }, {X, R,∞1}, {Y, T,∞2}

The first and second configurations cannot exist simultaneously because then there would
be a Pasch. Similarly, the first and third configurations together would lead to a Pasch.
Lastly, the second and third configurations cannot both simultaneously exist since then
(X, R), (X, S) ∈ Ω which implies that R = S which cannot happen. Thus there can only
be one other PΩ configuration with the triple {X, Y, Z}.

The upcoming construction will have forms of triples derived from a PΩ configuration
that form a mitre. The subscripts must be chosen in a way to avoid such mitres. For this
purpose we introduce three special N2 Latin squares:

Definition 5.4. Let G be an abelian group of odd order m. Then G is either the cyclic
group of order m on Z/mZ or we can express G = H × Z/kZ for some abelian group H
and some k ≥ 3. In the former case define the Latin squares Li

G for i = 0, 1, 2 as follows:

Li
G = {(x, y, z)|x + y + σ(z) = 6i}

for x, y, z ∈ Z/mZ where σ is a permutation on Z/mZ swapping 0 ↔ 2 and 4 ↔ 6. In
the latter case, choose a non-zero element r ∈ H and define Li

G as:

Li
G = {(x, a), (y, b), (z, c)|2z = x + y + r and a + b + c = i}

for x, y, z ∈ H and a, b, c ∈ Z/kZ.

Note that Li
G is N2. Now we are ready to give the construction.

Lemma 5.5. Let (Z/nZ∪{∞1,∞2}, T ) be a 5-sparse Steiner triple system of order n+2
with n ≥ 17. Let m ≥ 17 and (G∪{∞1,∞2}, S) be an average-free 5-sparse Steiner triple
system with G being an abelian group of odd order m (so there are no triples {x, y, z} of
S where x, y, z ∈ G and 2z = x + y). Then there exists an average-free 5-sparse Steiner
triple system of order mn + 2 on (Z/nZ × G) ∪ {∞1,∞2}.

the electronic journal of combinatorics 12 (2005), #R68 14



Proof. Assume that we have such 5-sparse systems as described in the hypothesis. Let t
be the element of Z/nZ such that {t,∞1,∞2} is a triple of T . For convenience, rearrange
the points of T as necessary so that any {t, X, Y } ∈ T with X, Y ∈ Z/nZ is average-free.
(For example, we can remap t to 1 and take the triples of t to look like:

{1, X,−X} for each X /∈ {0,±1,±1/3}
{1, 0, 1/3}

{1,−1,−1/3}

which works since 3 - n.) Let Li
G be as in Definition 5.4. For the triple set T , define Ω as

in Definition 5.2. Consider the graph K on T where {X, Y, Z} and {X, A, B} are adjacent
if and only if X, Y, Z, A, B /∈ {∞1,∞2} and {X, Y, Z} and {X, A, B} are together in a
PΩ configuration. By Lemma 5.3, the degree of every vertex in K is at most 2. Thus the
graph has a proper vertex 3-coloring. So let f : T → {0, 1, 2} be such a coloring. Let
s ∈ G be the element such that {s,∞1,∞2} ∈ S.

Define a set W of ordered 3-tuples on Z/nZ \ {t} as follows: For each triple of
{X, Y, Z} ∈ T such that t,∞1,∞2 /∈ {X, Y, Z} choose an ordering on the triple, say
(X, Y, Z) such that if 2Z = X + Y , then the ordering must be (X, Y, Z). Otherwise, it
does not matter how the order is chosen. Include such ordered triples in W .

We construct a Steiner triple system ((Z/nZ × G) ∪ {∞1,∞2}, B) based on a con-
struction in [11] as follows. Include seven types of triples in B:

1. {ta, tb, tc} for {a, b, c} ∈ S with a, b, c /∈ {∞1,∞2}

2. {ta, tb,∞i} for {a, b,∞i} ∈ S

3. {ts,∞1,∞2}

4. {Xa, Xb, Yc} where (X, Y ) ∈ Ω, a, b, c ∈ G and 2c = a + b

5. {Xa, Ya,∞i} where {X, Y,∞i} ∈ T and a ∈ G

6. {Xa, Yb, Zc} where (X, Y, Z) ∈ W , f({X, Y, Z}) = i and (a, b, c) ∈ Li
G

7. {ta, Xb, Yc} where {t, X, Y } ∈ T and a + b + c = 0.

It is clear that B does form a Steiner triple system of order mn + 2 on Z/nZ × G) ∪
{∞1,∞2}. To see that B has no Paschs, define B̃ as the super-symmetric deleted sym-
metric square that is derived from B. Note that the subscript of the triples of type 4
come from an (idempotent) Valek square since 3 - m. Also, the subscripts of triples of
type 6 and 7 come from N2 Latin squares. Thus the triples of B̃ are an instance of the
construction in Lemma 3.5. Thus, B̃ has no subsquares of order 2. It follows immediately
that B has no Paschs.

To see that B has no mitres, assume on the contrary, that there is a mitre in B. The
mitre cannot have more than two triples from the set of type {1, 2, 3} since otherwise the
subscripts of the mitre would have been derived from a mitre in S. With this in mind,
consider the following cases:
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1. The center of the mitre is ∞i for some i. If there is a triple of type in {1, 2, 3} in
the mitre, then consider the following subcases:

(a) There is a triple containing a point ∞j (j 6= i). Then there must be a triple
of type 3. We can rearrange the mitre so that the form of the mitre looks like:

{∞i,∞j, t}, {∞i, X, Y }, {∞i, V, Z}, {∞j, X, V }, {t, V, Z}

where t /∈ {X, Y, V, Z}. This comes from a mitre in T which cannot happen.

(b) If there is a triple containing points of form t but no points with ∞j where
j 6= i, then we can take the form of the mitre to look like:

{∞i, t, t}, {∞i, X, Y }, {∞i, Z, V }, {t, X, Z}, {t, Y, V }.

where t /∈ X, Y, Z, V . Filling in the subscripts gives us the mitre

{∞i, tc, td}, {∞i, Xa, Ya}, {∞i, Zb, Vb}, {tc, Xa, Zb}, {td, Ya, Vb}.

where a, b, c, d ∈ G. Since the last two triples of the mitre are of type 7, it
follows that c = d which cannot happen because of the first triple.

(c) There are no points of the form t or ∞j, with j 6= i. Then the forms of the
triples cannot all be distinct since this would lead to a mitre in T . This leads
to two possibilities for the form of the mitre. One of them is

{∞i, X, Y }, {∞i, Y, X}, {∞i, Z, Z}, {X, Y, Z}, {Y, X, Z}.

It follows that Z = t which cannot happen by virtue of this case. The other
possibility of the form is:

{∞i, X, Y }, {∞i, X, Y }, {∞i, R, S}, {X, X, R}, {Y, Y, S}.

where X, Y, R, S are distinct elements and t /∈ {X, Y, R, S}. It follows that the
last two triples of the mitre came from type 4. So it must be that T has triples

{∞j, X, R}, {∞j, Y, S}, {∞i, X, Y }, {∞i, R, S}

where i 6= j which form a Pasch in T , a contradiction.

2. The center of the mitre is of form t. We have three subcases to consider:

(a) There is a point ∞i in the mitre for some i. Then the mitre must have the
form:

{t,∞1,∞2}, {t, X, Y }, {t, Z, V }, {∞1, X, Z}, {∞2, Y, V }
where X, Y, Z, V, t are all distinct. Then the form of the mitre comes from a
mitre in T which cannot happen.
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(b) There is a triple of type 1 in the mitre. Then the form of the mitre must look
like:

{t, t, t}, {t, X, Y }, {t, Y, X}, {t, X, Y }, {t, Y, X}.
Filling in the subscripts gives us the mitre:

{ta, tb, tc}, {ta, Xx, Yy}, {ta, Yv, Xw}, {tb, Xx, Yv}, {tc, Yy, Xw}

for some a, b, c, x, y, z, w ∈ G. Since the last four triples of the mitre are of
type 7, the following equations must hold:

x + y + a = 0

v + w + a = 0

x + v + b = 0

y + w + c = 0.

Then 2a = b + c which cannot happen since S is average-free.

(c) There are no triples of type 1,2 or 3 in the mitre. Then the form of the mitre
must look like:

{t, X, Y }, {t, Z, V }, {t, A, B}, {X, Z, A}, {Y, V, B}.

If X, Y, Z, V, A, B are all distinct, then the form of the mitre would have come
from a mitre in T which cannot happen. Thus, without loss of generality,
we can assume that Z ∈ {X, Y }. If Z = Y , then V = X. Then it must be
A = B = t which cannot happen by virtue of the hypothesis of this case. Thus,
take Z = X. Then V = Y . Thus we have the following form of mitre:

{t, X, Y }, {t, X, Y }, {t, A, B}, {X, X, A}, {Y, Y, B}.

It follows that there are distinct triples in T :

{t, X, Y }, {t, A, B}, {∞i, X, A}, {∞j, Y, B}.

If i = j, then the above triples form a Pasch which cannot happen. However,
if i 6= j, then appending the four triples with the triple {t,∞1,∞2} ∈ T gives
a mitre in T which cannot happen.

3. The form of the center of the mitre is not in {t,∞1,∞2}. Consider the following
subcases:

(a) There is a triple of type 1 in the mitre. Then the mitre must have the form:

{X, t, Y }, {X, t, Y }, {X, t, Y }, {t, t, t}, {Y, Y, Y }

for some X, Y ∈ Z/nZ. Then Y = t which cannot happen in this case.
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(b) There is a triple of type 2 in the mitre. Then the mitre has the form:

{X,∞i, Y }, {X, t, Z}, {X, t, Z}, {∞i, t, t}, {Y, Z, Z}

for some Y, Z ∈ Z/nZ. Since Y cannot equal X, it is clear that T has a triple
{∞j, Y, Z} where i 6= j. Then there is a Pasch in T :

{∞i, Y, X}, {∞i, t,∞j}, {Z, Y,∞j}, {Z, t, X}

which cannot happen.

(c) There is a triple of type 3 in the mitre. Then the mitre has the form:

{X,∞1, Y }, {X,∞2, Z}, {X, T, V }, {∞1,∞2, t}, {Y, Z, V }

where X, Y, Z, V ∈ Z/nZ. Note that X, Y, Z, V, t are distinct, but then the
form is from a mitre in T which cannot happen.

(d) There are no triples of type 1,2 or 3 but there are points ∞1,∞2 in the mitre.
Then the mitre has the form:

{X,∞1, Y }, {X, Z,∞2}, {X, A, B}, {∞1, Z, A}, {Y,∞2, B}

where X, Y, A, B ∈ Z/nZ. Since there are no mitres in T , it cannot be the
case that X, Y, A, B are all distinct. The only possibility is that the triple form
{X, A, B} is from a triple of type 4. It follows that A = B, but then there is
a triple {X, A,∞i} ∈ T for some i which clearly cannot happen.

(e) There are no triples of type 1,2, or 3, but there is exactly one point from
{∞1,∞2} in the mitre. Then the mitre has the form:

{X,∞i, Y }, {X, A, C}, {X, B, D}, {∞i, A, B}, {Y, C, D}

where X, Y, A, B, C, D ∈ Z/nZ with X 6= t. Note that X, Y, A, B, C, D cannot
all be distinct. If {A, B} ∩ {X, Y } 6= ∅, then without loss of generality, we can
take A = X. Then B = Y . Then {C, D} = {X, Y } which would imply that
both (X, Y ), (Y, X) ∈ Ω which cannot happen.

Since A 6= B, it follows that A, B, X, Y are distinct. Thus, by swapping C
with D if necessary, we can assume the following four cases:

i. C = D. Then A = B which cannot happen.

ii. C = A. Then there is a Pasch

{X, Y,∞i}, {X, B, D}, {A, Y, D}, {A, B,∞i}

in T which cannot happen.

iii. C = B. Then A = D. It follows that T contains the triples {X, A, C} and
{∞i, A, C} which cannot happen.
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iv. C = X. Then D ∈ {X, Y }. It follows that B ∈ {X, Y } but this case was
already covered in the beginning of subcase (e).

(f) There are only triples of type 4, 6 or 7 in the mitre. Then the mitre has the
form:

{X, A, B}, {X, C, D}, {X, E, F}, {A, C, E}, {B, D, F}
where X, A, B, C, D, E, F ∈ Z/nZ and they all cannot be distinct since other-
wise we would have a mitre in T . With this in mind, consider the following
cases:

i. At least one of the first three triples of the mitre is of type 4. Then, without
loss of generality, we can assume that X = A or A = B. If X = A, then
D = E and so C = F . Then X = B which would imply that X = t and
that case was covered in case 2. Consider A = B. It follows that X 6= A.
If C, D, E, F, X, A are all distinct, then there is a Pasch in T :

{X, C, D}, {X, F, E}, {A, C, E}, {A, F, D}

which cannot happen. So, without loss of generality, we can assume C ∈
{X, A, D, E, F}. It is easy to see that each case works out to having X = t
and that case was covered in case 2.

ii. There are no triples of type 4 in the first three triples. Thus the first three
triples of the mitre are of type 6 or 7. Thus the forms of elements in
each of the first three triples are distinct. Since there are no mitres in T ,
the elements X, A, B, C, D, E, F cannot all be distinct. Without loss of
generality, we may assume that A = D or A = C. In the former case we
have C = B and thus X = E = F which would imply that X = t and that
case was covered in case 2. Now consider A = C and so B = D. So the
last two triples of the mitre are of type 4. It follows that the first three
triples are of type 6. Filling in the subscripts gives us:

{Xx, Aa, Bb}, {Xx, Ac, Bd}, {Xx, Ee, Ff}, {Aa, Ac, Ee}, {Bb, Bd, Ff}

where x, a, b, c, d, e, f ∈ G. Since the forms of these triples are from a
PΩ configuration, it follows that the subscripts {x, a, b} and {x, c, d} come
from two triples of Li

G and the subscripts {x, e, f} come from a triple of Lj
G

for some i 6= j. To do further analysis, we must consider the following two
cases: If G is not a cyclic group of order n, then G is viewed as H ×Z/kZ
as in Definition 5.4. For an element a = (x, y) ∈ G, with x ∈ H and
y ∈ Z/kZ, define â = y. It follows that:

x̂ + â + b̂ = i

x̂ + ĉ + d̂ = i

x̂ + ê + f̂ = j

â + ĉ = 2̂e

b̂ + d̂ = 2̂f.
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It follows that i = j which cannot happen.
On the other hand, if G is a cyclic group of order n, then depending on
how W was chosen, without loss of generality, we can assume that we have
the following five cases to consider:
case 1:

σ(x) + a + b = 6i

σ(x) + c + d = 6i

σ(x) + e + f = 6j

a + c = 2e

b + d = 2f

This implies that i = j since 3 - |G| which cannot happen.
The remaining four cases are:
case 2:

x + a + σ(b) = 6i

x + c + σ(d) = 6i

x + e + σ(f) = 6j

a + c = 2e

b + d = 2f

case 3:

x + a + σ(b) = 6i

x + c + σ(d) = 6i

x + σ(e) + f = 6j

a + c = 2e

b + d = 2f

case 4:

x + a + σ(b) = 6i

x + c + σ(d) = 6i

σ(x) + e + f = 6j

a + c = 2e

b + d = 2f

case 5:

σ(x) + a + b = 6i

σ(x) + c + d = 6i

x + e + σ(f) = 6j

a + c = 2e

b + d = 2f
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By relabeling x, a, b, c, d, e, f as necessary, each of the above four sets of
equations from cases 2 to 5 imply the following equation:

±(σ(a) − a) + (±(σ(b) − b) ± (σ(c) − c))/2 = 6(i − j) (3)

Since σ swaps 0 with 2 and 4 with 6, it is clear that each σ(∗) − ∗ in
Equation 3 can only take on values of 0 or ±2. Thus Equation 3 implies
that {0,±1,±2,±3,±4} ∩ {6, 12} 6= ∅. This cannot happen since n ≥ 17.

So ((Z/nZ × G) ∪ {∞1,∞2}, B) is a 5-sparse Steiner triple system. To see that it is
average-free, project the triples of the system to their form. Then it is clear that only
triples of type 1, 6 or 7 have the potential for being average triples. Triples of type 1
cannot be average triples since projecting to their subscripts would yield an average triple
in S which cannot happen. Triples of type 7 cannot be average triples by hypothesis. So
assume that we have an average triple of type 6. It follows that the form of the triple
is an average triple in T . Thus the triple looks like {Xa, Yb, Zc} where 2Z = X + Y . If
G = Z/nZ, then the subscripts satisfy:

a + b + σ(c) = 6i

a + b = 2c

where i ∈ {0, 1, 2}. Then σ(c) + 2c ∈ {0, 6, 12}. It follows that σ(c) 6= c and so
c ∈ {0, 2, 4, 6}. Then (σ(c) + 2c) ∈ {2, 4, 14, 16} which is disjoint from {0, 6, 12}, a
contradiction.

We arrive at a similar contradiction if we assume G = H × Z/kZ as in Definition 5.4.
Projecting the elements of G to H (denoted by the˜operator), it is clear that the following
equations must hold:

ã + b̃ + r = 2c̃

ã + b̃ = 2c̃,

which cannot be satisfied since r is a non-zero element of H . Thus ((Z/nZ × G) ∪
{∞1,∞2}, B) is an average-free 5-sparse Steiner triple system.

To show that the earlier construction can contribute to providing orders that admit
5-sparse Steiner triple systems, we show the existence of an infinite class (of positive
arithmetic density) of 5-sparse average-free systems.

Lemma 5.6. There exists 5-sparse average-free Steiner triple systems of order 9n for odd
n, 7 - n, n ≥ 9.

Proof. Recall in the proof of Lemma 4.3 we showed the existence of three 4-sparse super-
disjoint Steiner triple systems of order 3n provided 7 - n, n odd, n ≥ 9. This gives rise to
a 5-sparse Steiner triple systems of order 9n, (Z/3Z × Z/3Z × Z/nZ, B). The triples of
B are:

the electronic journal of combinatorics 12 (2005), #R68 21



1. {00x , 00y , 11(x+y)/2+a0
}, {00x , 10y , 01(x+y)/2+a0

}, {01x , 01y , 12(x+y)/2+a1
},

{01x , 11y , 02(x+y)/2+a1
}, {02x , 02y , 10(x+y)/2+a2

}, {02x , 12y , 00(x+y)/2+a2
}

2. {10x , 10y , 21(x+y)/2+b0
}, {10x , 20y , 11(x+y)/2+b0

}, {11x , 11y , 22(x+y)/2+b1
},

{11x , 21y , 12(x+y)/2+b1
}, {12x , 12y , 20(x+y)/2+b2

}, {12x , 22y , 10(x+y)/2+b2
}

3. {21x , 21y , 00(x+y)/2+c0
}, {21x , 01y , 20(x+y)/2+c0

}, {22x , 22y , 01(x+y)/2+c1
},

{22x , 02y , 21(x+y)/2+c1
}, {20x , 20y , 02(x+y)/2+c2

}, {20x , 00y , 22(x+y)/2+c2
}

4. {00x , 10x , 20x}

5. {01x , 11x , 21x}

6. {02x , 12x , 22x}

7. {01x+a0
, 02x+a0+a1

, 10x}

8. {00x , 02x+a0+a1
, 11x+a0

}

9. {00x , 01x+a0
, 12x+a0+a1

}

10. {11x+b0
, 12x+b0+b1

, 20x}

11. {10x , 12x+b0+b1
, 21x+b0

}

12. {10x , 11x+b0
, 22x+b0+b1

}

13. {21x+c1
, 22x , 00x+c0+c1

}

14. {20x+c0+c1
, 22x , 01x+c1

}

15. {20x+c0+c1
, 21x+c1

, 02x}

for x, y distinct elements of Z/nZ and a0, a1, a2, b0, b1, b2 and c0, c1, c2 are elements in
Z/nZ that satisfy the following conditions which we label as (†):

a0 + a1 + a2 = 0

b0 + b1 + b2 = 0

ci = (−ai − bi)/2

ci 6= aj + bk and ai 6= bi

where i, j and k are distinct. The exact values of these elements will be determined later.
We place a copy of the Steiner triple system B on (Z/(9n − 2)Z ∪ {∞1,∞2}, C) by

mapping the triples of our system via the following permutation

σ : Z/3Z × Z/3Z × Z/nZ → Z/(9n − 2)Z ∪ {∞1,∞2}

the electronic journal of combinatorics 12 (2005), #R68 22



where

σ(00x) = 0n + x

σ(20x) = 1n + x

σ(11x) = 2n + x

σ(02x) = 3n + x

σ(22x) = 4n + x

σ(10x) = 5n + x

σ(01x) = 6n + x

σ(21x) = 7n + x

σ(12x) = 8n + x

where x ∈ Z/nZ except for the last case where x ∈ Z/nZ \ {n − 2, n − 1}. Lastly,
assign σ(12n−2) = ∞1 and σ(12n−1) = ∞2. Similar to previous constructions, for elements
XYx ∈ Z/3Z × Z/3Z × Z/nZ, we define the form to be XY and the subscript x.

It is easy to check that of the triples of B of type 1, 2 or 3, the only triples that may
lead to average triples in C when applying σ are triples that look like:

{000, 100 , 01−1}, {01−1, 110 , 020}, {10−1 , 200, 110}, {200, 000, 22−1},
{21−1 , 010 , 200}, {220, 020 , 21−1}, {210, 21−1 , 000}.

Then a0 = −1, a1 = 1/2, b0 = 1/2, c2 = −1, c0 = 1/2, c1 = −1, or c0 = 1/2, respectively.
Further restrictions on the ai’s, bi’s and ci’s arise through analysis of triples of B of type
4 through 15. For triples of type 4, 5 or 6, the only triples that can lead to average triples
in C are triples that look like respectively:

{00x , 20y , 10(x+y)/2−1
}

{01x , 21y , 11(x+y)/2+1
}

{02x , 22y , 10(x+y)/2−1
}

for some x, y ∈ Z/nZ. Since the subscripts of the triples are identical, each of the above
triples cannot exist. For the triples of type 7 through 15, if an average triple arises from
any of these types, then the following must hold for that type, respectively:

7. {01x , 02y , 10(x+y)/2
}

8. {00x , 02y , 11(x+y)/2
}

9. {00x , 01y , 12(x+y)/2−1
}

10. {11x , 12y , 20(x+y)/2+1
}

11. {10x , 12y , 21(x+y)/2
}
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12. {10x , 11y , 22(x+y)/2
}

13. {21x , 00y , 22(x+y)/2
} or {22x , 00y , 21(x+y)/2−1

}

14. {22x , 01y , 20(x+y)/2+1
} or {20x , 01y , 22(x+y)/2

}

15. {20x , 02y , 21(x+y)/2−1
} or {21x , 02y , 20(x+y)/2+1

}.

It follows that we have the following restrictions for the ai’s, bi’s and ci’s from each of the
above triples, respectively:

7. a1 = −2a0

8. a1 = a0

9. a1 = −a0/2 − 1

10. b1 = −2b0 − 1

11. b1 = b0

12. b1 = −b0/2

13. c1 = −c0/2 or c1 = c0 − 2

14. c1 = −2c0 + 2 or c1 = −c0/2

15. c1 = c0 − 2 or c1 = −2c0 + 2

So, in summary, the triples of C are average-free provided that the ai’s, bi’s and ci’s satisfy
(†) as well as:

a0 6= −1

b0 6= 1/2

c0 6= 1/2

c1 6= −1

a1 /∈ {1/2, a0,−2a0,−a0/2 − 1}
b1 /∈ {b0,−2b0 − 1,−b0/2}

c1 /∈ {−1, 1 − c0,−c0/2, c0 − 2,−2c0 + 2}

if n ≥ 9, 7 - n, n 6= 13, set a0 = 0, a1 = 4, a2 = −4, b0 = 2, b1 = 1, b2 = −3, c0 = −1,
c1 = −5/2, and c2 = 7/2. It is easy to check that the above conditions are satisfied. If
n = 13, then setting a0 = 0, a1 = 2, a2 = −2, b0 = 2, b1 = 6, b2 = −8, c0 = −1, c1 = −4,
and c2 = 5 works.

Thus (Z/(9n − 2)Z ∪ {∞1,∞2}, C) is a 5-sparse average-free Steiner triple system of
order 9n.
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6 Spectrum Of 5-sparse Steiner Triple Systems

In the following discussion, we define the set of counting numbers as N = {1, 2, 3, ...}.

Definition 6.1. Let S and T be two subsets of N. Define the arithmetic density of S as:

d(S) = lim
n→∞

|{x ∈ S : x ≤ n}|
n

.

Define the arithmetic density of S as compared to T as:

d(S; T ) = lim
n→∞

|{x ∈ S ∩ T : x ≤ n}|
|{x ∈ T : x ≤ n}| .

Definition 6.2. Let S, T ⊆ N. We say that S has almost all the elements of T if
d(S; T ) = 1.

Lemma 6.3. The arithmetic density of orders of meager systems is 1 as compared to the
set of odd numbers.

Proof. By Lemma 3.6, using the fact that a 4-sparse Steiner triple system exists of order
n for any n ≡ 1, 3 mod 6 except for n = 7, 13, we can find a meager system of order r if
r = mn + 2 for some odd m and n with n ≥ 5, m ≥ 7, m 6= 11, 3 - m. This covers all odd
r except for r of the form p + 2 or 3p + 2 for prime p or r ∈ {27, 57, 77, 123, 167, 365, 3k +
2, 5(3k) + 2, 11(3k) + 2 : k ≥ 0}. It is clear that the exceptions form a 0-dense set. Thus
the density of orders of meager systems is 1 as compared to the set of odd numbers.

Thus, we get the following Corollary:

Corollary 6.4. There exists a 5-sparse Steiner triple system of order n for almost all
n ≡ 3 mod 6.

For showing that there are 5-sparse Steiner triple systems that admit almost all orders
n for n ≡ 1 mod 6, we need to introduce the following lemmas:

Lemma 6.5. Let a and b be two relatively prime positive integers. Define the set T as:

T = {p : p is a prime number ≡ a mod b}.

Then the set W defined as

W = {x ∈ N : p | x for some p ∈ T}

has arithmetic density 1.

Proof. Using the principle of inclusion/exclusion it is clear that the density of W is given
by:

d(W ) = 1 −
∏

p∈T

(1 − 1

p
).
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Thus the density of W , the complement of W is:

d(W ) =
∏

p∈T

(1 − 1

p
).

Moreover the reciprocal of this product is:

∏

p∈T

1

(1 − 1

p
)

=
∏

p∈T

(1 +
1

p
+

1

p2
+

1

p3
+ ...) >

∑

p∈T

1

p
.

It is well-known that
∑

p∈T

1

p
= ∞ (cf [9]). Thus

∏

p∈T

(1 − 1

p
) = 0 and so d(W ) = 0 which

implies that d(W ) = 1.

Lemma 6.6. Let a and b be two relatively prime positive integers. Define the set T as:

T = {p : p is a prime number ≡ a mod b}.

Suppose we have a set S with arithmetic density r for some r ∈ [0, 1]. Then the set W ⊆ S
where:

W = {x ∈ S : p | x for some p ∈ T}
has arithmetic density r as well.

Proof. Consider the set Q = S \ W . Then

Q = {x ∈ S : the prime factorization of x contains no primes of T}.

It follows that Q ⊆ {x ∈ N : the prime factorization of x contains no primes of T} which
by Lemma 6.5 has arithmetic density 0. Thus d(Q) = 0 and so d(W ) = r.

Lemma 6.7. The arithmetic density of 5-sparse Steiner triple systems of orders n ≡ 1
mod 6 as compared to the set of numbers n ∈ N with n ≡ 1 mod 6 is 1.

Proof. Define P as the set of all primes ≡ 17 mod 54 and R as the set of all primes ≡ 25
mod 126. Consider the set W defined as:

W = {x ∈ N : x ≡ 5 mod 6, p1p2 | x for some p1 ∈ P and p2 ∈ R}

By applying Lemma 6.6 twice it is clear that W has arithmetic density 1/6.

Define U as:

U = {x − 2 : x ≡ 3 mod 6 and x admits a 5-sparse Steiner triple system}

and define W ′ as:
W ′ = {p1p2u : p1 ∈ P , p2 ∈ R and u ∈ U}.
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Claim: d(W ′; W ) = 1. The claim is clear since elements in W can be written as p1p2u
where p1 ∈ P , p2 ∈ R and u ≡ 1 mod 6, and restricting u to lie in U eliminates only a
set of arithmetic density 0 by Corollary 6.4.

Thus d(W’) = 1/6. Next, define W ′′ = {x + 2 : x ∈ W ′}. Then d(W ′′) = 1/6. We
will see that W ′′ consists of only numbers that admit 5-sparse Steiner triple systems: By
Lemma 5.6, there exist average-free 5-sparse Steiner triple systems of order 9n provided
n odd, n ≥ 9 and 7 - n. Thus there exists average-free 5-sparse Steiner triple systems
of order x + 2 for x ∈ R with respect to the group Z/xZ. By Theorem 1.4, there exists
5-sparse Steiner triple systems of order x + 2 for x ∈ P . Thus, by Lemma 5.5 we can
produce average-free 5-sparse Steiner triple systems of order p1p2 + 2 for any p1 ∈ P and
p2 ∈ R with respect to the group Z/p1Z × Zp2Z. Again by Lemma 5.5 (average-free)
5-sparse Steiner triple systems of order p1p2x + 2 exist for any p1 ∈ P , p2 ∈ R and x ∈ U
(with respect to the group Z/p1Z×Zp2Z×Z/xZ). Hence W ′′ consists of only orders that
admit 5-sparse Steiner triple systems. Since W ′′ consists of only numbers n where n ≡ 1
mod 6, it is clear that the arithmetic density of W ′′ as compared to all numbers congruent
to 1 mod 6 is 1, and so the arithmetic density of 5-sparse Steiner triple systems of orders
n ≡ 1 mod 6 as compared to the set of numbers n ∈ N with n ≡ 1 mod 6 is 1.

Combining Lemma 6.7 and Corollary 6.4 gives us:

Theorem 6.8. The arithmetic density of the spectrum of 5-sparse Steiner triple systems
as compared to the set of admissible orders is 1.

7 Summary of Methods

In showing that almost all admissible orders admit a 5-sparse Steiner triple system, we
implemented various constructions:

• In section 3, we constructed meager systems of order mn + 2 for most m, n by
Lemma 3.6. A meager system is realized for almsot all odd numbers by this con-
struction which, in turn, allows us to construct 5-sparse Steiner triple systems of
order v for almost all admissible v such that v ≡ 3 mod 6 as in Corollary 6.4.

• In section 4, we constructed a special class of super-disjoint Steiner triple systems
of order 3n for large odd n where 7 - n by Lemma 4.3. This gave rise to a 5-sparse
Steiner triple system of order 9n.

• In section 5, we considered a recursive construction for creating average-free 5-sparse
Steiner triple system of order mn + 2 from an average-free 5-sparse Steienr triple
system of order m+2 and a 5-sparse Steiner triple system of order n+2 as described
in Lemma 5.5.

Manipulating the 5-sparse Steiner triple system of order 9n from section 4, we
showed that such a system can be made to be average-free as described in Lemma 5.6.

the electronic journal of combinatorics 12 (2005), #R68 27



• In section 6, we used the average-free construction in Lemma 5.5 on the average-
free Steiner triple systems of order 9n and on another set of 5-sparse Steiner triple
sytems (of positive arithmetic density) given by Theorem 1.4 to produce a plethora
of average-free 5-sparse Steiner triple systems. Applying Lemma 5.5 once again on
this new set of average-free 5-sparse Steiner triple systems and on the dense set of
5-sparse Steiner triple sytems of order v with v ≡ 3 mod 6 gives us 5-sparse Steiner
triple systems of order v for almost all v ≡ 1 mod 6 as described in Lemma 6.7.
And so, 5-sparse Steiner triple systems exist for almost all admissible v.

8 Appendix: Proof of Lemma 3.6

To aid in the proof of Lemma 3.6, we utilize the following lemma:

Lemma 8.1. Let V be an n-set and let V0, V1 and V2 be subsets of V . Suppose we
have three pairwise really disjoint N2 deleted symmetric squares on (V, Bi) with sub-
squares (Vi, Mi) for i ∈ Z/3Z such that every triple of Bi \ Mi is super-symmetric and
Bi

⋂
P3(Vj) = ∅ for i 6= j. Then (V, B0, B1, B2) forms a meager system if the system

avoids Q configurations:

(x, y, z) ∈ Bi , (x, z, w) ∈ Bi+1, and (x, w, y) ∈ Bi+2

and a type of M3 configuration:

(x, y, z), (y, w, x) ∈ Bi ∩ Mi , (x, z, v) ∈ Bi+1, and (x, v, w) ∈ Bi+2. (M ′
3)

Proof. Suppose we have such systems as described in the hypothesis. By assumption, we
already know that the system (V, B0, B1, B2) avoids Q configurations. Also, if there is an
M3 configuration, it must look like:

(x, y, z), (y, w, x) ∈ Bi \ Mi, (x, z, v) ∈ Bi+1 and (x, v, w) ∈ Bi+2.

Then triples (x, y, z) and (y, w, x) are super-symmetric in Bi. Thus w = z. However, this
contradicts Bi+1 and Bi+2 being really disjoint. Also, by super-disjointness, the systems
cannot contain any M1 configurations. Lastly, suppose the systems contained an M2

configuration, say,

(x, y, z), (y, v, x), (x, v, w) ∈ Bi , (z, w, x) ∈ Bi+1.

If any of the first three triples are super-symmetric in Bi, then so are the other two. Then
v = w which cannot happen since Bi has a removed idempotent diagonal. Thus, the first
three triples of the M2 configuration are non super-symmetric triples of Bi. It follows
that {x, v, w} ⊆ Vi which cannot happen. Hence the system is a meager system.

We are now ready to prove Lemma 3.6:
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Proof of Lemma 3.6. Let m be an odd number, m > 1, m ≡ 1, 5 mod 6 with m 6= 5, 11.
Let V be the m-set containing three distinct points labeled as t, t′, t′′, and not containing
the two points: ∞1 and ∞2. Let n ≥ 5 be an odd number. Define an n-set N as =
Z/((n + 2)Z) \ {n, n + 1}. Set

V0 = {tx|x ∈ N ∪ {∞1,∞2}}
V1 = {t′x|x ∈ N ∪ {∞1,∞2}}
V2 = {t′′x|x ∈ N ∪ {∞1,∞2}}

Define S as:
S = {(x, y, z)|2z = x + y, x, y, z ∈ Z/((n + 2)Z)}.

Define Si on Vi as a copy of S by mapping x to tx, t′x or t′′x, respectively for i ∈ Z/3Z for
each x ∈ N , and mapping n 7→ ∞1 and n + 1 7→ ∞2.

Put a group structure on N by identifying the elements in some way with Z/nZ. So
as to not confuse this structure with the structure of Z/((n + 2)Z), define the addition
operator of this group as +̂. Also, operators such as the minus operator, −, or multipli-
cation/division that are used in an equation that involves the +̂ operator should be taken
as the usual meaning with respect to this group.

For i ∈ {0, 1, 2}, define Li on N as the N2 Latin squares:

Li = {(x, y, z)|x+̂y+̂z = i}

Choose R0 as an idempotent Valek square of order n on N . Let R1 be the Valek
square of order n obtained by ”shifting” the entries of R0 by 1, i.e. defining R1 =
{(x, y, z+̂1)|(x, y, z) ∈ R0}. Similarly, let R2 be the Valek square of order n obtained by
shifting the entries of R0 by 2. The point of this is to have three pairwise disjoint Valek
squares.

We construct three deleted symmetric squares on V = (V × N) ∪ {∞1,∞2}. To aid
in the construction let us define Pr : V → V ∪ {∞1,∞2} by mapping the element xa to
its form x and by mapping ∞1 to ∞1 and ∞2 to ∞2. By convention we define the form
of ∞1 to be ∞1 and the form of ∞2 to be ∞2. The construction is broken up into two
cases: m = 7 and m > 7:

case 1: m = 7. Let the 7-set V be written as V = {0, 1, 2, 3, t, t′, t′′}. Let T0, T1

and T2 be the following three triple sets of 4-sparse Steiner triple systems of order 9 on
V ∪ {∞1,∞2}:

T0 = {{t, 1, t′}, {2, t′, 0}, {2, t, t′′}, {3, 1, t′′}, {3, t, 0}, {∞1, t
′, t′′},

{∞1, 1, 0}, {∞1, 3, 2}, {∞2, 0, t
′′}, {∞2, 2, 1}, {∞2, 3, t

′}, {∞2,∞1, t}}
T1 = {{t, t′, 0}, {2, 0, t′′}, {2, 1, t′}, {3, t′, t′′}, {3, t, 1}, {∞1, 1, t

′′},
{∞1, 2, t}, {∞1, 3, 0}, {∞2, 1, 0}, {∞2, t, t

′′}, {∞2, 3, 2}, {∞2,∞1, t
′}}

T2 = {{1, 0, t′′}, {t, t′, t′′}, {2, t, 0}, {3, 1, t′}, {3, 2, t′′}, {∞1, t, 1},
{∞1, 2, t

′}, {∞1, 3, 0}, {∞2, t
′, 0}, {∞2, 2, 1}, {∞2, 3, t}, {∞2,∞1, t

′′}}
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For i ∈ Z/3Z, define Ωi as the following sets of ordered pairs from V :

Ω0 = (0, 1), (1, 2), (2, 3), (3, t′), (t′, t′′), (t′′, 0)

Ω1 = (0, 1), (1, t′′), (t′′, t), (t, 2), (2, 3), (3, 0)

Ω2 = (0, t′), (3, 0), (t, 3), (1, t), (2, 1), (t′, 2)

For each ordered pair in (x, y) ∈ Ωi, define the Valek squares Ri
{x,y} as equal to Ri except

set R1
{0,1} = R1

{1,t′′} = R1
{t,t′′} = R0.

For each triple {x, y, z} ∈ Ti, choose an ordering (x, y, z) and define Li
x,y,z = Li except

for the following cases:

L0
0,2,t′ = L0

1,t′,t = L0
2,t,t′′ = L0

3,1,t′′ = {(x, y, z)|z = 2x+̂y, x, y, z ∈ Z/nZ}

L1
t′,t,0 = L1

t,3,1 = L1
t′′,0,2 = L1

t′′,t,3 = L1
t′′,t′,3 = {(x, y, z)|z = x+̂y, x, y, z ∈ Z/nZ}

L2
0,t,2 = L2

1,3,t′ = L0

L2
0,1,t′′ = {(x, y, z)|2z = x+̂y+̂1, x, y, z ∈ Z/nZ}.

Next, for each i ∈ Z/3Z, construct a deleted symmetric square on V = (V ×Z/nZ) ∪
{∞1,∞2} following the construction from Lemma 3.5 with the Ti, Si, Ωi, Ri

∗,∗ and Li
∗,∗,∗

taking the role of T , S, Ω, R∗,∗ and L∗,∗,∗ of the lemma. Call the resulting squares Bi for
i ∈ Z/3Z. We must show that (V, B0, B1, B2) is a meager system. Notice that the squares
are really disjoint and furthermore, the forms of elements of triples of S0, S1 and S2 are
{∞1,∞2, t}, {∞1,∞2, t

′} and {∞1,∞2, t
′′}. By virtue of the construction, any ordered

triple of elements from these last three sets only lie in B0, B1 and B2, respectively.
Furthermore, each Si forms the triples of a subsystem of Bi and the triples in Bi \ Si

are all super-symmetric in Bi. Thus the system (V, B0, B1, B2) satisfy the conditions of
Lemma 8.1. So all we must check is that the system avoids M ′

3 configurations and Q
configurations.

We have three cases to consider for checking whether any M ′
3 configurations:

(x, y, z), (y, w, x) ∈ Bi ∩ Si , (x, z, v) ∈ Bi+1, and (x, v, w) ∈ Bi+2

exist in the system.

1. i = 0. The forms of the elements x, y, z, w ∈ {t,∞1,∞2}. Then the form of v is t′′,
and we arrive at the following M ′

3 configuration:

(∞2, t0, t−1/2), (t0,∞1,∞2) ∈ S0, (∞2, t−1/2, t
′′
−3} ∈ B1, (∞2, t

′′
−3,∞1) ∈ B2.

However, this cannot happen since the triple (∞2, t−3, t
′′
−1/2) ∈ B1 must have −3 =

−1/2 which fails since n + 2 6= 5.

2. i = 1. The forms of the elements x, y, z, w ∈ {t′,∞1,∞2}. Then the form of v is t′′,
and we arrive at the following M ′

3 configuration:

(∞1, t
′
0,∞2), (t

′
0, t

′
−4,∞1) ∈ B1, , (∞1,∞2, t

′′
−3/2) ∈ B2, (∞1, t

′′
−3/2, t

′
−4 ∈ B0. (4)

It follows that we require −3/2 = −4 which cannot be satsified since n + 2 6= 5.
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Pr(B0) Pr(B1) Pr(B2)
Q1 (∞1, t

′′, t′) (∞1, t
′,∞2) (∞1,∞2, t

′′)
Q2 (∞2,∞1, t) (∞2, t, t

′′) (∞2, t
′′,∞1)

Q3 (0, t′′,∞2) (0,∞2, 1) (0, 1, t′′)
Q4 (1, 0,∞1) (1,∞1, t

′′) (1, t′′, 0)
Q5 (1, t′, t) (1, t, 3) (1, 3, t′)
Q6 (3, 1, t′′) (3, t′′, t′) (3, t′, 1)
Q7 (0, 2, t′) (0, t′, t) (0, t, 2)
Q8 (2, t, t′′) (2, t′′, 0) (2, 0, t)

Table 1: Case m = 7; Possible Forms for Q Configurations

3. i = 2. The forms of the elements x, y, z, w ∈ {t′′,∞1,∞2}. Then Pr(v) ∈ {t, t′}. If
Pr(v) = t, we arrive at the following M ′

3 configuration:

(∞2, t
′′
−3,∞1), (t

′′
−3, t

′′
1∞2) ∈ S2 , (∞2,∞1, t−3/2) ∈ B0, (∞2, t−3/2, t

′′
1) ∈ B1.

Then we require −3/2 = 1 which is impossible since n + 2 6= 5. In the case where
Pr(v) = t′, we arrive at the M ′

3 configuration:

(∞1, t
′′
−3, t

′′
−5/2), (t

′′
−3,∞2,∞1) ∈ S2 , (∞1, t

′′
−5/2, t

′
0) ∈ B0, (∞1, t

′
0,∞2) ∈ B1.

which cannot happen since −5/2 6= 0.

Hence there are no M ′
3 configurations in the system.

Let us investigate whether there are any Q configurations. Suppose there is a Q
configuration. Projecting the configuration to its form only yields the eight possibilities
listed in Table 1. Because of how the assignments of subscripts were given, without loss
of generality we only need to check what the subscripts are in the first five cases from the
table:

Q1:
(∞1, t

′′
−3/2, t

′
0) ∈ B0, (∞1, t

′
0,∞2) ∈ B1, (∞1,∞2, t

′′
−3/2) ∈ B2.

The subscripts of the forms t′′ and t in the triple form (∞1, t
′′, t′) ∈ Pr(B0) are

derived from an idempotent Valek square, and so −3/2 = 0. However, this cannot
happen since n + 2 6= 3.

Q2:
(∞2,∞1, t−3/2) ∈ B0, (∞2, t−3/2, t

′′
−3) ∈ B1, (∞2, t

′′
−3,∞1) ∈ B2.

The subscripts of the forms t and t′′ in the triple form (∞2, t, t
′′) ∈ Pr(B1) are

derived from an idempotent Valek square, and so −3/2 = −3. However, this cannot
happen since n + 2 6= 3.
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Q3:
(0x, t

′′
x,∞2) ∈ B0, (0x,∞2, 1x) ∈ B1, (0x, 1x, t

′′
x) ∈ B2

for some x. This cannot be since the Latin square determining the subscripts of the
triple form (0, 1, t′′) ∈ Pr(B2) has the property that there are no triples (x, x, x) for
x ∈ N .

Q4:
(1x, 0x,∞1) ∈ B0, (1x,∞1, t

′′
x) ∈ B1, (1x, t

′′
x, 0x) ∈ B2

for some x. This cannot happen for the same reason as in the previous case.

Q5:
(1x, t

′
y, t2x+̂y) ∈ B0, (1x, t2x+̂y, 3−x−y) ∈ B1, (1x, 3−x−y, t

′
y) ∈ B2

for some x and y. This cannot be since the Latin square determining the subscripts
of the triple form (1, 3, t′) ∈ Pr(B2) is L2 which does not have the triple (x, y,−x−y).

case 2: m > 7. In this case we need to choose a 4-sparse Steiner triple system
(V ∪ {∞1,∞2}, T0) of order m + 2 for the construction. To help simplify the number of
configurations to check, we wish the Steiner triple system to have certain properties:

For any Steiner triple system of order v with v ≥ 7, it is always possible to find a
subgraph that is a pre-mitre, i.e. has four distinct triples that look like {a, b, c}, {a, f, g},
{a, d, e} and {c, g, e}. Graphically, a pre-mitre looks like:

•c •
g

•e

•b •
f

•d

•a
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If {f, b, d} is a triple of the system, then the pre-mitre can be completed to a mitre:

•c •
g

•e

•b •
f

•d

•a
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We wish to find a 4-sparse Steiner triple system that has a pre-mitre which does not
complete to a mitre. Assmus in [1] showed that the only Steiner triple systems for which
every pre-mitre completes to a mitre are those that are an affine space over GF (3) as well
as the Hall systems. The orders of these systems are exactly the powers of 3. Thus to
ensure that our 4-sparse Steiner triple system has a pre-mitre which does not complete
to a mitre, we can choose 5-sparse Steiner triple systems of order m + 2 whenever m + 2
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is a power of 3, m ≥ 81 by Lemma 5.6 in Section 5. When m + 2 = 27, we can utilize a
5-sparse Steiner triple system of order 27 developed from the meager system of order 9,
(Z/9Z, K0, K1, K2), where each deleted symmetric square Ki is transitive with respect to
Z/9Z with starter blocks:

square starter blocks
K0 (1, 7, 0), (2, 4, 0), (3, 8, 0), (5, 6, 0)
K1 (1, 5, 0), (2, 4, 0), (3, 6, 0), (7, 8, 0)
K2 (1, 3, 0), (2, 5, 0), (4, 8, 0), (6, 7, 0)

Lastly, if m + 2 = 9, the earlier case covererd this. So let us consider such a system
and rearrange the points in such a way that {t, t′, t′′}, {t,∞1,∞2} ∈ T0 and the following
pre-mitre:

•t
′

•a •
∞1

•t
′′

•b •
∞2

•t
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does not complete to a mitre.
Now define permutations σ1 and σ2 on V ∪ {∞1,∞2} as cycles where σ1 is the cycle

(t,∞1, t
′, t′′) and σ2 is the cycle (t,∞2, t

′′, t′). Apply these permutations on T0 to form
triple sets T1 and T2, respectively.

Define {α, β, χ, δ, ε, φ, γ, η, ι, κ, λ} ⊆ V ∪ {∞1,∞2} such that the following triples are
in T0:

{a, t′,∞1}, {β, α, t}, {χ, t′′,∞2}, {δ, t, χ}, {ε, χ, t′}
{φ, t′,∞2}, {γ, φ, t′′}, {η, α, t′′}, {ι, t′′,∞1}, {κ, ι, t′}{ι, λ,∞2}

Note that by the definitions of these elements and by the fact that T0 has no Paschs we
have {α, β, χ, δ, ε, φ, γ, η, ι, κ, λ} ∩ {t, t′, t′′,∞1,∞2} = ∅. So, σ1 and σ2 do not move any
of these elements.

Define Ωi as in Lemma 3.5 such that (t′, f) ∈ Ω0, (β, α) ∈ Ω1 and (δ, χ) ∈ Ω2.
For α ∈ Z/3Z and for each (x, y) ∈ Ωi define Ri

{x,y} = Ri except for:

R0
{ι,λ} = R1

R1
{α,β} = R1

{χ,t} = R1
{t,t′′} = R1

{ι,λ} = R0

R2
{α,t} = R2

{χ,δ} = R2
{t,t′} = R0.

For i ∈ Z/3Z and for each triple {X, Y, Z} ∈ Ti with X, Y, Z /∈ {∞1,∞2}, choose an
ordering for {X, Y, Z} and define Li

X,Y,Z = Li except for some of the following assignments
for triples that intersect the set {t, t′, t′′}:
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Define
L0

t,t′,t′′ = {(x, y, z)|z = (x+̂y)/2, x, y, z ∈ N}.
For triples {t, X, Y } ∈ T0 with {X, Y } ∩ {t, t′, t′′} = ∅ define

L0
t,X,Y = {(x, y, z)|x = (y+̂z)/2+̂1, x, y, z ∈ N}.

For triples {t′, X, Y } ∈ T0 with {X, Y } ∩ {t, t′, t′′} = ∅ define

L0
t′,X,Y = {(x, y, z)|x = y+̂z, x, y, z ∈ N}.

For triples {t′′, X, Y } ∈ T0 with {X, Y } ∩ {t, t′, t′′} = ∅ define

L0
t′′,X,Y = {(x, y, z)|x = y+̂z, x, y, z ∈ N}.

Also, define
L1

t′′,ε,χ = {(x, y, z)|z = x+̂y, x, y, z ∈ N}.

L1
t,γ,φ = {(x, y, z)|z = x+̂y, x, y, z ∈ N}.

L1
t′,t′′,α = {(x, y, z)|z = (x+̂y)/2, x, y, z ∈ N}.

L1
t′,t,ι = {(x, y, z)|z = (x+̂y)/2, x, y, z ∈ N}.

For any remaining triple of T1 that looks like {t′, X, Z} such that there is some Y ∈ V
with {t′′, X, Y }, {t, Y, Z} ∈ T1, define

L1
t,X,Z = {(x, y, z)|z = x+̂y, , x, y, z ∈ N}.

For any remaining triple of T1 that looks like {t′′, X, Z} such that there is some Y ∈ V
with {t, X, Y }, {∞2, Y, Z} ∈ T1, define

L1
t,X,Z = {(x, y, z)|z = x+̂y+̂1, x, y, z ∈ N}.

Define
L2

χ,t′,t′′ = {(x, y, z)|x = (y+̂z)/2 + 1, x, y, z ∈ N}.

L2
φ,t′′,t = {(x, y, z)|x = (y+̂z)/2 + 1, x, y, z ∈ N}.

L2
α,η,t′ = {(x, y, z)|x = y+̂z + 1, x, y, z ∈ N}.

L2
ι,κ,t = {(x, y, z)|z = x+̂y + 1, x, y, z ∈ N}.

L2
ι,t′′,λ = {(x, y, z)|z = (x+̂y)/2, x, y, z ∈ N}.

and for any remaining triple of T2 that looks like {t′, X, Z} define

L2
t′,X,Z = {(x, y, z)|x = (y+̂z)/2 + 1, x, y, z ∈ N}.

For any remaining triple of T2 that looks like {t′′, X, Z} define

L2
t′′,X,Z = {(x, y, z)|x = (y+̂z)/2, x, y, z ∈ N}.
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intersection number T0 T1 T2

3 {t, t′, t′′} {∞1, t
′′, t} {∞2, t, t

′}
3 {t,∞1,∞2} {∞1, t

′,∞2} {∞2,∞1, t
′′}

2 {t′,∞1, α} {t′′, t′, α, } {t,∞1, α}
2 {t′,∞2, φ} {t′′,∞2, φ, } {t, t′′, φ}
2 {t′′,∞1, ι} {t, t′, ι, } {t′,∞1, ι}
2 {t′′,∞2, χ} {t,∞2, χ, } {t′, t′′, χ}

Table 2: Triples of T0, T1, T2 that Meet P in 2 or 3 Points

For each i ∈ Z/3Z, construct a deleted symmetric square on V following the construc-
tion from Lemma 3.5 as we did in the earlier case of m = 7. Call the resulting squares
Bi for i ∈ Z/3Z. We must show that (V, B0, B1, B2) is a meager system. For easier
reference, define the set P = {t, t′, t′′,∞1,∞2}. In this construction, define the notion of
being derived as follows: Triples of B0 ∪ B1 ∪ B2 can be categorized into three different
types:

1. S0, S1, S2.

2. triples whose form is {X, Y, Z} with {X, Y, Z} ∈ Ti for some i.

3. triples whose form is {X, X, Y }, for {X, Y,∞i} ∈ Tj for some i, j.

A triple of the first type from S0, S1 or S2 is said to be derived from {t,∞1,∞2},
{t′,∞1,∞2}, or {t′′,∞1,∞2} of T0, T1, or T2, respectively. A triple of the second type,
(x, y, z) in Bi is said to be derived from {Pr(x), Pr(y), Pr(z)} of Ti. A triple of the third
type from Bi, one of the form {X, X, Y } where {X, Y,∞j} ∈ Ti is said to be derived from
{X, Y,∞j} of Ti.

Claim: The systems B0, B1 and B2 are pairwise really disjoint.

Proof of Claim. If there were a 3-set {x, y, z} such that Bi and Bj have triples composed
of those elements for some i 6= j, then the triples must have the same type.

case 1: The triples are of type 1. However, this is absurd since the points of any
two of S0, S1 and S2 only have {∞1,∞2} in common.

case 2: The triples are of type 2. Then the triples would have been derived from
a common triple say {X, Y, Z} ∈ Ti ∩ Tj . If {X, Y, Z} ∩ P = ∅, then the subscripts
assigned to form the triple in Bi and Bj come from disjoint squares, L0 and L1,
respectively. Thus, it must be that {X, Y, Z} ∩ P 6= ∅. By table 2, it follows
that {X, Y, Z} cannot intersect P in more than one place4. So, suppose Z ∈ P .
Then σ1 and σ2 move Z to different places but keep X and Y fixed. It follows that
{X, Y, Z} cannot be a common triple between any two of T0, T1 and T2 thus yielding
a contradiction.

4The elements α, χ, ι, φ are all distinct since there are no Paschs in T0. Thus, the triple entries of
table 2 are all distinct.
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case 3: The triple is of type 3. Let us assume that the Pr(x) = Pr(y) and set
X = Pr(x) and Z = Pr(z). Even if we identify ∞1 and ∞2 as the same point, the
triples of table 2 remain distinct. It follows that X, Y /∈ P .

If {i, j} = {0, 1} then it must be that {X, Y,∞2} ∈ T0 ∩ T1. The disjoint Valek
squares, R0 and R1, are used to assign the subscripts for the corresponding triples
of B0 and B1, respectively (except when {X, Y } = {ι, λ}, but in this case the Valek
squares R0 and R1 switch roles). Then the triples would not have come from the
same 3-set which gives us a contradiction.

Similarly, if {i, j} = {0, 2} then it must be that {X, Y,∞1} ∈ T0 ∩ T2. The disjoint
Valek squares, R0 and R2, are used to assign the subscripts for the corresponding
triples of B0 and B2, respectively. It follows that the triples would not have come
from the same 3-set, a contradiction.

Lastly, if {i, j} = {1, 2} then it must be that {X, Y,∞i} ∈ T0 and {X, Y,∞j} ∈ T1

for i 6= j. Since disjoint Valek squares are used to assign the subscripts for the
corresponding triples of B1 and B2, it follows that the triples would not have come
from the same 3-set, a contradiction.

So it is clear that the systems B0, B1 and B2 are really disjoint. Also, the only non-
supersymmetric triples for the systems lie in their subsystems S0, S1 and S2, respectively.
Also, any ordered triple of Vi does not lie in Bj if i 6= j. Thus the system (V, B0, B1, B2)
satisfies the hypothesis of Lemma 8.1. Thus we only have to show that the system contains
no M ′

3 or Q configurations. Suppose on the contrary, that there is an M ′
3 configuration:

(x, y, z), (y, w, x) ∈ Si , (x, z, v) ∈ Bi+1, and (x, v, w) ∈ Bi+2.

Then we have the following cases to consider:

case 1: i = 0. Then x, y, z, w ∈ {t,∞1,∞2}. It follows that Pr(v) ∈ {t′, t′′}. If
v = t′, then after investigating the forms and filling the subscripts, we arrive at:

(∞2, t−3,∞1), (t−3, t1,∞2) ∈ S0, (∞2,∞1, t
′
−3/2} ∈ B1, (∞2, t

′
−3/2, t1) ∈ B2.

The idempotent Valek square R0 defines how the subscripts are assigned on the triple
{∞2, t

′, t} ∈ B2. This implies that −3/2 = 1 which is impossible since n + 2 6= 5.

Similarly, if v = t′′ then we arrive at the configuration:

(∞1, t−3, t−5/2), (t−3,∞2,∞1) ∈ S0, (∞1, t−5/2, t
′′
0} ∈ B1, (∞1, t

′′
0,∞2) ∈ B2.

The idempotent Valek square R0 defines how the subscripts are assigned on the triple
{∞1, t, t

′′} ∈ B1. This implies that 0 = −5/2 which is impossible since n + 2 6= 5.
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case 2: i = 1. Then Pr(v) = t. It follows that the configuration looks like:

(∞2, t
′
0, t

′
−1/2), (t

′
0,∞1,∞2) ∈ S1, (∞2, t

′
−1/2, t−3} ∈ B2, (∞2, t−3,∞1) ∈ B0.

The triple {∞2, t
′, t} ∈ T2 has subscripts assigned from the idempotent Valek square

R0. Thus −1/2 = −3 which is impossible since n + 2 6= 5.

case 3: i = 2. Then Pr(v) = t. It follows that the configuration looks like:

(∞1, t
′′
0,∞2), (t

′′
0, t

′′
−4,∞1) ∈ B2, , (∞1,∞2, t−3/2) ∈ B0, (∞1, t−3/2, t

′′
−4) ∈ B1.

Then we require −3/2 = −4 which cannot be satisfied since n + 2 6= 5.

Now we must check that there are no Q configurations. Assume, on the contrary, that
there is a Q configuration in (V, B0, B1, B2). We consider the following cases:

1. The triple from B0 is of type 1. Then the form of the triple consists of elements
from the set {t,∞1,∞2}. This leads to only two possibilities: The form of the Q
configurations must look like one of the following:

(∞1,∞2, t) ∈ Pr(B0), (∞1, t, t
′′) ∈ Pr(B1), (∞1, t

′′,∞2) ∈ Pr(B2), or

(∞2, t,∞1) ∈ Pr(B0), (∞2,∞1, t
′) ∈ Pr(B1), (∞2, t

′, t) ∈ Pr(B2).

Filling in the subscripts in the first case gives us:

(∞1,∞2, t−3/2) ∈ B0, (∞1, t−3/2, t
′′
0) ∈ B1, (∞1, t

′′
0,∞2) ∈ B2.

The Valek square R0 that determined the subscripts of the triple form (∞1, t, t
′′) is

idempotent and thus would have the subscripts of t and t′′ equal. Then −3/2 = 0
which is impossible since n + 2 6= 3.

Filling in the subscripts in the second case gives us:

(∞2, t−3,∞1) ∈ B0, (∞2,∞1, t
′
−3/2) ∈ B1, (∞2, t

′
−3/2, t−3) ∈ B2.

As in the first case, the Valek square R0 that determined the subscripts of the triple
form (∞2, t

′, t) is idempotent and thus would have the subscripts of t′ and t equal.
Then −3/2 = 3 which is impossible since n + 2 6= 3.

2. The triple from B0 is of type 2. Consider the following cases:

(a) The triple from B0 meets P in three points. Then the only possible form for a
Q configuration is:

(t, t′, t′′) ∈ Pr(B0), (t, t′′, t) ∈ Pr(B1), (t, t, t′) ∈ Pr(B2).

(Notice that the above configuration will not exist if (t, t′′) /∈ Ω1 or if (t, t′) /∈
Ω2.) Filling in the subscripts gives us:

(tx, t
′
y, t

′′
z) ∈ B0, (tx, t

′′
z , tw) ∈ B1, (tx, tw, t′y) ∈ B2.
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Since the subscripts assigned to the form (t, t′′, t) ∈ Pr(B1) and the subscripts
assigned to the form (t, t, t′) ∈ Pr(B2) come from the same Valek square R0, it
follows that y = z. Since x = (y+̂z)/2, it follows that x = y = z which cannot
happen since R0 is idempotent.

(b) The triple from B0 meets P in exactly two points. Since T0 has no Paschs, it
is clear that it cannot contain any of the triples {t, α, ι} or {t, φ, χ}. With this
in mind, it is easy to see that there are no possible forms for Q configurations
in this case.

(c) The triple from B0 meets P in exactly one point. It is easy to see the elements
of the form of the triple does not contain ∞1 or ∞2. Thus we only have to
consider the following three cases:

i. The triple from B0 has the form with elements from the set {t, X, Y }
with X, Y /∈ P . If the Q configuration has the form (t, X, Y ) ∈ Pr(B0),
(t, Y, W ) ∈ Pr(B1) and (t, W, X) ∈ Pr(B2), then consider the following. If
W ∈ P , it follows that {t, α, χ} ∈ T0, but this is impossible based on the
fact that we chose points {t, t′, t′′,∞1,∞2, α, β} in such a way so that they
do not form a mitre in T0. Thus it must be that W /∈ P . Then there is a
Pasch in T0:

{t′′, Y, W}, {t′′, t′, t}, {X, Y, t}, {t′, X, W}.

Keeping in mind that (χ, δ) /∈ Ω2 and (α, β) /∈ Ω1 it is clear that the only
possible forms for the Q configuration are:

(χ, δ, t) ∈ Pr(B0), (χ, t,∞2) ∈ Pr(B1), (χ,∞2, δ) ∈ Pr(B2), or

(α, t, β) ∈ Pr(B0), (α, β,∞1) ∈ Pr(B1), (α,∞1, t) ∈ Pr(B2).

Filling in the subscripts in the first case, we arrive at the Q configuration:

(χx, δx, tx) ∈ B0, (χx, tx,∞2) ∈ B1, (χx,∞2, δx) ∈ B2

for some x ∈ N . However, this cannot happen since the Latin square that
defined the subscripts assigned to the triples of the form (χ, δ, t) ∈ T0 avoid
(x, x, x). A similar argument holds for the second case above.

ii. The triple from B0 has the form with elements from the set {t′, X, Y } with
X, Y /∈ P . If the triple has the form (X, Y, t′), then it must be that X = ι
and Y = κ. This gives us the Q configuration:

(ιx, κy, t
′
z) ∈ B0, (ιx, t

′
z, tw) ∈ B1, (ιx, tw, κy) ∈ B2

where x, y, z, w ∈ N with:

z = x+̂y

x = (z+̂w)/2

x = w+̂y+̂1
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which has no solution.
If the triple has the form (X, t′, Y ), then it must be that X = χ and Y = ε.
This gives us the Q configuration:

(χx, t
′
y, εz) ∈ B0, (χx, εz, t

′′
w) ∈ B1, (χx, t

′′
w, t′y) ∈ B2

where x, y, z, w ∈ N with:

y = x+̂z

x = z+̂w

x = (w+̂y)/2+̂1

which also cannot be satisfied.
If the triple has the form (t′, X, Y ), then the form of the Q configuration
must be:

(t′, X, Y ) ∈ Pr(B0), (t′, Y, Z) ∈ Pr(B1), (t′, Z, X) ∈ Pr(B2)

where Z is some element of V , X and Y are distinct and {∞1, Y, Z},
{t′′, Z, X} ∈ T0. Notice that this implies that {t′, α, η} 6= {t′, Z, X}. Thus
we have the following Q configuration:

(t′x, Xy, Yz) ∈ B0, (t′x, Yz, Zw) ∈ B1, (t′x, Zw, Xy) ∈ B2

where x, y, z, w ∈ N with:

x = y+̂z

w = x+̂z

x = (w+̂y)/2+̂1

which cannot happen.

iii. The triple from B0 has the form with elements from the set {t′′, X, Y } with
X, Y /∈ P . If the triple has the form (X, Y, t′′), then it must be that X = α
and Y = η. This gives us the Q configuration:

(αx, ηy, t
′′
z) ∈ B0, (αx, t

′′
z , t

′
w) ∈ B1, (αx, t

′
w, ηy) ∈ B2

where x, y, z, w ∈ N with:

z = x+̂y

x = (z+̂w)/2

x = w+̂y+̂1

which has no solution.
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If the triple has the form (X, t′′, Y ), then it must be that X = φ and
Y = γ. This gives us the Q configuration:

(φx, t
′′
y, γz) ∈ B0, (φx, γz, tw) ∈ B1, (φx, tw, t′′y) ∈ B2

where x, y, z, w ∈ N with:

y = x+̂z

x = z+̂w

x = (w+̂y)/2+̂1

which also cannot be satisfied.
If the triple has the form (t′′, X, Y ), then the form of the Q configuration
must be:

(t′′, X, Y ) ∈ Pr(B0), (t′′, Y, Z) ∈ Pr(B1), (t′′, Z, X) ∈ Pr(B2)

where Z is some element of V , X and Y are distinct and {t′, Y, Z},
s{∞2, Z, X} ∈ T0. Notice that this implies that {t′′, χ, ε} 6= {t′′, Z, X}.
Thus we have the following Q configuration:

(t′′x, Xy, Yz) ∈ B0, (t′′x, Yz, Zw) ∈ B1, (t′′x, Zw, Xy) ∈ B2

where x, y, z, w ∈ N with:

x = y+̂z

w = x+̂z+̂1

x = (w+̂y)/2

which cannot happen.

(d) The triple from B0 is disjoint from P . Let the form of the triple be composed
of the elements X, Y, Z. Then these three elements are distinct, and, by the
fact that σ1 and σ2 fix V \ P , the other two triples from B1 and B2 in the Q
configuration must also have forms from the set {X, Y, Z} which is impossible
for the configuration.

3. The triple from B0 is of type 3. Then the form of the triple is composed of elements
X, Y for some X, Y ∈ V . If X, Y ∩ P = ∅, then we have the following two cases:

(a) The triple was derived from a triple {X, Y,∞1} ∈ T0. Then there are triples
{X, Y, t′} ∈ T1 and {X, Y,∞1} ∈ T2. The only possible forms of triples in the
Q configuration are:

(X, X, Y ) ∈ Pr(B0), (X, Y, t′) ∈ Pr(B1), (X, t′, X) ∈ Pr(B2), or

(X, Y, X) ∈ Pr(B0), (X, X,∞1) ∈ Pr(B1), (X,∞1, Y ) ∈ Pr(B2).
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In the first case, it is clear that T2 has a triple {X, t′,∞1} or {X, t′,∞2} which
in turn implies that X = ι or X = t. Since we are assuming in this case that
X /∈ P , it must be that X = ι. Then Y = t which cannot happen. In the
second case, it must be that B1 has a triple of the form {X, X,∞1} which can
only be satisfied if X = t′ which cannot happen by assumption.

(b) The triple was derived from a triple {X, Y,∞2} ∈ T0. The only possible forms
of triples in the Q configuration are:

(X, X, Y ) ∈ Pr(B0), (X, Y,∞2) ∈ Pr(B1), (X,∞2, X) ∈ Pr(B2),

(X, Y, X) ∈ Pr(B0), (X, X, t′′) ∈ Pr(B1), (X, t′′, Y ) ∈ Pr(B2).

In the first case, it is clear that Pr(B2) has a triple (X, X,∞2) which can only
be satisfied if X = t′′ which cannot happen by assumption. In the second case,
it must be that B1 has a triple of the form (X, X, t′′) which must have been
derived from the triple (X, t′′,∞1) or (X, t′′,∞2). In either case, X = t or
X = φ. However, X = t cannot happen by assumption, and if X = φ, then
Y = t′ which also cannot happen by assumption.

If {X, Y } ∩ P 6= ∅, then it must be that the intersection consists of only one point
(cf. Table 2) and furthermore, that point must be in {t, t′, t′′}. Keeping in mind
that α, χ, φ and ι are distinct elements and that (φ, t′) /∈ Ω0, it is easy to check that
there is only one possible feasible form for the Q configuration:

(ι, t′′, ι) ∈ Pr(B0), (ι, ι, λ) ∈ Pr(B1), (ι, λ, t′′) ∈ Pr(B2).

(Notice that these forms do not exist if (ι, λ) /∈ Ω1 or (ι, t′′) /∈ Ω0.) Filling in the
subscripts gives us:

(ιx, t
′′
y, ιz) ∈ B0, (ιx, ιz, λy) ∈ B1, (ιx, λy, t

′′
y) ∈ B2.

It follows that x = y and thus x = y = z which cannot happen.

Thus there are no Q configurations in the system (V, B0, B1, B2) and hence it is a meager
system of order mn + 2.
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