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Abstract

Let F be a fixed graph of chromatic number r + 1. We prove that for all large
n the degree sequence of any F -free graph of order n is, in a sense, close to being
dominated by the degree sequence of some r-partite graph. We present two different
proofs: one goes via the Regularity Lemma and the other uses a more direct counting
argument. Although the latter proof is longer, it gives better estimates and allows
F to grow with n.

As an application of our theorem, we present new results on the generalization
of the Turán problem introduced by Caro and Yuster [Electronic J. Combin. 7
(2000)].

1 Introduction

Denote by Tr(n) the Turán graph, namely the complete r-partite graph on n vertices, with
parts as equal as possible, and let tr(n) := e(Tr(n)) ≥ (1 − 1/r)

(
n
2

)
. The Erdős-Stone

theorem [13] (see also Erdős and Simonovits [12]), the fundamental theorem of extremal

∗Partially supported by the Berkman Faculty Development Fund, Carnegie Mellon University.
†Partially supported by the DFG Research Center Matheon “Mathematics for key technologies” in

Berlin.

the electronic journal of combinatorics 12 (2005), #R69 1



graph theory, states that for an arbitrary graph F with chromatic number χ(F ) = r + 1
it holds that

ex(n, F ) := max{e(G) : v(G) = n, F 6⊂ G} = tr(n) + o(n2). (1)

In other words, for every F -free graph G of order n there exists an r-partite graph H =
Tr(n) with almost as many edges as G. In this paper we consider the question whether
analogous statements are true if one compares the degree sequences instead of the total
number of edges.

For two graphs H and G with V (H) = V (G) we say that H dominates G if dH(x) ≥
dG(x) for every vertex x. Erdős [9] showed that

for every Kr+1-free graph G, there exists an r-partite graph H such that H dominates G.
(2)

In order to generalize this to arbitrary forbidden graphs F , we need a few more definitions.
Given a non-increasing sequence g = (g1, . . . , gn), let Dk,m(g) be the sequence

(gk − m, . . . , gk − m︸ ︷︷ ︸
k times

, gk+1 − m, . . . , gn − m).

In other words, we replace the first k largest elements by gk and then remove m from each
element. For non-increasing sequences g and h of the same length n, we write g � h (and
say that h dominates g) if gi ≤ hi for every i ∈ [n]. We say that h (k, m)-dominates g if
Dk,m(g) � h.

It is easy to see that if there is a permutation π : [n] → [n] such that gi ≤ hπ(i) for
every i ∈ [n], then g � h. Please also note that the notion of domination for sequences is
restricted to non-increasing sequences.

Here is our main theorem. (As this will have no effect on our results, we assume that
all expressions like εn are integers.)

Theorem 1 Let F be a fixed non-empty graph of chromatic number χ(F ) = r + 1. For
any ε > 0 and large n ≥ n0(ε, F ), the degree sequence g1 ≥ · · · ≥ gn of any F -free graph
G is (εn, εn)-dominated by the degree sequence of some r-partite graph H of order n.

Notice that Theorem 1 implies the Erdős-Stone theorem. As the Reader can see,
we allow two operations on degree sequences: ignoring few vertices of high degree and
decreasing each degree by a small amount. In Section 2 we will briefly discuss why
Theorem 1 seems essentially best possible in the sense that both of these operations are
necessary.

The paper is organized as follows. We present two different proofs of Theorem 1. The
first proof, in Section 3, goes via the Regularity Lemma, and is simpler and shorter. In
Section 4 we prove a more technical statement (Theorem 4) using direct counting, which
immediately implies Theorem 1. Although the latter proof is more complicated, it has the
big advantage that it allows for the graph F to grow with n. Before we prove Theorem 1,
we discuss its various aspects in Section 2.
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In Section 5 we present Theorem 5, a slight strengthening of Theorem 1. In Section 6
we present an application of Theorem 5 to the generalization of the Turán problem intro-
duced by Caro and Yuster [5] where instead of the size e(G) = 1

2

∑
x∈V (G) d(x) of an F -free

order-n graph G one has to maximize ef (G) =
∑

x∈V (G) f(d(x)) for a given function f .

We will prove that if a monotone function f grows ‘regularly’ (all precise definitions will
appear in Section 6) then, asymptotically, it is enough to consider only r-partite order-n
graphs, where r := χ(F ) − 1 ≥ 2.

2 Some Remarks about Theorem 1

Let us begin by observing that both of the operations on degree sequences used in Theo-
rem 1, namely ignoring few vertices of high degree and decreasing each degree by a small
amount, are needed.

First consider the case when r = 1 and F = Kt,t. Note that here an r-partite graph
means simply the empty graph whose degree sequence is 0, . . . , 0. One example of a Kt,t-
free graph is Kt−1 + Kn−t+1, which has t − 1 vertices of degree n − 1. Another example

can be obtained by taking a random graph Gn,p, where p = εn− 2
t+1 , and removing an edge

from each copy of Kt,t. The expected degree of a vertex is at least

p(n − 1) − pt2
(

n − 1

t − 1

)(
n − t

t

)
= Ω(n

t−1
t+1 ).

Using standard probabilistic tools, one can argue that with high probability every vertex
has degree of this order of magnitude. Thus we can achieve either a few vertices of very
high degree or the reasonably large minimum degree. Combining these constructions (and
increasing t) we can have both occurrences.

On the other hand, the dependence of the degrees on t is not known in general.
For some special Ks,t there are known constructions which beat the above probabilistic
argument, see e.g. [1, 2, 4, 11, 14, 16]. Observe that if a Kt,t-free order-n graph G has m
vertices of degree at least d each, then m

(
d
t

) ≤ (t−1)
(

n
t

)
, which gives us some restrictions

on m and d. Essentially, this is the only general upper bound on degrees we have.
The same, if not bigger, complications arise for r ≥ 2. Indeed, let F = Kr+1(t) be the

blown-up Kr+1 (i.e. each vertex is cloned t times). An F -free graph G can be obtained
by taking a complete r-partite graph H , V (H) = ∪r

i=1Vi, and adding into each part Vi

an arbitrary Ka,a-free graph Hi, where a = b t−1
r
c + 1. Thus, all the ‘bad’ things that can

happen to degree sequences for r = 1, also occur for the general r.
Notice that we can have two parameters ε1, ε2 in Theorem 1 if the conclusion is that

g is to be (ε1n, ε2n)-dominated. In Section 4 we prove the two-parameter version. It is
not surprising that there is some trade-off between ε1 and ε2: we can decrease one at the
expense of the other.

Our bounds are reasonably good when r is fixed. For example, if ε1, ε2 > 0 are
fixed, then we can take F = Kr+1(t) with t ≥ c log n, where c = c(ε1, ε2, r) > 0, while
probabilistic constructions show that t must be O(log n). However, the dependence on
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r is very bad. Chvátal and Szemerédi [7, 8] obtained the correct dependence on r in
the Erdős-Stone theorem. Unfortunately, their technique does not seem to work for our
problem.

3 Proof via the Regularity Lemma

In our arguments we will be encountering a situation when the domination inequality fails
for some small set X of vertices. The following lemma helps us to handle such cases.

Lemma 2 Let r ≥ 2. Let H ′ be a complete r-partite graph on [n] with the partition
[n] = V ′

1 ∪ · · · ∪ V ′
r . Let X ⊂ [n]. Then there is a complete r-partite graph H on [n] such

that the following conditions hold.

1. For every x ∈ X and y ∈ X we have dH(x) ≥ dH(y), where X := [n] \ X.

2. For every y ∈ [n] we have dH(y) ≥ dH′(y) − |X|.
3. If dH′(y) < n/2 for some y ∈ [n], then dH(y) ≥ dH′(y).

Proof. We iteratively modify H ′ as follows. As long as there are vertices x ∈ X and
y ∈ X such that dH′(x) < dH′(y), repeat the following step. Of all choices of y ∈ X,
choose the one with the largest possible degree. Assume, for example, that x ∈ V ′

1 and
y ∈ V ′

2 . Clearly, we have |V ′
1 | > |V ′

2 |. Let I consist of those i ∈ [3, r] such that |V ′
i | = |V ′

2 |
and V ′

i ∩ X 6= ∅. Move x to V ′
2 . Next, as long as there are x′ ∈ V ′

2 ∩ X (possibly x′ = x)
and y′ ∈ V ′

i ∩ X with i ∈ I, we move x′ to V ′
i and y′ to V ′

2 .
It is routine to see that the above step ensures that dH′(x) ≥ dH′(z) for each z ∈ X

and this property of x cannot be violated by any subsequent step. Thus we perform at
most |X| steps in total.

Let H be the final graph. Clearly it satisfies Condition 1. As the degree of any vertex
z ∈ [n] can drop down by at most one at each step, Condition 2 follows. Furthermore, if
we initially had dH′(y) < n/2 for some vertex y, then the part V ′

i of H ′ containing y is
strictly larger than any other part and, as it is easy to see, never increases its size. (While
no new part of order larger than n/2 can be created.) This establishes Condition 3 and
finishes the proof.

Our first proof of Theorem 1 relies on the following result of Erdős, Frankl and Rödl [10,
Theorem 1.5].

Theorem 3 For every c > 0 and a graph F with χ(F ) = r + 1, there is a constant
n0 = n0(c, F ) with the following property. Let G be a graph of order n ≥ n0 that does not
contain F as a subgraph. Then G contains a set E ′ of less than cn2 edges such that the
subgraph G′ obtained from G by deleting all edges in E ′ has no Kr+1.

the electronic journal of combinatorics 12 (2005), #R69 4



Theorem 3 is proved by applying Szemerédi’s Regularity Lemma so the constant n0 =
n0(c, F ) given by the proof is huge, see Gowers [15].

Proof of Theorem 1. Given ε > 0, let c = ε2/8 and let n0 = n0(c, F ) be given by
Theorem 3. Given an F -free graph G of order n ≥ n0, let G′ ⊂ G be the Kr+1-free graph
given by Theorem 3. Applying the theorem of Erdős as stated in (2) gives us an r-partite
graph H ′ that dominates G′. We have V (H ′) = V (G′) = V (G).

Let X = {x ∈ V (G) : dG′(x) ≤ dG(x) − εn/2}. We have

ε2n2/8 = cn2 ≥ e(G) − e(G′) ≥ εn|X|/4,

which implies that |X| ≤ εn/2.
Let H be the r-partite graph obtained by applying Lemma 2 to H ′ and X. For every

y ∈ X, we have

dH(y) ≥ dH′(y) − |X| ≥ dG′(y) − εn/2 ≥ dG(y) − εn.

As the vertices of X have the largest degrees in H and |X| < εn, it follows that H is the
required r-partite graph.

4 Direct Proof

The following is a more technical but stronger result than Theorem 1. For a real x and a
positive integer i, we define

(
x
i

)
= x(x − 1) . . . (x − i + 1)/i!.

Theorem 4 Let r ≥ 2. Suppose that integers m, n and s1 ≥ s2 ≥ · · · ≥ sr+1 ≥ 1 satisfy
s1 ≤ n/2 and

im

2

(
imsi/2n

si+1

)i

> (si+1 − 1)

(
si

si+1

)i

, i ∈ [r]. (3)

Suppose that the degree sequence g1 ≥ · · · ≥ gn of an order-n graph G cannot be (s1, m)-
dominated by the degree sequence of an r-partite order-n graph H.

Then G contains Kr+1(sr+1) as a subgraph.

Proof. Define l1 := s1, a1 := gl1, and then, inductively for i = 2, . . . , r, let

li :=
i−1∑
j=1

(n − aj + m),

ai := gli.

Finally, we let lr+1 := n.
First, we justify that the ai’s are well-defined. We trivially have l2 ≤ · · · ≤ lr. (Please

note that we do not claim that l1 ≤ l2.) Thus, it is enough to show that lr ≤ n. We will
prove the stronger claim that

i∑
j=1

(n − aj + m) ≤ n, for each i ≤ r, (4)
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which we will need later.
Suppose that (4) is not true. Let i ≤ r be the smallest index such that

∑i
j=1(n −

aj + m) > n. Consider the complete i-partite graph H with part sizes v1, . . . , vi, where
vj := n − aj + m, for j ∈ [i − 1], and vi := n − ∑i−1

j=1 vj .
We show that the degree sequence h1 ≥ · · · ≥ hn of the graph H (s1, m)-dominates g,

which would be the desired contradiction. To do so, it is enough to check that for every
j ∈ [2, i] the (v1 + · · ·+ vj−1 + 1)-th component of Ds1,m(g) is at most n − vj , that is,

gv1+···+vj−1+1 − m ≤ n − vj, (5)

and that
gs1 − m ≤ hs1. (6)

In order to prove (5) note that v1 + · · · + vj−1 = lj by definition of lj, thus by the
monotonicity of g we have gv1+···+vj−1+1 ≤ glj = aj. We have aj − m = n − vj for every
j ∈ [i − 1] while ai − m < n − vi, which implies (5).

Let us turn to (6). Assume that s1 ≤ v1, for otherwise (6) follows from (5). Then
hs1 = n − v1 = gs1 − m and (6) becomes an identity. This proves (4).

Assume that V (G) = [n] with i ∈ V (G) having degree gi.
Initially, set S1,1 = [l1]. Before the i-th step of our procedure, i = 1, . . . , r, we have

disjoint si-sets
S1,i ⊂ [l1], S2,i ⊂ [l2], . . . , Si,i ⊂ [li]

such that they span a Ki(si)-subgraph in G. By the monotonicity of g we know that each
vertex x in Sj,i has degree at least aj in G. Hence, x has at least aj + li+1 − n neighbors
in Li+1 := [li+1], and the number of edges between Si := ∪i

j=1Sj,i and Li+1 is at least

si

i∑
j=1

(aj + li+1 − n) = si

(
ili+1 −

( i∑
j=1

n − aj

))
≥ si((i − 1)li+1 + im),

where we counted the edges that lie inside the intersection Si ∩ Li+1 twice. The above
estimate holds also for i = r by (4). (Recall that lr+1 = n.) Let

Z :=
{
z ∈ Li+1 : |Γ(z) ∩ Si| ≥ (i − 1)si +

imsi

2li+1

}
,

where Γ(z) denotes the set of neighbors of z.
Counting the edges between Si and Li+1 as seen from Li+1 (again counting twice those

in the intersection), we obtain

si((i − 1)li+1 + im) ≤ isi|Z| +
(

(i − 1)si +
imsi

2li+1

)
(li+1 − |Z|).

This implies that

|Z| ≥ im

2
. (7)
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Now, every z ∈ Z intersects each Sj,i in at least imsi

2li+1
points, so it covers at least(

imsi/2li+1

si+1

)i
copies of Ki(si+1). By (3) (and li+1 ≤ n and |Z| ≥ im

2
) we conclude that at

least one such subgraph is covered at least si+1 times. Let the parts of this subgraph be

S1,i+1 ⊂ S1,i, . . . , Si,i+1 ⊂ Si,i,

while let Si+1,i+1 be the corresponding si+1-subset of Z ⊂ [li+1].
This gives us the desired Ki+1(si+1) and finishes the description of the step. The

theorem is proved.

It is clear that in Theorem 4 it is advantageous to us to take for si+1, after m and si

have been chosen, the largest integer satisfying (3). Thus we essentially have only two
parameters: m and s1.

It is not hard to see that Theorem 4 implies Theorem 1. In fact, if m = Θ(n) and
s1 = Θ(log n) (and r is fixed), then we can take sr+1 = Θ(log n). In general, we have
some freedom in choosing s1 and m. For example, if F = Kr+1(sr+1) is fixed, then for
any m = Θ(n) Theorem 4 can be satisfied for a sufficiently large constant s1.

5 Ensuring Small Relative Errors

Here we slightly strengthen Theorem 1. Roughly speaking, we require that the additive
error εn in Theorem 1 is replaced by the relative error 1 + ε. (Thus we have to be more
careful about vertices of small degree.) Although the new Theorem 5 is formally stronger
than Theorem 1, it can be deduced from the latter. This ‘relative’ version is needed for
our application in Section 6.

For a scalar λ and and a sequence g = (g1, . . . , gn), let λ g denote the sequence
(λg1, . . . , λgn).

Theorem 5 Let F be a fixed graph of chromatic number χ(F ) = r + 1 ≥ 3. For any
ε > 0 there is n0(ε) such that the following holds. Let G be an arbitrary F -free graph of
order n ≥ n0(ε). Then there is an r-partite graph H on the same vertex set such that
h � (1 − ε)Dεn,0(g), where g and h are the (non-increasing) degree sequences of G and
H respectively.

Proof. Let ε be sufficiently small. Let δ := ε/3. First we prove that there is an r-partite
graph H ′ on the same vertex set V := V (G) such that dH′(x) ≥ (1 − δ) dG(x) with the
exception of vertices from some set X of size at most δn.

Define A := {x ∈ V : dG(x) ≤ δn/8} and B := V \ A. The subgraph G′ := G[B]
spanned by B is of course F -free. If |B| ≤ δn, then we are done: take H ′ = Tr(n) and
X = B.

So, assume that |B| → ∞. Apply Theorem 1 to G[B] with respect to the constant
c = δ2/8 to obtain an r-partite H ′ on B. Let X consist of cn vertices of G[B] with the
largest degrees. (This set X, with some further additions, will be the exceptional set.)
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Extend H ′ to a complete r-partite graph on V by arbitrarily splitting A into r almost
equal parts.

If |A| ≥ δn/4, then for any x ∈ A we have dH′(x) ≥ b1
2
|A|c ≥ δn/8 ≥ dG(x), i.e., we

are doing fine. Otherwise, add A to X.
Let C := {x ∈ B : |ΓG(x) ∩ A| ≥ 1

2
|A|}, where ΓG(x) denotes the set of G-neighbors

of a vertex x ∈ V (G). By counting the edges between A and C, we obtain

|C| × |A|
2

≤ |A| × δn

8
,

that is, |C| ≤ δn/4. We add C to X. Notice that any vertex of B \ C has at least as
many A-neighbors in H ′ as it has in G.

Every vertex x ∈ B \ (X ∪ C) has G-degree at least δn/8. We have,

|ΓG(x) ∩ B| − |ΓH′(x) ∩ B| ≤ cn = δ2n/8 ≤ δ dG(x),

and |ΓG(x) ∩ A| ≤ |ΓH′(x) ∩ A|, so dH′(x) ≥ (1 − δ) dG(x), as required. Also,

|X| ≤ cn + δn/4 + δn/4 ≤ δn.

This shows the existence of the desired graph H ′.
Let the r-partite graph H be obtained by applying Lemma 2 to H ′ and X. By

Conditions 1 and 2 the vertices of X have the largest H-degrees while the degree of any
vertex dropped down by at most |X| ≤ δn.

Let us compare the degrees of x ∈ X with respect to G and H . If dH′(x) ≥ n/2, then
we have

dH(x) ≥ dH′(x) − δn ≥ (1 − 2δ) dH′(x) ≥ (1 − 2δ) (1 − δ) dG(x) ≥ (1 − ε) dG(x).

If dH′(x) < n/2, then by Condition 3 we have dH(x) ≥ dH′(x) ≥ (1 − δ) dG(x).
Finally, the vertices of X are also ‘happy’ because they have the largest H-degrees

while |X| < εn. This completes the proof of the theorem.

6 Generalized Turán Problem

Let N denote the set of non-negative integers and R the set of reals. Let f : N → R be
an arbitrary function.

For a graph F define

ef(F ) :=
∑

x∈V (F )

f(d(x)),

where d(x), as usually, denotes the degree of a vertex x. For example, for f : x 7→ x
2

we
have ef(F ) = e(F ); thus ef (F ) can be viewed as a generalization of the size of F .

Define exf(n, F ) to be the maximal value of ef(G) over all F -free graphs G of order n.
This mimics the definition of the usual Turán function ex(n, F ). The special case when
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f is the power function Pµ : x 7→ xµ, with integer µ ≥ 1, was introduced by Caro and
Yuster [5]. This paper was one of the motivations for the present research.

Let ex′
f(n, F ) be the maximum of ef(H) over all complete (χ(F )−1)-partite graphs of

order n. Clearly, we have ex′
f(n, F ) ≤ exf (n, F ). Moreover, observe that since computing

ex′
f(n, F ) consists only of determining the sizes of a complete (χ(F ) − 1)–partite graph

H that give the optimal value for ef (H), this is more of an analytical (although possibly
difficult) task than a combinatorial one. (Bollobás and Nikiforov [3] investigated this
problem for the power function Pµ.)

A function f : N → R is called positive if f(n) > 0 for any n ∈ N; f is non-decreasing if
for any m ≤ n we have f(m) ≤ f(n). Let us call a positive non-decreasing function f log-
continuous if for any ε > 0 there is δ > 0 such that for any m, n ∈ N with n ≤ m ≤ (1+δ)n
we have

f(m) ≤ (1 + ε)f(n). (8)

For example, Pµ is log-continuous for any µ > 0 while the exponent x 7→ ex is not.
Using Erdős’ result (2) it is easy to prove (see [5, 6]) that for any n ≥ 0, r ≥ 2 and

non-decreasing f : N → R we have

exf(n, Kr+1) = ex′
f(n, Kr+1). (9)

Caro and Yuster [5] posed the problem of computing exPµ(n, F ) for an arbitrary
graph F .

Here we show that if F is a fixed graph of chromatic number r + 1 ≥ 3 and f
is a positive, non-decreasing and log-continuous function, then the analog of (9) holds
asymptotically.

Theorem 6 Let F be a fixed non-bipartite graph. Let f : N → R be an arbitrary positive,
non-decreasing, and log-continuous function. Then, as n → ∞,

exf (n, F ) = (1 + o(1)) ex′
f (n, F ).

Proof. Let r := χ(F ) − 1 ≥ 2, c > 0 be arbitrary, n be large, and G achieve exf(n, F ).
First, let us observe that by the assumptions on f

exf(n, F ) ≥ ex′
f (n, F ) ≥ ef (Tr(n)) ≥ nf(b nr

r+1
c) ≥ γnf(n), (10)

for some constant γ > 0.
Let δ be such that f(m) ≤ (1 + c/2)f(n) if m ≤ (1 + 2δ)n. Assume that (1 − δ)−1 <

1 + 2δ. Apply Theorem 5 to G with respect to ε = min(δ, cγ/2) to obtain an r-partite
graph H . Let X be the set of bεnc vertices of H of the largest degrees.

We have ∑
x∈X

(
f(dG(x)) − f(dH(x))

)
≤ |X|f(n) ≤ c

2
exf (n, F ),

where we used (10). By the definition of H and δ, we have∑
x∈V \X

(
f(dG(x)) − f(dH(x))

)
≤ c

2

∑
x∈V \X

f(dH(x)) ≤ c

2
exf(n, F ).
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It follows that

ef (G) − ef (H) =
∑
x∈V

(
f(dG(x)) − f(dH(x))

)
≤ c exf(n, F ), (11)

proving the theorem as c > 0 was arbitrary.

Remark. Taking f : x 7→ log x we can also deal with the problem of maximizing∏
x∈V (G) d(x) over all F -free graphs G of order n. (However, please notice that the relative

error here will not be 1 + o(1) but becomes such after taking the logarithm.) More
generally, we can maximize

∏
x∈V (G) f(d(x)) for any non-decreasing f such that log(f(x))

is positive and log-continuous.

6.1 Some Negative Examples

In Theorem 6 we do need some condition bounding the rate of growth of f . For example,
if f grows so fast that ef(G) is dominated by the contribution from the vertices of degree
n − 1, then the conclusion of Theorem 6 is no longer true: for example, for K3(2) (the
blown-up K3 where each vertex of K3 is duplicated) the value exf (n, K3(2)) = (3 +
o(1)) f(n − 1) cannot be achieved by a bipartite graph.

In fact, one can construct refuting examples of f with moderate rate of growth. For
example, for any constant c < 1 there is a positive non-decreasing f such that

f(n + 1)

f(n)
≤ 1 + n−c (12)

for any n and yet the conclusion of Theorem 6 does not hold for this f . Let us demonstrate
the above claim.

Let c > 0. Choose t such that for all large n there is a Kt,t-free graph Gn of order
n with all vertices having degree at least nc each. Such t exists by the probabilistic
construction of Section 2.

Let F = K3(2t − 1) be a blown-up K3. Take an arbitrary function f satisfying (12)
and the additional property that there is an infinite sequence n1 < n2 < . . . such that for
any k we have

f(nk + mk) = f(nk + mk + 1) = f(nk + mk + 2) = · · · = f(2nk),

while f(nk) ≤ 1
2
f(nk + mk), where mk = dnce. Such an f exists: choose the numbers

nk spaced far apart (with n1 being sufficiently large), let f(n + 1) = f(n), except for
nk ≤ n < nk + mk we let f(n + 1) = 21/mkf(n). Note that 21/mk < 1 + 1

mk
< 1 + n−c so

our f does satisfy (12).
On the one hand, we have

exf(2nk, F ) ≥ 2 nk f(nk + mk). (13)

Indeed, let G be obtained from the complete bipartite graph Knk,nk
by adding to each

part the Kt,t-free graph Gnk
defined above. It is easy to see that G 6⊃ F . All vertices of

G have degree at least nk + mk, giving (13).
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On the other hand, for any bipartite graph H of order 2nk at least nk vertices will
have degree at most nk and thus

ef (H) ≤ nkf(2nk − 1) + nkf(nk) ≤ 3

2
nkf(nk + mk).

We obtain by (13) that exf(n, F ) cannot always be approximated by ex′
f (n, F ).
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[9] P. Erdős, On the graph theorem of Turán (in Hungarian), Mat. Lapok 21 (1970),
249–251.
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