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Abstract

This article describes conjectured combinatorial interpretations for the higher
q, t-Catalan sequences introduced by Garsia and Haiman, which arise in the theory
of symmetric functions and Macdonald polynomials. We define new combinatorial
statistics generalizing those proposed by Haglund and Haiman for the original q, t-
Catalan sequence. We prove explicit summation formulas, bijections, and recursions
involving the new statistics. We show that specializations of the combinatorial
sequences obtained by setting t = 1 or q = 1 or t = 1/q agree with the corresponding
specializations of the Garsia-Haiman sequences. A third statistic occurs naturally
in the combinatorial setting, leading to the introduction of q, t, r-Catalan sequences.
Similar combinatorial results are proved for these trivariate sequences.

1 Introduction

In [7], Garsia and Haiman introduced a q, t-analogue of the Catalan numbers, which they
called the q, t-Catalan sequence. In the same paper, they introduced a whole family of
“higher” q, t-Catalan sequences, one for each positive integer m. We begin by describing
several equivalent characterizations of the original q, t-Catalan sequence. We then discuss
analogous characterizations of the higher q, t-Catalan sequences.

In the rest of the paper, we present some conjectured combinatorial interpretations for
the higher q, t-Catalan sequences. We prove some combinatorial formulas, recursions, and
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bijections and introduce a three-variable version of the Catalan sequences. We also show
that certain specializations of our combinatorial sequences agree with the corresponding
specializations of the higher q, t-Catalan sequences.

1.1 The Original q, t-Catalan Sequence

To give Garsia and Haiman’s original definition of the q, t-Catalan sequence, we first need
to review some standard terminology associated with integer partitions. A partition is a
sequence λ = (λ1 ≥ λ2 ≥ · · · ≥ λk) of weakly decreasing positive integers, called the parts
of λ. The integer N = λ1+λ2+· · ·+λk is called the area of λ and denoted |λ|. In this case,
λ is said to be a partition of N , and we write λ ` N . The number of parts k is called the
length of λ and denoted `(λ). We often depict a partition λ by its Ferrers diagram. This
diagram consists of k left-justified rows of boxes (called cells), where the i’th row from the
top has exactly λi boxes. Figure 1 shows the Ferrers diagram of λ = (8, 7, 5, 4, 4, 2, 1, 1),
which is a partition of 32 having eight parts.

c

Figure 1: Diagram of a partition.

Let λ be a partition of N . Let c be one of the N cells in the diagram of λ. We make
the following definitions.

1. The arm of c, denoted a(c), is the number of cells strictly right of c in the diagram
of λ.

2. The coarm of c, denoted a′(c), is the number of cells strictly left of c in the diagram
of λ.

3. The leg of c, denoted l(c), is the number of cells strictly below c in the diagram of
λ.

4. The coleg of c, denoted l′(c), is the number of cells strictly above c in the diagram
of λ.

For example, the cell labelled c in Figure 1 has a(c) = 4, a′(c) = 2, l(c) = 3, and l′(c) = 1.
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We define the dominance partial ordering on partitions of N as follows. If λ and µ are
partitions of N , we write λ ≥ µ to mean that

λ1 + · · · + λi ≥ µ1 + · · ·+ µi for all i ≥ 1.

Fix a positive integer n and a partition µ of n. Let µ′ denote the transpose of µ,
obtained by interchanging the rows and columns of µ. Define the following abbreviations:

hµ(q, t) =
∏
c∈µ

(qa(c) − tl(c)+1)

h′µ(q, t) =
∏
c∈µ

(tl(c) − qa(c)+1)

n(µ) =
∑
c∈µ

l(c)

n(µ′) =
∑
c∈µ′

l(c) =
∑
c∈µ

a(c)

Bµ(q, t) =
∑
c∈µ

qa′(c)tl
′(c)

Πµ(q, t) =
∏

c∈µ,c 6=(0,0)

(1 − qa′(c)tl
′(c))

In all but the last formula above, the sums and products range over all cells in the diagram
of µ. In the product defining Πµ(q, t), the northwest corner cell of µ is omitted from the
product. This is the cell c with a′(c) = l′(c) = 0; if we did not omit this cell, then Πµ(q, t)
would be zero.

Finally, we define the original q, t-Catalan sequence to be the following sequence of
rational functions in the variables q and t:

OCn(q, t) =
∑
µ`n

t2n(µ)q2n(µ′)(1 − t)(1 − q)Πµ(q, t)Bµ(q, t)

hµ(q, t)h′µ(q, t)
(n = 1, 2, 3, . . .). (1)

It turns out that, for all n, OCn(q, t) is a polynomial in q and t with nonnegative integer
coefficients. But this fact is very difficult to prove. See Theorem 1 below.

1.2 Symmetric Function Version of the q, t-Catalan Sequence

This section assumes familiarity with basic symmetric function theory, including Macdon-
ald polynomials. We begin by briefly recalling the definition of the modified Macdonald
polynomials and the nabla operator.

Let Λ denote the ring of symmetric functions in the variables x1, . . . , xn, . . . with
coefficients in the field K = Q(q, t). Let α denote the unique automorphism of the ring
Λ that interchanges q and t. Let φ denote the unique K-algebra endomorphism of Λ
that sends the power-sum symmetric function pk to (1 − qk)pk. Let ≥ denote the usual
dominance partial ordering on partitions. Then the modified Macdonald basis is the unique
basis H̃µ of Λ (indexed by partitions µ) such that:
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(1) φ(H̃µ) =
∑

λ≥µ cλ,µsλ for certain scalars cλ,µ ∈ K.

(2) α(H̃µ) = H̃µ′ .

(3) H̃µ|s(n)
= 1.

The nabla operator is the unique linear operator on Λ defined on the basis H̃µ by the
formula

∇(H̃µ) = qn(µ′)tn(µ)H̃µ.

(The nabla operator was introduced by F. Bergeron and A. Garsia in [2]. See also [3] or
[4] for more information about nabla).

Now, we define the symmetric function version of the q, t-Catalan sequence by the
formula

SCn(q, t) = ∇(en)|s1n
(n = 1, 2, 3, . . .), (2)

where en is an elementary symmetric function, s1n is a Schur function, and the vertical
bar indicates extraction of a coefficient. In more detail, to calculate SCn(q, t), start with
the elementary symmetric function en (regarded as an element of the K-vector space Λ),
and perform the following steps:

1. Find the unique expansion of the vector en as a linear combination of the modified
Macdonald basis elements H̃µ. The scalars appearing in this expansion are elements
of K = Q(q, t).

2. Apply the nabla operator to this expansion by multiplying the coefficient of H̃µ by
qn(µ′)tn(µ), for every µ.

3. Express the resulting vector as a linear combination of the Schur function basis sµ.

4. Extract the coefficient of s1n in this new expansion. This coefficient (an element of
Q(q, t)) is SCn(q, t).

1.3 The Representation-Theoretical q, t-Catalan Sequence

This section assumes familiarity with representation theory of the symmetric groups. Let
Rn = C[x1, . . . , xn, y1, . . . , yn] be a polynomial ring over C in two independent sets of n
variables. Let the symmetric group Sn act on the variables by

σ(xi) = xσ(i) and σ(yi) = yσ(i) for σ ∈ Sn.

Extending this action by linearity and multiplicativity, we obtain an action of Sn on Rn

which is called the diagonal action. This action turns the vector space Rn into an Sn-
module. We define a submodule DHn of Rn, called the space of diagonal harmonics, as
follows. A polynomial f ∈ Rn belongs to DHn iff f simultaneously solves the partial
differential equations

n∑
i=1

∂h

∂xh
i

∂k

∂yk
i

f = 0,
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for all integers h, k with 1 ≤ h+ k ≤ n.
Let Rh,k consist of polynomials in DHn that are homogeneous of degree h in the xi’s,

and homogeneous of degree k in the yi’s, together with the zero polynomial. Then each
Rh,k is a finite-dimensional submodule of DHn, and we have

DHn =
⊕
h≥0

⊕
k≥0

Rh,k.

Thus, DHn is a bigraded Sn-module.
Suppose we decompose each Rh,k into a direct sum of irreducible modules (which

correspond to the irreducible characters of Sn). Let ah,k(n) be the number of occur-
rences of the module corresponding to the sign character χ1n in Rh,k. Then we define the
representation-theoretical q, t-Catalan sequence by

RCn(q, t) =
∑
h≥0

∑
k≥0

ah,k(n)qhtk (n = 1, 2, 3, . . .).

Thus, RCn(q, t) is the generating function for occurrences of the sign character in DHn.
By the symmetry of xi and yi in the definition, we see that RCn(q, t) = RCn(t, q).

1.4 The Two Combinatorial q, t-Catalan Sequences

We next present a combinatorial construction due to Haglund, and a related construction
found later by Haiman, which interpret the q, t-Catalan sequence as a weighted sum of
Dyck paths.

A Dyck path of height n is a path in the xy-plane from (0, 0) to (n, n) consisting of n
north steps and n east steps (each of length one), such that the path never goes strictly
below the diagonal line y = x. See Figure 2 for an example. Let Dn denote the collection
of Dyck paths of height n. For D ∈ Dn, let area(D) be the number of complete lattice
squares (or cells) between the path D and the main diagonal.

For 0 ≤ i < n, define γi(D) to be the number of cells between the path and the main
diagonal in the i’th row of the picture, where we let the bottom row be row zero. Thus,
area(D) =

∑n−1
i=0 γi(D). Following Haiman, we set

dinv(D) =
∑
i<j

[χ(γi(D) = γj(D)) + χ(γi(D) = γj(D) + 1)] . (3)

Here and below, we set χ(A) = 1 if A is a true statement, χ(A) = 0 if A is a false
statement.

Define Haiman’s combinatorial q, t-Catalan sequence to be

HCn(q, t) =
∑

D∈Dn

qdinv(D)tarea(D) (n = 1, 2, 3, . . .).

Next, following Haglund (see [9]), we define a “bounce” statistic for each Dyck path
D. Given D, we define a bounce path derived from D as follows. The bounce path begins
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8
7
6
5
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1
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2
0
1

area(D) = 16         dinv(D) = 41

4
3
2
1
0

10
11
12
13

Figure 2: A Dyck path.

at (n, n) and moves to (0, 0) via an alternating sequence of horizontal and vertical moves.
Starting at (n, n), the bounce path proceeds due west until it reaches the north step of
the Dyck path going from height n−1 to height n. From there, the bounce path goes due
south until it reaches the main diagonal line y = x. This process continues recursively:
When the bounce path has reached the point (i, i) on the main diagonal (i > 0), the
bounce path goes due west until it hits the Dyck path, then due south until it hits the
main diagonal. The bounce path terminates when it reaches (0, 0). See Figure 3 for an
example.

Suppose the bounce path derived from D hits the main diagonal at the points

(n, n), (i1, i1), (i2, i2), . . . , (is, is), (0, 0).

Then Haglund’s bounce statistic is defined by

bounce(D) =

s∑
k=1

ik.

We define Haglund’s combinatorial q, t-Catalan sequence by

Cn(q, t) =
∑

D∈Dn

qarea(D)tbounce(D) (n = 1, 2, 3, . . .).

1.5 Equivalence of the q, t-Catalan Sequences

The five q, t-Catalan sequences discussed in the preceding sections have quite different
definitions. In spite of this, we have the following theorem.
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(14,14)

(10,10)

(5,5)

(1,1)

bounce(D) = 16         area(D) = 41
(0,0)

Figure 3: A Dyck path with its derived bounce path.

Theorem 1. For every positive integer n,

OCn(q, t) = SCn(q, t) = RCn(q, t) = HCn(q, t) = Cn(q, t).

In particular, OCn(q, t) is a polynomial in q and t with nonnegative integer coefficients
for all n.

This theorem was proved in various papers of Garsia, Haiman, and Haglund. In [7],
Garsia and Haiman proved that SCn(q, t) = OCn(q, t) using symmetric function identities.
Haglund discovered the combinatorial sequence Cn(q, t) (see [9]), and Haiman proposed his
version HCn(q, t) shortly thereafter. Haiman and Haglund easily proved that HCn(q, t) =
Cn(q, t) by showing that both satisfy the same recursion. We discuss this recursion later
(§3). Similarly, Garsia and Haglund proved in [5, 6] that Cn(q, t) = SCn(q, t) by showing
that both sequences satisfied the same recursion. This proof is much more difficult and
requires substantial machinery from symmetric function theory. Finally, Haiman proved
that RCn(q, t) = SCn(q, t) using sophisticated algebraic geometric methods (see [16]).

A consequence of Theorem 1 is that Cn(q, t) = Cn(t, q) for all n, since this symmetry
property holds for RCn. (It is also easily deduced from the formula for OCn, by replacing
the summation index µ by the conjugate of µ and simplifying.) An open question is to
give a combinatorial proof that Cn(q, t) = Cn(t, q). Later, we give bijections proving the
weaker result that Cn(q, 1) = Cn(1, q) = HCn(q, 1) = HCn(1, q). This says that the
new statistics of Haiman and Haglund have the same univariate distribution as the area
statistic on Dyck paths.

the electronic journal of combinatorics 12 (2005), #R9 7



1.6 The Higher q, t-Catalan Sequences

We now discuss various descriptions of the higher q, t-Catalan sequences, also introduced
by Garsia and Haiman in [7]. Fix a positive integer m. The original higher q, t-Catalan
sequence of order m is defined by

OC(m)
n (q, t) =

∑
µ`n

t(m+1)n(µ)q(m+1)n(µ′)(1 − t)(1 − q)Πµ(q, t)Bµ(q, t)

hµ(q, t)h′µ(q, t)
(n = 1, 2, 3, . . .). (4)

This formula is the same as (1), except that the factors t2n(µ)q2n(µ′) in OCn(q, t) have been

replaced by t(m+1)n(µ)q(m+1)n(µ′). Clearly, OC
(1)
n (q, t) = OCn(q, t).

Next, the symmetric function version of the higher q, t-Catalan sequence of order m
is defined by

SC(m)
n (q, t) = ∇m(en)|s1n

(n = 1, 2, 3, . . .), (5)

where ∇m means apply the nabla operator m times in succession. To calculate SC
(m)
n (q, t)

for a particular m and n, one should express en as a linear combination of the modified
Macdonald basis elements H̃µ, multiply the coefficient of each H̃µ by tmn(µ)qmn(µ′), express
the result in terms of the Schur basis {sµ}, and extract the coefficient of s1n . Garsia and

Haiman proved in [7] that OC
(m)
n (q, t) = SC

(m)
n (q, t) using symmetric function identities.

A possible representation-theoretical version of the higher q, t-Catalan sequences is
given in [7]; we will not discuss it here.

A problem mentioned but not solved in [7] is to give a combinatorial interpretation for

the sequences OC
(m)
n (q, t). That paper does give a simple interpretation for OC

(m)
n (q, 1),

which we now describe. Given positive integers m and n, let us define an m-Dyck path of
height n to be a path in the xy-plane from (0, 0) to (mn, n) consisting of n north steps
and mn east steps (each of length one), such that the path never goes strictly below the

slanted line x = my. See Figure 4 for an example with m = 3 and n = 8. Let D(m)
n denote

the collection of m-Dyck paths of height n. For D ∈ D(m)
n , let area(D) be the number of

complete lattice squares strictly between the path D and the line x = my. For instance,
area(D) = 23 for the path D shown in Figure 4.

We then have (see [7])

OC(m)
n (q, 1) = OC(m)

n (1, q) =
∑

D∈D(m)
n

qarea(D).

2 Conjectured Combinatorial Interpretations for the

Higher q, t-Catalan Sequences

Fix a positive integer m. We next describe two statistics defined on m-Dyck paths
that each have the same distribution as the area statistic. The first statistic general-
izes Haiman’s statistic for Dyck paths; the second statistic generalizes Haglund’s bounce
statistic. We conjecture that either statistic, when paired with area and summed over
m-Dyck paths of height n, will give a generating function that equals OC

(m)
n (q, t).
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m = 3, n = 8, area(D) = 23

x = 3y

(0, 0)

(24, 8)

Figure 4: A 3-Dyck path of height 8.

2.1 A Version of Haiman’s Statistic for m-Dyck Paths

The statistic discussed here was derived from a statistic communicated to the author by
M. Haiman [15]. Let D ∈ D(m)

n be an m-Dyck path of height n. As in §1.4, we define
γi(D) to be the number of cells in the i’th row that are completely contained in the region
between the path D and the diagonal x = my, for 0 ≤ i < n. Here, the lowest row is row
zero. Note that area(D) =

∑n−1
i=0 γi(D). Next, define a statistic h(D) by

h(D) =
∑

0≤i<j<n

m−1∑
k=0

χ (γi(D) − γj(D) + k ∈ {0, 1, . . . , m}) . (6)

See Figure 5 for an example.
It is easy to see that h(D) reduces to the statistic dinv(D) from §1.4 when m = 1.

Here is another formula for h(D) which will be useful later. Define a function scm : Z → Z

by

scm(p) =




m+ 1 − p if 1 ≤ p ≤ m;
m+ p if −m ≤ p ≤ 0;
0 for all other p.

Note that, given the value of a particular difference γi(D)− γj(D) for a fixed i and j, we
can evaluate the inner sum

∑m−1
k=0 χ(γi(D)−γj(D)+k ∈ {0, 1, . . . , m}) in (6). By checking

the various cases, one sees that the value of this sum is exactly scm(γi(D) − γj(D)). For
instance, if γi(D) − γj(D) is 0 or 1, then we get a contribution for each of the m values
of k, in agreement with the fact that scm(0) = scm(1) = m. Similarly, if γi(D)− γj(D) is
−(m−1), then only the summand with k = m−1 will cause a contribution, in agreement
with the fact that scm(−(m − 1)) = 1. The remaining cases are checked similarly. We
conclude that

h(D) =
∑

0≤i<j<n

scm(γi(D) − γj(D)). (7)

the electronic journal of combinatorics 12 (2005), #R9 9



i (D)γ

m = 2, n = 12, area(D) = 30, h(D) = 41
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5
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5
4
1

1

10
11

(0, 0)

i

Figure 5: Defining the generalized Haiman statistic for a 2-path.

We now define the first conjectured combinatorial version of the higher q, t-Catalan
sequence of order m by

HC(m)
n (q, t) =

∑
D∈D(m)

n

qh(D)tarea(D) (n = 1, 2, 3, . . .).

In §2.5, we will prove that HC
(m)
n (q, 1) = HC

(m)
n (1, q). This says that the statistic h has

the same univariate distribution as the area statistic.

2.2 A Bounce Statistic for m-Dyck paths

We now discuss how to define a bounce statistic for m-Dyck paths that generalizes
Haglund’s statistic on ordinary Dyck paths. To define this statistic, we must first de-
fine the bounce path derived from a given m-Dyck path D.

In §1.4, we obtained the bounce path by starting at (n, n) and moving southwest
towards (0, 0) according to certain rules (see Figure 3). It is clear that, for ordinary Dyck
paths, we could have obtained a similar statistic with the same distribution by starting at
(0, 0) and moving northeast. In the case of m-Dyck paths, it is more convenient to start
the bouncing at (0, 0).

Fix an integer m ≥ 2. As before, the bounce path will consist of a sequence of
alternating vertical moves and horizontal moves. We begin at (0, 0) with a vertical move,
and eventually end at (mn, n) after a horizontal move. Let v0, v1, . . . denote the lengths
of the successive vertical moves in the bounce path, and let h0, h1, . . . denote the lengths
of the successive horizontal moves. These lengths are calculated as follows. (Refer to
Figures 6 and 7 for examples.)

the electronic journal of combinatorics 12 (2005), #R9 10



(0, 0)
m = 2, n = 12, area(E) = 41, b(E) = 30

v
h

i

i

i 0 2 3 4 5
2 213 1

1
3 (0)

6

2 5 4 3 3 4 (3)

(24, 12)

Figure 6: Defining the bounce statistic for a 2-path.

To find v0, move due north from (0, 0) until you reach an east step of the m-Dyck
path; the distance traveled is v0. Next, move due east v0 units (so h0 = v0). Next, move
north from the current position until you reach an east step of the m-Dyck path; let v1

be the distance traveled. Next, move due east v0 + v1 units (so h1 = v0 + v1). In general,
for i < m, we move north vi units from our current position until we are blocked by the
m-Dyck path, and then move east hi = v0 + v1 + · · · + vi units.

For i ≥ m, the rules change. At stage i, we still move north vi units until we are
blocked by the path. But we then move east hi = vi + vi−1 + vi−2 + vi−(m−1) units. In
other words, the length of the next horizontal move is the sum of the m preceding vertical
moves.

If we define vi = 0 and hi = 0 for all negative indices i, we can state a single rule that
works for all the bounces. Start at (0, 0). Assuming inductively that vj and hj have been
determined for all j < i (where i ≥ 0), move north from the current position until you
are blocked by the m-Dyck path; define the distance traveled to be vi. Then move east
hi = vi + vi−1 + · · · + vi−(m−1) units. We continue bouncing until we reach (mn, n). (In
fact, it suffices to stop once we reach the top rim of the figure, which is the horizontal line
y = n.) Finally, we define the bounce statistic b(D) to be

b(D) =
∑
k≥0

k · vk(D), (8)

a weighted sum of the lengths of the vertical segments in the bounce path derived from
D. For example, in Figure 6, we have

b(D′) = 0 · 2 + 1 · 3 + 2 · 1 + 3 · 2 + 4 · 1 + 5 · 3 = 30.
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When m = 1, the new rule just says that hi = vi for all i. In other words, we move
north until we hit the Dyck path, and then move east the same distance, bringing us back
to the main diagonal y = x. Thus, we obtain Haglund’s bounce path (modified to start
at (0, 0), of course). To see that b(D) agrees with the earlier statistic bounce(D), we first
give an alternate formula for b(D). Let s be the number of vertical moves needed to reach
the top rim. Then v0 + v1 + · · · + vs−1 = n, where n is the height of D. We claim that

b(D) =

s−1∑
k=0

(n− v0 − v1 − · · · − vk). (9)

To see this, just replace n by v0 + · · ·+ vs−1 in (9) and simplify the resulting sum. We get

b(D) = (v1 +v2 +v3 + · · ·+vs−1)+(v2 +v3 + · · ·+vs−1)+(v3 + · · ·+vs−1)+ · · · =
∑
k≥0

k ·vk,

which is formula (8). When m = 1, the numbers ik in the definition of bounce(D) (see
§1.4) are exactly the quantities n− v0 − v1 − · · · − vk. (Here we must reflect the shape in
Figure 3 so that the bounce path starts at (0, 0).) This shows that the new statistic does
generalize the original one.

Note that, for m > 1, the bounce path does not necessarily return to the diagonal
x = my after each horizontal move. Consequently, it may occur that we cannot move
north at all after making a particular horizontal move. This situation occurs for the bounce
path shown in Figure 7, which is derived from the 3-path shown in Figure 4. In this case,
we define the next vi to be zero, and compute the next hi = vi + vi−1 + · · ·+ vi−(m−1) just
as before. In other words, vertical moves of length zero can occur, and are treated the
same as nonzero vertical moves when computing the hi’s and the b statistic.

The possibility now arises that the bounce path could get “stuck” in the middle of
the figure. To see why, suppose that m consecutive vertical moves vi, . . . , vi+m−1 in the
bounce path had length zero. Then the next horizontal move hi+m−1 would be zero also.
As a result, our position in the figure at stage i+m is exactly the same as the position at
the beginning of stage i+m− 1, since vi+m−1 = hi+m−1 = 0. From the bouncing rules, it
follows that vi+m = 0 also. But then vj = hj = 0 for all j ≥ i+m, so that the bouncing
path is stuck at the current position forever.

We now argue that the situation described in the last paragraph will never occur. Since
the m-Dyck path must start with a north step, we have v0 > 0, and so we do not get stuck
at (0, 0). The evolving bounce path will continue to make progress eastward with each
horizontal step, unless hi = 0 for some i ≥ 0. Note that hi = 0 iff vi+vi−1+· · ·+vi−(m−1) =
0. Fix such an i, and consider the situation just after making the vertical move of length
vi−1 and the horizontal move of length hi−1. Let (x0, y0) denote the position of the bounce
path at this instant. Then y0 = v0 + v1 + · · · + vi−1 is the total vertical distance moved
so far. Since vi−1 = · · · = vi−(m−1) = 0, we have y0 = v0 + · · · + vi−m. On the other
hand, the total horizontal distance moved so far is x0 = h0 + h1 + · · · + hi−1. From
the definition of the hj ’s and the fact that vi−1 = · · · = vi−(m−1) = 0, it follows that
x0 = mv0 + mv1 + · · · + mvi−m. In more detail, note that the last nonzero vj, namely
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Figure 7: A bounce path with vertical moves of length zero.

vi−m, contributes to the m horizontal moves hi−m, . . . , hi−1. Similarly, for j < i −m, vj

has contributed to m horizontal moves that have already occurred at the end of stage
i − 1. Since vj = 0 for i −m < j ≤ i − 1, the stated formula for x0 accounts for all the
horizontal motion so far. Comparing the formulas for x0 and y0 gives x0 = my0, so that
the bounce path has returned to the bounding diagonal x = my. If y0 = n, the bounce
path has reached its destination. If y0 < n, the m-Dyck path continues above height y0.
But now vi > 0 is forced; otherwise, the m-Dyck path must have gone east from (my0, y0),
violating the requirement of always staying weakly above the line x = my. This argument
is illustrated by the path in Figure 7.

Thus, the bounce path does not get stuck. The argument at the end of the last
paragraph can be modified to show that the bounce path (like the m-Dyck path itself)
never goes below the line x = my. For, after moving v0 + · · · + vi−1 steps vertically at
some time, we will have gone at most mv0 + · · · + mvi−1 steps horizontally. Therefore,
our position is on or above the line x = my.

Now that we know the bounce path is always well-defined, we can define the second
conjectured combinatorial version of the higher q, t-Catalan sequence of order m by

C(m)
n (q, t) =

∑
D∈D(m)

n

qarea(D)tb(D) (n = 1, 2, 3, . . .).

In §2.5, we will give a bijective proof that HC
(m)
n (q, t) = C

(m)
n (q, t). Setting t = 1 or q = 1

here shows that both new statistics (h and b) have the same distribution on m-Dyck paths
of height n as the area.

Conjecture: For all m and n, we have

OC(m)
n (q, t) = HC(m)

n (q, t) = C(m)
n (q, t).
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A possible approach to proving this conjecture will be indicated in §3.

2.3 A Formula for C
(m)
n (q, t)

In this section, we give an explicit algebraic formula (12) for C
(m)
n (q, t) by analyzing bounce

paths. This formula, while messy, is obviously a polynomial in q and t with nonnegative
integer coefficients, unlike the formula defining OC

(m)
n (q, t). A disadvantage of the new

formula is that the (conjectured) symmetry C
(m)
n (q, t) = C

(m)
n (t, q) is not evident from

inspection of the formula.
Before stating the formula, we briefly review q-binomial coefficients. Let q be an

indeterminate. Set [n]q = 1 + q + q2 + · · ·+ qn−1 for each positive integer n. Set [0]q! = 1

and [n]q! =
∏n

i=1[i]q for n > 0. Finally, set
[
n
k

]
q

= [n]q!

[k]q![n−k]q!
for 0 ≤ k ≤ n, and set[

n
k

]
q

= 0 for other values of k. When we replace q by 1, the expressions [n]q, [n]q!, and[
n
k

]
q

evaluate to the numbers n, n!, and
(

n
k

)
, respectively. Note also that

[
n
k

]
q

=
[

n
n−k

]
q
.

We will often write
[
a+b
a,b

]
q

to denote
[
a+b
a

]
q

=
[
a+b

b

]
q

(multinomial coefficient notation).

We shall use the following well-known combinatorial interpretations of the q-binomial
coefficient

[
n
k

]
q
. Let Ra,b denote a rectangle of height a and width b. We write λ ⊂ Ra,b

for a partition λ if the Ferrers diagram of λ fits inside this rectangle. Then[
a + b

a, b

]
q

=
∑

λ⊂Ra,b

q|λ| =
∑

λ⊂Ra,b

qab−|λ|. (10)

(The second equality follows from the first by rotating the rectangle 180◦ and considering
the area cells inside the rectangle but outside λ.) We prefer the notation

[
a+b
a,b

]
q

because

the bottom row displays both dimensions of the containing rectangle.
Here are two useful ways to rephrase (10). Let Pa,b denote the collection of all paths

that proceed from the lower-left corner of Ra,b to the upper-right corner by taking a north
steps and b east steps of length one. (There is no other restriction on the paths.) If P is
such a path, let area(P ) be the number of cells in the rectangle lying below the path P .
Then [

a+ b

a, b

]
q

=
∑

P∈Pa,b

qarea(P ) =
∑

P∈Pa,b

qab−area(P ).

Similarly, let R(0a1b) denote the collection of all rearrangements of a zeroes and b ones. If
w = (w1w2 . . . wa+b) ∈ R(0a1b), define the inversions of w by inv(w) =

∑
i<j χ(wi > wj)

and the coinversions of w by coinv(w) =
∑

i<j χ(wi < wj). Then[
a+ b

a, b

]
q

=
∑

w∈R(0a1b)

qinv(w) =
∑

w∈R(0a1b)

qcoinv(w). (11)

This follows by representing w as a path P ∈ Pa,b, which is obtained by replacing each
zero in w by a north step and each one in w by an east step. Then the area above (resp.,
below) the path in Ra,b is easily seen to be inv(w) (resp., coinv(w)).
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We are now ready to state the summation formula for C
(m)
n (q, t). Let V(m)

n denote
the set of all sequences v = (v0, v1, v2, . . . , vs) such that: each vi is a nonnegative integer;
v0 > 0; vs > 0; v0 + v1 + v2 + · · · + vs = n; and there is never a string of m or more
consecutive zeroes in v. As usual, let vi = 0 for all negative i.

Theorem. With V(m)
n defined as above, we have:

C(m)
n (q, t) =

∑
v∈V(m)

n

t
P

i≥0 iviqm
P

i≥0

(
vi

2

)∏
i≥1

qvi
Pm

j=1(m−j)vi−j

[
vi + vi−1 + · · · + vi−m − 1

vi, vi−1 + · · · + vi−m − 1

]
q

.

(12)
Equivalently, we may sum over all compositions v of n with zero parts allowed, if we
identify compositions that differ only in trailing zeroes. The same formula holds for
HC

(m)
n (q, t), hence C

(m)
n (q, t) = HC

(m)
n (q, t).

Remark: When m = 1, this formula reduces to a formula for Cn(q, t) given by Haglund
in [9].

Proof, Part 1: Let D ∈ D(m)
n be a typical object counted by C

(m)
n (q, t). We can classify

D based on the sequence v(D) = (v0, v1, . . . , vs) of vertical moves in the bounce path
derived from D. Call this sequence the bounce composition of D. By the discussion in
the preceding section, the vector v = v(D) belongs to V(m)

n . To prove the formula for

C
(m)
n (q, t), it suffices to show that∑

D: v(D)=v

qarea(D)tb(D) =

t
P

i≥0 iviqm
P

i≥0

(
vi

2

) s∏
i=1

qvi
Pm

j=1(m−j)vi−j

[
vi + vi−1 + · · · + vi−m − 1

vi, vi−1 + · · ·+ vi−m − 1

]
q

for each v = (v0, . . . , vs) ∈ V(m)
n . By our conventions for q-binomial coefficients, the right

side of this expression is zero if any m consecutive vi’s are zero (in particular, this occurs
if v0 = 0). Thus, it does no harm in (12) to sum over all compositions v of n with zero

parts allowed, not just the compositions v belonging to V(m)
n .

Now, fix v ∈ V(m)
n and consider only the m-Dyck paths of height n having bounce

composition v. By definition of the bounce statistic, every such path D will have the
same t-weight, namely

tb(D) = t
P

i≥0 ivi .

To analyze the q-weights, note that we can construct all m-Dyck paths of height n
having bounce composition v as follows.

1. Starting with an empty diagram, draw the bounce path with vertical segments
v0, . . . , vs. There is exactly one way to do this, since the horizontal moves hi are
completely determined by the vertical moves.

2. Having drawn the bounce path, there are now s empty rectangular areas just north-
west of the “left-turns” in the bounce path. See Figure 8 for an example. Label
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these rectangles R1, . . . , Rs, as shown. By definition of the bounce path, rectangle
Ri has height vi and width hi−1 = vi−1 + · · · + vi−m for each i. To complete the
m-Dyck path, draw a path in each rectangle Ri from the southwest corner to the
northeast corner, where each path begins with at least one east step. The first east
step in Ri must be present, by definition of vi−1.

4R

2R

5R

3R

1R

v
h

i

i

i 0 2 3 4 5
2 213 1

1
3 (0)

6

2 5 4 3 3 4 (3)

m = 2, n = 12.

Figure 8: Rectangles above the bounce path.

We can rephrase the second step as follows. Let R′
i denote the rectangle of height vi

and width hi = vi−1 + · · · + vi−m − 1 obtained by ignoring the leftmost column of Ri.
Then we can uniquely construct the path D by filling each shortened rectangle R′

i with
an arbitrary path going from the southwest corner to the northeast corner.

The generating function for the number of ways to perform this second step, where
the exponent of q records the total area above the bounce path, is

s∏
i=1

[
vi + vi−1 + · · ·+ vi−m − 1

vi, vi−1 + · · · + vi−m − 1

]
q

by the preceding discussion of q-binomial coefficients.
We still need to multiply by a power of q that records the area under the bounce path,

which is independent of the choices in the second step. We claim that this area is

m
s∑

i=0

1

2
vi(vi − 1) +

s∑
i=1

(
vi

m∑
j=1

(m− j)vi−j

)
,

which will complete the proof.
To establish the claim, dissect the area below the bounce path as shown in Figure 9.

There are s+ 1 triangular pieces Ti, where the i’th triangle contains 0 +m+ 2m+ · · ·+
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Figure 9: Dissecting the area below the bounce path.

(vi − 1)m = mvi(vi−1)
2

complete cells. In Figure 9, for instance, where v1 = 3, we have
shaded the 0 + 2 + 4 = 6 cells in T1 that contribute to the area statistic. The total area
coming from the triangles is

m

s∑
i=0

1

2
vi(vi − 1).

There are also s rectangular slabs Si (for 1 ≤ i ≤ s). The height of slab Si is vi.
What is the width of Si? To answer this question, fix i, let (a, c) be the coordinates of
the southeast corner of Si, and let (b, c) be the coordinates of the southwest corner of
Si. First note that c = v0 + v1 + · · · + vi−1, the sum of the vertical steps prior to step i.
Therefore,

a = mc = m(v0 + · · · + vi−1) = mvi−1 +mvi−2 + · · · +mvi−m +mvi−m−1 + · · ·

since the southeast corner of Si lies on the line x = my. Next, b = h0 + h1 + · · · + hi−1,
the sum of the horizontal steps prior to step i. Recall that each hj is the sum of the
m preceding vi’s (starting with i = j). Substituting into the expression for b gives
b = 1vi−1 + 2vi−2 + · · · + mvi−m + mvi−m−1 + mvi−m−2 + · · · . We conclude that the
width of Si is

a− b = (m− 1)vi−1 + (m− 2)vi−2 + · · · + (m−m)vi−m + 0 + 0 + · · · .

Finally, the area of Si is the height times the width, which is

vi(a− b) = vi

m∑
j=1

(m− j)vi−j .
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Adding over all i gives the term

s∑
i=1

(
vi

m∑
j=1

(m− j)vi−j

)
,

completing the proof of the claim and the first part of the theorem.

2.4 Proving the Formula for HC
(m)
n (q, t)

To finish the proof of the theorem, we now give a counting argument to show that
HC

(m)
n (q, t) is also given by the formula (12). This will show thatHC

(m)
n (q, t) = C

(m)
n (q, t).

In the next section, we combine the two different proofs of this formula to obtain a bijective
proof of the identity HC

(m)
n (q, t) = C

(m)
n (q, t).

Recall that an m-Dyck path D can be represented by a vector

γ(D) = (γ0(D), . . . , γn−1(D)),

where γi(D) is the number of area cells between the path and the diagonal in the i’th
row from the bottom. Clearly, the path D is uniquely recoverable from the vector γ.
Also, a vector γ = (γ0, . . . , γn−1) represents an element D ∈ D(m)

n iff the following three
conditions hold:

1. γ0 = 0.

2. γi ≥ 0 for all i.

3. γi+1 ≤ γi +m for all i < n− 1.

The first condition reflects the fact that the lowest row cannot have any area cells. The
second condition ensures that the path D never goes below the diagonal x = my. The
third condition follows since the path is not allowed to take any west steps.

Let G(m)
n denote the set of all n-long vectors γ satisfying these three conditions. Then

the preceding remarks show that

HC(m)
n (q, t) =

∑
γ∈G(m)

n

qh(γ)t
P

i≥0 γi,

where
∑

i≥0 γi is the area of the path D corresponding to γ, and where we set

h(γ) =
∑

0≤i<j<n

m−1∑
k=0

χ(γi − γj + k ∈ {0, 1, . . . , m}),

so that h(γ) is the h-statistic of the path D.

Given a vector γ ∈ G(m)
n , let vi(γ) be the number of times i occurs in the sequence

(γ0, . . . , γn−1) for each i ≥ 0. Let v(γ) = (v0(γ), v1(γ), . . . , vs(γ)) where s is the largest
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entry appearing in γ. We call v(γ) the composition of γ. From the definitions of G(m)
n

and v(γ), we see that v0 > 0, vs > 0, v0 + · · · + vs = n, and there is never a string of m

consecutive zeroes in v (lest γi+1 > γi +m for some i). In other words, v belongs to V(m)
n .

We now classify the objects γ in G(m)
n based on their composition. To prove the

summation formula for HC
(m)
n (q, t), it suffices to show that∑

γ: v(γ)=v

qh(γ)t
P

i≥0 γi =

t
P

i≥0 iviqm
P

i≥0
1
2
vi(vi−1)

s∏
i=1

qvi
Pm

j=1(m−j)vi−j

[
vi + vi−1 + · · ·+ vi−m − 1

vi, vi−1 + · · · + vi−m − 1

]
q

(13)

for each v = (v0, . . . , vs) ∈ V(m)
n . It is clear that the powers of t on each side of this

equation agree, since vi is the number of occurrences of the value i in the summation∑
i≥0 γi.
Before considering the powers of q, note that we can uniquely construct all vectors

γ ∈ G(m)
n having composition v as follows.

1. Initially, let γ be a string of v0 zeroes.

2. Next, insert v1 ones in the gaps to the right of these zeroes. There can be any
number of ones in each gap, but no 1 may appear to the left of the leftmost zero.

3. Continue by inserting v2 twos into valid locations, then v3 threes, etc. The general
step is to insert vi copies of the symbol i into valid locations in the current string.
Here, a “valid” location is one such that inserting i in that location will not cause
a violation of the three conditions in the definition of G(m)

n .

How many ways are there to perform the i’th step of this insertion process, for i > 0? To
answer this, note that a new symbol i > 0 can only be placed in a gap immediately to
the right of the existing symbols i − 1, i − 2, . . . , i −m in the current string. There are
vi−1 + vi−2 + · · ·+ vi−m such symbols, and hence the same number of gaps. Since multiple
copies of i can be placed in each gap, the number of ways to insert the vi new copies of

the symbol i is

(
vi + vi−1 + · · · + vi−m − 1

vi, vi−1 + · · ·+ vi−m − 1

)
. (To see this, represent a particular way of

inserting the new i’s by a string of vi “stars” representing the i’s and vi−1 + · · ·+ vi−m −1
“bars” that separate the vi−1 + · · ·+ vi−m available gaps.) Multiplying these expressions
as i ranges from 1 to s, we see that formula (13) is correct when q = 1.

It remains to see that the power of q is correct as well. We prove this by induction
on the largest symbol s appearing in γ. If s = 0, then v = (n), and γ must consist of a
string of n zeroes. From the definition, we see that h(γ) = mn(n−1)/2. This is the same
as the power of q on the right side of (13), since v0 = n and vi = 0 for i > 0.

Now assume that s > 0. Fix v = (v0, . . . , vs) ∈ V(m)
n . Let v′ = (v0, . . . , vs−1), which is

an element of V(m)
n−vs

(ignore trailing zeroes in v′ if necessary). Our induction hypothesis
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says that

∑
δ:v(δ)=v′

qh(δ) = qm
Ps−1

i=0 vi(vi−1)/2
s−1∏
i=1

qvi
Pm

j=1(m−j)vi−j

[
vi + vi−1 + · · · + vi−m − 1

vi, vi−1 + · · · + vi−m − 1

]
q

;

note that any trailing zeroes in v′ just contribute extra factors of 1 to the right side, which
are harmless. We want to establish the analogous formula for∑

γ:v(γ)=v

qh(γ).

For this purpose, recast the construction given in the q = 1 case as follows. We can
uniquely produce every γ with v(γ) = v by: first, choosing a δ with v(δ) = v′; and second,
choosing a way to insert vs copies of s into δ in valid locations. The generating function
for the number of ways to choose δ, where the power of q records h(δ), is by assumption

qm
Ps−1

i=0 vi(vi−1)/2
s−1∏
i=1

qvi
Pm

j=1(m−j)vi−j

[
vi + vi−1 + · · ·+ vi−m − 1

vi, vi−1 + · · ·+ vi−m − 1

]
q

.

To complete the proof, we need to show that the increase in the h-statistic caused by the
second choice (namely, h(γ) − h(δ)) has generating function

qmvs(vs−1)/2qvs
Pm

k=1(m−k)vs−k

[
vs + vs−1 + · · ·+ vs−m − 1

vs, vs−1 + · · ·+ vs−m − 1

]
q

; (14)

then the desired result will follow from the product rule for generating functions ([1], Ch.
10).

We encode the choice of how to insert the vs copies of s into δ as a word

w ∈ R(0vs1vs−1+···+vs−m−1).

To find w, read the symbols in the completed vector γ from left to right. Write down
a zero in w every time an s occurs in γ; write down a one in w every time one of the
symbols s− 1, . . . , s−m occurs in γ; ignore all other symbols in γ. By the conditions on
γ, the first symbol in w must be a one (since some symbol in {s − 1, . . . , s − m} must
appear just before the leftmost s in γ). Erase this initial 1 to obtain the word w.

We will prove that

h(γ) − h(δ) = mvs(vs − 1)/2 + vs

m∑
k=1

(m− k)vs−k + coinv(w); (15)

if this equation holds, then (14) immediately follows from it because of (11).
The proof of (15) proceeds by induction on the value of coinv(w). Suppose coinv(w) =

0 first. This happens iff all vs copies of s were inserted into δ immediately following the
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last occurrence of any symbol in the set {s−1, . . . , s−m}. How do these vs newly inserted
symbols affect the h-statistic? To answer this, we must compute the sum (see (7))∑

i<j

scm(γi − γj)

over all pairs (i, j) such that γi = s or γj = s.
First, consider the pairs (i, j) for which i < j and γi = s and γj = s. There are

(
vs

2

)
such pairs, and each contributes scm(s − s) = scm(0) = m to the h-statistic. This gives
the term mvs(vs − 1)/2 in (15).

Second, consider the pairs (i, j) for which i < j and γi = s and γj 6= s. Since all
the copies of s in γ occur in a contiguous group following all instances of the symbols
s − 1, . . . , s − m, and since s is the largest symbol appearing in γ, j > i implies that
γj < s−m. Then scm(γi − γj) = 0, since γi − γj > m. So these pairs contribute nothing
to the h-statistic.

Third, consider the pairs (i, j) for which i < j and γi 6= s and γj = s. Since s is the
largest symbol, we have γi < s. Write γi = s − k for some k > 0, and consider various
subcases. Suppose k ∈ {1, 2, . . . , m}. Then scm(γi − γj) = scm(−k) = m − k. For how
many pairs (i, j) does it happen that i < j, γi = s− k, and γj = s? There are vs choices
for the index j and vs−k choices for the index i; the condition i < j holds automatically,
since all occurrences of s occur to the right of all occurrences of s − k. Thus, we get a
total contribution to the h-statistic of (m − k)vs(vs−k) for this k. Adding over all k, we
obtain the term

vs

m∑
k=1

(m− k)vs−k

appearing in (15). On the other hand, if k > m, then scm(γi − γj) = scm(−k) = 0, so
there is no contribution to the h-statistic.

The three cases just considered are exhaustive, so we conclude that (15) is true when
coinv(w) is zero.

For the inductive step, consider what happens when we replace two consecutive sym-
bols 10 in w by 01, thus increasing coinv(w) by one. Let w′ be the new word after the
replacement, and let γ′ be the associated vector obtained by inserting s’s into δ according
to the encoding w′. We may assume, by induction, that (15) is correct for γ and w. Pass-
ing from w to w′ increases the right side of (15) by one. Hence, (15) will be correct for
γ′ and w′, provided that h(γ′) = h(γ) + 1. To obtain γ′ from γ, look at the symbols in γ
corresponding to the replaced string 10 in w. The symbol corresponding to the 0 is an s.
This s is immediately preceded in γ by a symbol in {s− 1, . . . , s−m} which corresponds
to the 1, by the conditions on γ and the fact that s > 0. Say s− k immediately precedes
this s. The effect of replacing 10 by 01 in w is to move the s leftwards, past its prede-
cessor s − k, and re-insert it in the next valid position in γ. This valid position occurs
immediately to the right of the next occurrence of a symbol in {s, s− 1, s− 2, . . . , s−m}
left of the symbol s− k. Pictorially, we have:

original γ = . . . (s− j) z1 z2 . . . z` (s− k) s . . .
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where 0 ≤ j ≤ m, 1 ≤ k ≤ m, ` ≥ 0, and every zi < s−m. After moving s left, we have

new γ′ = . . . (s− j) s z1 z2 . . . z` (s− k) . . . .

Note that the symbol s− j must exist, lest γ′0 = s > 0.
Now, let us examine the effect of this motion on the h-statistic. When we move the s

left past its predecessor s− k in γ, we get a net change in the h-statistic of

scm(s− [s− k]) − scm([s− k] − s) = scm(k) − scm(−k) = +1,

since 1 ≤ k ≤ m (see (7)). As before, since |s− zi| > m, moving the s past each zi will
not affect the h-statistic at all. Thus, the total change in the h-statistic is +1, as desired.

We can obtain an arbitrary encoding word w from the word 11 . . . 100 . . . 0 with no
coinversions by doing a finite sequence of interchanges of the type just described. Thus,
the validity of (15) for all words w follows by induction on the number of such interchanges
required (this number is exactly coinv(w), of course). This completes the proof of the
theorem.

2.5 A Bijection Proving that HC
(m)
n (q, t) = C

(m)
n (q, t)

The two proofs just given to show that formula (12) holds for C
(m)
n (q, t) and HC

(m)
n (q, t)

were completely combinatorial. Hence, we can combine these proofs to get a bijective proof
that HC

(m)
n (q, t) = C

(m)
n (q, t). Fix m and n. We describe a bijection φ : D(m)

n → D(m)
n

such that
h(D) = area(φ(D)) and area(D) = b(φ(D)) for D ∈ D(m)

n

and a bijection ψ = φ−1 : D(m)
n → D(m)

n such that

b(D) = area(ψ(D)) and area(D) = h(ψ(D)) for D ∈ D(m)
n .

These bijections will show that the three statistics area, h, and b all have the same
univariate distribution on D(m)

n .

Description of φ. Let D be an m-Dyck path of height n. To find the path φ(D):

• Represent D by the vector of row lengths γ(D) = (γ0(D), . . . , γn−1(D)), where γi(D)
is the number of area cells in the i’th row from the bottom.

• Define v = (v0, . . . , vs) by letting vj be the number of occurrences of the value j in
the vector γ(D).

• Starting with an empty triangle, draw a bounce path from (0, 0) with successive
vertical segments v0, . . . , vs and horizontal segments h0, h1, . . ., where hi = vi +
vi−1 + · · ·+ vi−(m−1) for each i.

• For 1 ≤ i ≤ s, form a word wi from γ(D) as follows. Initially, wi is empty. Read γ
from left to right. Write down a zero every time the symbol i is seen in γ. Write
down a one every time a symbol in {i− 1, . . . , i−m} is seen in γ. Ignore all other
symbols in γ. At the end, erase the first symbol in wi (which is necessarily a 1).
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• Let R1, . . . , Rs be the empty rectangles above the bounce path. Let R′
1, . . . , R

′
s be

these rectangles with the leftmost columns deleted (as in §2.3). For 1 ≤ i ≤ s, use
the word wi to fill in the part of the path lying in R′

i, from the southwest corner to
the northeast corner, by taking a north step for each zero in wi, and an east step
for each one in wi. Call the completed path φ(D).

The two preceding proofs have already shown that φ has the desired effect on the various
statistics.

Example. Let D be the 2-Dyck path of height 12 depicted in Figure 5. We have

γ(D) = (0, 0, 1, 3, 5, 1, 2, 3, 5, 5, 4, 1); area(D) = 30; h(D) = 41.

Doing frequency counts on the entries of γ, we compute

v = (v0, v1, v2, v3, v4, v5) = (2, 3, 1, 2, 1, 3).

Given v, we can draw the bounce path shown in Figure 8 with 5 empty rectangles above
it. Now, we compute the words wi:

w1 = 1000; w2 = 11101; w3 = 01101; w4 = 110; w5 = 01001.

Using these words to fill in the partial paths, we obtain the path D′ in Figure 6, which
has b(D) = 30 and area(D) = 41.

Here is a mild simplification of the bijection. Leave the first 1 at the beginning of each
wi instead of erasing it. Then the wi tell us how to construct the partial paths in the full
rectangles Ri (rather than the shortened rectangles R′

i). Every such partial path begins
with an east step, as required by the bouncing rules.

Description of ψ. Let D be an m-Dyck path of height n. To find the path ψ(D):

• Draw the bounce path derived from D according to the bouncing rules (see §2.2).
Let v = (v0, . . . , vs) be the lengths of the vertical moves in this bounce path.

• Let R1, . . . , Rs be the rectangular regions above the bounce path. These regions
contain partial paths going from the southwest corner to the northeast corner. For
1 ≤ i ≤ s, find the word wi by traversing the partial path in Ri and writing a one for
each east step and a zero for each north step. Note that every wi has first symbol
one.

• Build up γ as follows. Start with a string of v0 zeroes. For i = 1, 2, . . . , s, insert vi

copies of i into the current string γ according to wi. More explicitly, read wi left to
right. When a 1 is encountered, scan γ from left to right for the next occurrence
of a symbol in {i − 1, . . . , i −m}. When a 0 is encountered, place an i in the gap
immediately to the right of the current symbol in γ. Continue until all symbols i
have been inserted.
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• Use γ to draw the picture of a new m-Dyck path D′ of height n, by placing γi area
cells in the i’th row of the figure. Since γ ∈ G(m)

n , the resulting picture will be a
valid path.

Example. Let D be the 3-Dyck path of height 8 shown in Figure 7. From the bounce
path drawn in that figure, we find that

v = (v0, . . . , v9) = (1, 1, 1, 1, 2, 0, 0, 1, 1).

Examining the rectangles above the bounce path (several of which happen to be empty
or have height zero), we get the words wi:

w1 = 10; w2 = 110; w3 = 1110; w4 = 10011; w5 = 1111; w6 = 111; w7 = 110; w8 = 10.

Now, build up the vector γ as follows:

• Initially, γ = 0 (since v0 = 1).

• Use w1 = 10 to insert one 1 into γ to get γ = 01.

• Use w2 = 110 to insert one 2 into γ to get γ = 012.

• Use w3 = 1110 to insert one 3 into γ to get γ = 0123.

• Use w4 = 10011 to insert two 4’s into γ to get γ = 014423.

• Use w5 = 1111 to insert zero 5’s into γ to get γ = 014423.

• Use w6 = 111 to insert zero 6’s into γ to get γ = 014423.

• Use w7 = 110 to insert one 7 into γ to get γ = 0144723.

• Use w8 = 10 to insert one 8 into γ to get γ = 01447823.

Thus, the image path D′ is the unique 3-Dyck path of height 8 such that γ(D′) =
(0, 1, 4, 4, 7, 8, 2, 3). D′ is pictured in Figure 10.

As this example indicates, the presence of vertical moves of length zero does not alter
the validity of the preceding proofs and bijections.

Remark. The main difficulty involved in the combinatorial investigation of the original
q, t-Catalan sequence OCn(q, t) was discovering the two statistics dinv and bounce defined
in §1.4. The area statistic, on the other hand, is quite natural to consider once one notices
that OCn(1, 1) counts the number of Dyck paths of height n. Similar comments apply to
the higher q, t-Catalan sequences.

Having introduced the bijections φ and ψ = φ−1, we can consider the problem of
finding these statistics in a new light. It is natural to count Dyck paths (or m-Dyck
paths) by constructing the associated γ-sequences through successive insertion of zeroes,
ones, twos, etc., as done in §2.4. The map φ arises by representing the insertion choices

the electronic journal of combinatorics 12 (2005), #R9 24



’sγ

0
1
4

7
8
2
3
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(0, 0)
m = 3, n = 8, h(D’) = 23, area(D’) = 29

Figure 10: The image ψ(D) for the path D from Figure 7.

geometrically as paths inside rectangles and positioning these rectangles in a nice way (as
in Figure 8). The remarkable coincidence is that the resulting picture is another m-Dyck
path.

We may thus regard the area statistic and the map φ as the “most fundamental”
concepts. Then the two new statistics h and b can be “guessed” by simply looking at
what happens to the area statistic when we apply φ (or φ−1)! We find that φ sends area
to the bounce statistic b, and φ−1 sends area to the generalized Haiman statistic h.

This suggests a possible approach to other problems in which there are two variables
with the same univariate distribution, but a combinatorial interpretation is only known for
one of the variables. Finding a combinatorial interpretation for the Kostka-Macdonald
coefficients (see [21]) provides an example of such a problem. There, the q-statistic is
known (the so-called “cocharge statistic” on tableaux), but the t-statistic has not been
discovered. For other examples of this technique of “guessing” new statistics, consult [17].

3 Recursions for C
(m)
n (q, t)

In this section, we prove several recursions for C
(m)
n (q, t) and related sequences (see (23)

and (36)). Of course, the same recursions hold for HC
(m)
n (q, t). These recursions are more

convenient for some purposes than the summation formula given in §2.3. As an example,
we use the recursion to prove a formula for C

(m)
n (q, 1/q) which shows that C

(m)
n (q, 1/q) =

OC
(m)
n (q, 1/q) (see (24) and (34)).
We begin by describing Haglund’s recursion for Cn(q, t) (see [9]). This recursion is a

key ingredient in the long proof that SCn(q, t) = Cn(q, t). We will just give the idea of
the proof here; full details may be found in [5, 6].
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3.1 Haglund’s Recursion for Cn(q, t)

Fix n. Let Fn,s denote the set of Dyck paths of height n that terminate in exactly s east
steps. For such a path, the length of the first bounce step will be s (see Figure 12 below).
Define

Fn,s(q, t) =
∑

D∈Fn,s

qarea(D)tbounce(D).

These generating functions are related to Cn(q, t) by the identities

Cn(q, t) =
n∑

s=1

Fn,s(q, t)

tnCn(q, t) = Fn+1,1(q, t).

The first identity follows by classifying Dyck paths of height n by the number s of east
steps in the topmost row. To prove the second identity, augment the diagram of a Dyck
path of height n by adding a new top row with no area cells. The result is a Dyck path
of height n + 1 terminating in one east step preceded by one north step. All elements of
Fn+1,1 arise uniquely in this way. The bounce path derived from this augmented Dyck
path starts with a bounce of size 1 contributing n to the bounce statistic, and afterwards
bounces in the same way that the original bounce path did. See Figure 11, and compare
to Figure 3.

(10,10)

(5,5)

(1,1)

(0,0)

(14,14)

(15,15)

n = 14, n+1 = 15, bounce(D’) = 16+14, area(D’) = 41

Figure 11: Adding an empty top row to a Dyck path.
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Theorem (Haglund, [9]). The generating functions Fn,s satisfy the recursion

Fn,s(q, t) = tn−sqs(s−1)/2
n−s∑
r=1

[
r + s− 1

r, s− 1

]
q

Fn−s,r(q, t) for 1 ≤ s < n (16)

with initial condition Fn,n(q, t) = qn(n−1)/2.

Remark. Note that the initial condition and recursion uniquely determine the polyno-
mials Fn,s(q, t) and allow these polynomials to be computed rapidly.

Proof. Consider the initial condition first. If D ∈ Fn,n, then D is a Dyck path of height n
terminating in exactly n east steps in the top row. This can only happen if D is the path
consisting of n north steps followed by n east steps. Then area(D) = n(n − 1)/2 (since
γ(D) = (0, 1, . . . , n− 1)) and bounce(D) = 0 (since the only bounce hits the diagonal at
(0, 0)). So, Fn,n(q, t) = qn(n−1)/2t0 as claimed.

The recursion for Fn,s follows by “removing the first bounce” from a Dyck path to
obtain a smaller Dyck path of height n − s. More precisely, let D ∈ Fn,s. Then D
ends in s east steps, so the derived bounce path starts with a bounce of size s ending at
(n − s, n− s). See Figure 12. If we ignore the top s rows of the figure, we see a smaller
Dyck path D′ of height n − s. Observe that the derived bounce path of D′ is just the
bounce path of D with the first bounce removed.

(0, 0)

(n, n)

(n−s, n−s)

s

n−s

r

s

Figure 12: Proving the recursion by removing the first bounce.

We can uniquely construct a path D ∈ Fn,s as follows. Choose a number r ∈
{1, 2, . . . , n − s}. Given r, build D by making a sequence of choices. First, choose a
path D′ ∈ Fn−s,r. The generating function for this choice is Fn−s,r(q, t). Second, draw
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a vertical and horizontal segment to create a triangle with vertices (n − s, n − s) and
(n − s, n) and (n, n). This triangle adds s(s − 1)/2 area cells to the path being con-
structed, giving a factor qs(s−1)/2. Also, the path D will have a new bounce going from
(n, n) to (n − s, n − s), so we get a contribution of tn−s as well. Third, draw a subpath
ending with a north step in the rectangular region above the top row of D′ and left of the
triangle just drawn. This subpath does not change the bounce statistic (since it ends in
a north step), but the area increases by the number of cells beneath the subpath in its
rectangle. The generating function for this choice is thus

[
r+s−1
r,s−1

]
q
. The recursion follows

immediately from the sum and product rules for generating functionons ([1], Ch. 10).

Proving that Cn(q, t) = SCn(q, t).
In [5, 6], Garsia and Haglund used the recursion (16) to prove that Cn(q, t) = SCn(q, t)
for all n. More specifically, they defined

Qn,s(q, t) = tn−sqs(s−1)/2∇(en−s[X(1 + q + · · ·+ qs−1)])
∣∣
s1n−s

.

Here, X is a formal infinite alphabet X = x1 + x2 + · · · , and the square brackets denote
plethystic substitution; in particular en[X] = en. Garsia and Haglund showed that

Qn,s(q, t) = tn−sqs(s−1)/2

n−s∑
r=1

[
r + s− 1

r, s− 1

]
q

Qn−s,r(q, t) and Qn,n(q, t) = qn(n−1)/2.

In other words, Qn,s satisfies the same recursion and initial condition that Fn,s does. By
uniqueness, Qn,s = Fn,s for all n and s. In particular,

Cn(q, t) = Fn+1,1(q, t)/t
n = Qn+1,1(q, t)/t

n = ∇(en[X])|s1n
= SCn(q, t).

3.2 A recursion based on removing the first bounce

Our goal here is to modify the idea in the proof of Haglund’s recursion to get a recursion
for C

(m)
n (q, t). The main difficulty is that the bounce path depends on the prior bouncing

history when m > 1, so that we cannot simply remove the first bounce and restart “from
scratch.” Consequently, we must add more subscripts that keep track of the lengths of
the first m vertical moves in the bounce path.

Fix m > 1. Define Fn;v0,v1,...,vm−1 to be the collection of m-Dyck paths of height n
whose derived bounce paths start with vertical moves of lengths v0, v1, . . . , vm−1, in that
order. Define Fn;v0,...,vm−1(q, t) to be the sum of qarea(D)tb(D) over all paths D ∈ Fn;v0,...,vm−1 .
(An empty sum is defined to be zero.) We make the following observations about these
definitions.

• If Fn;v0,v1,...,vm−1 is a nonempty collection of paths, then we must have v0 > 0, vi ≥ 0
for i > 0, and v0 + · · · + vm−1 ≤ n.

• If v0 = n and vi = 0 for i > 0, then Fn;n,0,...,0 consists of the single path D that goes
north n steps and then east mn steps. Hence, Fn;n,0,...,0(q, t) = qmn(n−1)/2t0.

the electronic journal of combinatorics 12 (2005), #R9 28



• Consider the collection Fn+1;1,0,...,0. A path D in this collection starts by going north
one unit and then east m units (since v1 = · · · = vm−1 = 0). At this point, D has
returned to the diagonal x = my. If we look at the rest of the path beyond this
point, we get an arbitrary m-Dyck path D′ of height n. Also, the bounce path for
D′ is the same as the latter part of the bounce path for D (starting with vm). Note
that the prior history in D is immaterial, since vm−1 = · · · = v1 = 0. See Figure 13.
We conclude that

tmnC(m)
n (q, t) = Fn+1;1,0,...,0(q, t).

The extra factor of tmn accounts for the contribution of the first m bounces to b(D),
which is not present in b(D′).

Figure 13: Removing a trivial bottom row of an m-Dyck path.

• There is a version of the formula (12) for Fn;v0,...,vm−1(q, t). Specifically,

Fn;v0,...,vm−1(q, t) =∑
(vm,vm+1,...)

t
P

i≥0 iviqm
P

i≥0

(
vi

2

)∏
i≥1

qvi
Pm

j=1(m−j)vi−j

[
vi + vi−1 + · · ·+ vi−m − 1

vi, vi−1 + · · ·+ vi−m − 1

]
q

.

This equation follows immediately from the combinatorial interpretation of the sum-
mation index v = (v0, v1 . . .) appearing in (12) as the lengths of the vertical segments
in the bounce path. Since v0, . . . , vm−1 are fixed in advance, we need only sum over
the remaining segments vm, vm+1, . . ..

To state the new recursion, it is convenient to introduce a modified version of the
generating functions Fn;v0,...,vm−1(q, t). Intuitively, we need to remove the influence of v0

on the future bouncing history to obtain a recursion. Assume that v0 > 0 first. Define
En;v0,...,vm−1 to be the collection of all m-Dyck paths D of height n with the following
properties. First, the bounce path derived from D starts with vertical moves of lengths
v0, . . . , vm−1. Second, the first m − 1 rectangles R1, . . . , Rm−1 above the bounce path of
D (see Figure 8) are all empty. This means that the subpath in each rectangle goes all
the way east before turning north, so that there are no area cells in the rectangle. Then
define

En;v0,...,vm−1(q, t) =
∑

D∈En;v0,...,vm−1

qarea(D)tb(D).
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By filling the empty rectangles R1, . . . , Rm−1 in an object D ∈ En;v0,...,vm−1 according
to the bouncing rules, we deduce that

Fn;v0,...,vm−1(q, t) = En;v0,...,vm−1(q, t)
m−1∏
i=1

[
vi + vi−1 + · · · + vi−m − 1

vi, vi−1 + · · · + vi−m − 1

]
q

when v0 > 0. (17)

This relation gives an exact formula for En;v0,...,vm−1(q, t) when v0 > 0:

En;v0,...,vm−1(q, t) =∑
(vm,vm+1,...)

t
P

i≥0 iviqm
P

i≥0
1
2
vi(vi−1)

∏
i≥1

qvi
Pm∧i

j=1 (m−j)vi−j

∏
i≥m

[
vi + vi−1 + · · · + vi−m − 1

vi, vi−1 + · · ·+ vi−m − 1

]
q

.

(18)

Here, we have written m ∧ i to denote the minimum of m and i. Note that the validity
of equation (18) does not depend on the earlier convention that vi = 0 for all negative i.
Now, if v0 = 0, we simply define En;v0,...,vm−1(q, t) by formula (18).

It follows from (17) that E
(m)
n+1;1,0,...,0(q, t) = F

(m)
n+1;1,0,...,0(q, t). Therefore,

C(m)
n (q, t) = t−mnE

(m)
n+1;1,0,...,0(q, t). (19)

We can obtain a recursion for En;v0,...,vm−1 by breaking up the summation in (18) based
on the value of vm. Consider a fixed choice of vm in the range {0, 1, . . . , n−v0−· · ·−vm−1}.
Write down (18) with n replaced by n− v0 and vk replaced by vk+1 for all k ≥ 0:

En−v0;v1,...,vm(q, t) =
∑

(vm+1,vm+2,...)

t
P

i≥0 ivi+1qpow1

∏
i≥m

[
vi+1 + vi + · · ·+ vi+1−m − 1

vi+1, vi + · · ·+ vi+1−m − 1

]
q

, (20)

pow1 = m
∑
i≥0

(
vi+1

2

)
+
∑
i≥1

vi+1

m∧i∑
j=1

(m− j)vi+1−j .

Replace i by i− 1 in this formula to get

En−v0;v1,...,vm(q, t) =
∑

(vm+1,vm+2,...)

t
P

i≥1(i−1)viqpow2

∏
i>m

[
vi + vi−1 + · · · + vi−m − 1

vi, vi−1 + · · ·+ vi−m − 1

]
q

, (21)

pow2 = m
∑
i≥1

(
vi

2

)
+
∑
i≥2

vi

m∧(i−1)∑
j=1

(m− j)vi−j .

In the original formula for En;v0,...,vm−1 , we can sum over vm first and then sum over the
remaining vj ’s. The resulting formula is:

En;v0,...,vm−1(q, t) =
n−v0−···−vm−1∑

vm=0

∑
(vm+1,vm+2,...)

t
P

i≥0 iviqpow3

∏
i≥m

[
vi + vi−1 + · · ·+ vi−m − 1

vi, vi−1 + · · · + vi−m − 1

]
q

,
(22)
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pow3 = m
∑
i≥0

(
vi

2

)
+
∑
i≥1

vi

m∧i∑
j=1

(m− j)vi−j.

To go from the formula in (21) to the corresponding summand in (22), we need to multiply
the former by the expression

t0v0+v1+v2+v3+···qm(v0
2 )qv1v0(m−1)

m∏
i=2

qvi(m−i)v0

[
vm + · · · + v0 − 1

vm, vm−1 + · · · + v0 − 1

]
q

.

Doing this multiplication and adding over all choices of vm, we obtain the recursion

En;v0,...,vm−1(q, t) =

tn−v0qm(v0
2 )

m−1∏
i=1

qv0vi(m−i)

n−v0−···−vm−1∑
vm=0

[
vm + · · ·+ v0 − 1

vm, vm−1 + · · ·+ v0 − 1

]
q

En−v0;v1,...,vm−1,vm(q, t).

(23)

The initial conditions are
En;n,0,...,0(q, t) = qmn(n−1)/2t0

En;0,0,...,0(q, t) = 0.

Observe that we recover Haglund’s original recursion when m = 1.
It is hoped that (23) could be used to prove the conjecture C

(m)
n (q, t) = SC

(m)
n (q, t).

One difficulty is finding the analogues of En;v0,...,vm−1 in the symmetric function setting.
Computer experiments suggest that

En;v0,0,...,0(q, t) = qmv0(v0−1)/2t(m−1)(n−v0) ∇m(en−v0 [X(1 + q + q2 + · · · + qv0−1)])
∣∣
s
1n−v0

,

However, we have not found a conjectured formula for the general En;v0,...,vm−1 in terms of
the nabla operator.

It is clear that we could perform a similar manipulation of (12) to obtain a recursion
based on removing the last nontrivial vertical bounce vs. The inductive proof in §2.4
that (12) equals HC

(m)
n (q, t) was based on this idea. There is a slight added complication

because one must know s, not just vs, to determine the effect of removing the last bounce
on b(D). On the other hand, vs only affects the dimensions of one nontrivial rectangle in
Figure 8.

3.3 Application: A Formula for the Specialization C
(m)
n (q, 1/q)

We now use the recursion of the preceding subsection to derive an exact formula for the
specialization

E(m)
n;v0,...,vm−1

(q, 1/q).

In particular, using this formula together with (19), we prove that

qmn(n−1)/2C(m)
n (q, 1/q) =

1

[mn + 1]q

[
mn + n

mn, n

]
q

.
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Garsia and Haiman proved the same formula for OC
(m)
n (q, 1/q) in [7]. It follows that

C(m)
n (q, 1/q) = OC(m)

n (q, 1/q).

The Formula for the E’s. Fix m, N , and v = (v0, . . . , vm−1). Our formula for

E
(m)
N ;v(q, 1/q) will involve various intermediate quantities A, B, etc., depending on N ,

m, and v. If the dependence on the variables needs to be made explicit, we will write
A(N,m, v), B(N,m, v), etc.

The basic formula is

E
(m)
N ;v(q, 1/q) = A0 − B1 − B2 − · · · −Bm, (24)

where A0 and each Bj is a certain q-binomial coefficient multiplied by a certain power of
q. Specifically, define

A = A(N,m, v0, . . . , vm−1) =

[
(m+ 1)N − 1 −∑m−1

k=0 (m− k)vk

N −∑m−1
k=0 vk

]
q

B = B(N,m, v0, . . . , vm−1) =

[
(m+ 1)N − 1 −∑m−1

k=0 (m− k)vk

N − 1 −∑m−1
k=0 vk

]
q

P0 = P0(N,m, v0, . . . , vm−1) = −m
2

(N2 +N) +

[
m

(
m−1∑
k=0

vk

)
− (m− 1)

]
N

+
m−2∑
k=0

(m− 1 − k)vk +
∑

0≤j<k≤m−1

(j − k)vjvk

Pj = Pj(N,m, v0, . . . , vm−1) = vm−1 + (j − 1)N

−
m−2∑
`=0

min(j − 1, m− 2 − `)v` (1 ≤ j ≤ m)

Finally, define

A0 = A0(N,m, v0, . . . , vm−1) = AqP0

Bj = Bj(N,m, v0, . . . , vm−1) = BqP0+Pj (1 ≤ j ≤ m)

Examples. (1) Let m = 1 and v0 = w. Then

E
(1)
N ;w(q, 1/q) = q−(N2+N)/2+wN

{[
2N − w − 1

N − w,N − 1

]
q

− qw

[
2N − w − 1

N − w − 1, N

]
q

}
.

This is equivalent to a formula for Fn,s(q, 1/q) proved by Haglund in [9].
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(2) Let m = 2, v0 = w, v1 = x. Then

E
(2)
N ;w,x(q, 1/q) = qpow2

{[
3N − 2w − x− 1

N − w − x, 2N − w − 1

]
q

−(qx + qN+x)

[
3N − 2w − x− 1

N − w − x− 1, 2N − w

]
q

}
,

pow2 = −(N2 +N) + (2w + 2x− 1)N − w(x− 1).

(3) Let m = 3, v0 = w, v1 = x, v2 = y. Then

E
(3)
N ;w,x,y(q, 1/q) = qpow3

{[
4N − 3w − 2x− y − 1

N − w − x− y, 3N − 2w − x− 1

]
q

−(qy + qy+N−w + qy+2N−w)

[
4N − 3w − 2x− y − 1

N − w − x− y − 1, 3N − 2w − x

]
q

}
,

pow3 = −3(N2 +N)/2 + (3w + 3x+ 3y − 2)N + (y − 1)(−2w − x) − wx.

(4) Let m = 5 and (v0, v1, v2, v3, v4) = (v, w, x, y, z). Then

P1 = z
P2 = z +N − v − w − x
P3 = z + 2N − 2v − 2w − x
P4 = z + 3N − 3v − 2w − x
P5 = z + 4N − 3v − 2w − x.

Proof of the Formula. To prove (24), we need to check that the right side satisfies the

same initial conditions and recursion that the specialization E
(m)
N ;v(q, 1/q) satisfies. This

check requires an inordinate amount of tedious manipulations of powers of q. Therefore,
we only give an outline of the proof here, omitting routine algebraic manipulations. We
refer the interested reader to the author’s thesis [17] for more details.

Step 1. We begin by establishing the following identity, valid for nonnegative integers
C, D, and E:

D−E∑
i=0

[
C + i

C, i

]
q

[
D − i

E,D − i− E

]
q

q(E+1)i =

[
C +D + 1

D − E,C + 1 + E

]
q

. (25)

Recall from §2.3 that [
a+ b

a, b

]
q

=
∑

P∈Pa,b

qarea(P ) =
∑

P∈Pa,b

qab−area(P ),
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D − E

i

i
D − E − i

E

C + E + 1

E + 1

C

s

region 1

region 2region 3

Figure 14: Picture used to prove (25).

where Pa,b is the set of lattice paths contained in an a× b rectangle. Using this fact, we
can prove (25) by drawing a picture. See Figure 14.

We classify paths P contained in a rectangle of height C + E + 1 and width D − E
based on what happens in row (C+1) from the top. This row contains exactly one vertical
step s of P ; let i denote the distance of this vertical step from the left edge. Evidently,
0 ≤ i ≤ D − E. Given i, we can uniquely construct such a path P as follows. First,
choose a subpath P1 in the rectangle R1 northwest of s, which has height C and width i.
Second, choose a subpath P2 in the rectangle R2 southeast of s, which has height E and
width D − E − i. Then P is the concatenation of P1 and the vertical step s and P2.

Assume that the power of q records the area below the path P . This area is the sum of
the area below P1 inside R1, the area below P2 inside R2, and the full area of the southwest
rectangle of height E + 1 and width i. These three pieces of the area are accounted for
by the factors

[
C+i
C,i

]
q
,
[

D−i
E,D−i−E

]
q
, and q(E+1)i, respectively. Adding over all choices of i,

we immediately obtain (25).

Step 2. We prove the identity

q−C

{[
C +D

C,D

]
q

−
[

C +D

C − 1, D + 1

]
q

}
=

[
C +D

C,D

]
q

− qD−C+1

[
C +D

C − 1, D + 1

]
q

. (26)
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This identity is equivalent to the relation[
C +D

C,D

]
q

+ qD+1

[
C +D

C − 1, D + 1

]
q

= qC

[
C +D

C,D

]
q

+

[
C +D

C − 1, D + 1

]
q

,

which can also be proved by drawing a picture. See Figure 15.
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C
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C

C

D + 1

right sideleft side

Figure 15: Picture used to prove (26).

Here, the power of q records the area above a path that goes from northwest to
southeast in a rectangle of height C and width D + 1. The left side classifies such paths
by their initial step at the northwest corner. If this step is horizontal, the remainder of

the path lies in a rectangle of height C and width D, giving the term

[
C +D

C,D

]
q

. If this

step is vertical, the remainder of the path lies in a rectangle of height C − 1 and width

D + 1, giving the term

[
C +D

C − 1, D + 1

]
q

. However, we must also multiply by qD+1 to

account for the D + 1 area cells in the top row of the original rectangle.
The right side classifies the paths by their final step at the southeast corner. If this

step is horizontal, the remainder of the path lies in a rectangle of height C and width D,

giving the term

[
C +D

C,D

]
q

. However, we must also multiply by qC to account for the C
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area cells in the rightmost column of the original rectangle. If the final step is vertical,
the remainder of the path lies in a rectangle of height C − 1 and width D+ 1, giving the

term

[
C +D

C − 1, D + 1

]
q

.

Step 3. The next step is to check that the right side of (24) satisfies the specialized initial
conditions

E
(m)
N ;N,0,...,0(q, 1/q) = qmn(n−1)/2

E
(m)
N ;0,0,...,0(q, 1/q) = 0.

We leave this algebraic manipulation to the reader.

Step 4. The next step is to check that the right side of (24) satisfies the recursion (23)
with t specialized to 1/q. After setting t = 1/q and simplifying, this recursion can be
written

E
(m)
N ;v0,...,vm−1

(q, 1/q) = qpow

N−v0−...−vm−1∑
i=0

[
C + i

C, i

]
q

E
(m)
N−v0;v1,v2...,vm−1,i(q, 1/q), (27)

where

pow = v0 −N +m(v2
0 − v0)/2 +

m−1∑
k=1

(m− k)v0vk

C = v0 + v1 + · · ·+ vm−1 − 1

The proof will be finished if we can show this same relation holds with the E’s re-
placed by the appropriate formulas from the right side of (24). Specifically, write A′

for A(N,m, v0, . . . , vm−1), write P ′
j for Pj(N,m, v0, . . . , vm−1), and so forth. Write A′′

for A(N − v0, m, v1, . . . , vm−1, i), write P ′′
j for Pj(N − v0, m, v1, . . . , vm−1, i), and so forth.

Then we must show that the quantity

A′
0 − B′

1 − B′
2 − · · · −B′

m (28)

is equal to the quantity

qpow

N−v0−...−vm−1∑
i=0

[
C + i

C, i

]
q

(A′′
0 − B′′

1 −B′′
2 − · · · − B′′

m) . (29)

To show this, we write the latter expression as the sum of m + 1 smaller expressions,
namely

qpow

N−v0−...−vm−1∑
i=0

[
C + i

C, i

]
q

A′′
0

and (for 1 ≤ j ≤ m)

qpow

N−v0−...−vm−1∑
i=0

[
C + i

C, i

]
q

(−B′′
j ).
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Each of these m+ 1 expressions can be evaluated (see below) using the lemma from Step
1. The resulting sum is almost the desired quantity

A′
0 − B′

1 −B′
2 − · · · − B′

m.

More specifically, for 2 ≤ j ≤ m, the expression involving −B′′
j will evaluate to −B′

j−1. On
the other hand, the expression involving −B′′

1 will evaluate to −B′
m times an unwanted

power of q. Similarly, the expression involving A′′
0 will evaluate to A′

0 times another
unwanted power of q. Finally, the lemma from step 2 will show that these last two terms
are in fact equal to A′

0 − B′
m without the unwanted powers of q! This will complete the

proof of the formula (24).

Step 5. We indicate how to evaluate the expression

qpow

N−v0−...−vm−1∑
i=0

[
C + i

C, i

]
q

(A′′
0) (30)

from Step 4. The final answer will be q−(N−v0−···−vm−1)A′
0.

One must first verify the algebraic identity

P ′′
0 + pow = P ′

0 − (N − v0 − · · · − vm−1) + i

[
mN −

m−1∑
k=0

(m− k)vk

]
. (31)

Using this identity and expanding the definition of A′′
0, the expression (30) can be written

qP ′
0−(N−v0−···−vm−1)

D−E∑
i=0

[
C + i

C, i

]
q

[
D − i

E,D − E − i

]
q

qi(E+1),

where

D = (m+ 1)N − 1 −
m−1∑
k=0

(m+ 1 − k)vk

E = mN − 1 −
m−1∑
k=0

(m− k)vk

D − E = N − v0 − v1 − · · · − vm−1

Using the identity from Step 1, this new expression becomes

q−(N−v0−···−vm−1)qP ′
0

[
C +D + 1

D − E,C + 1 + E

]
q

= q−(N−v0−···−vm−1)A′
0.

Step 6. We indicate how to evaluate the expression

qpow

N−v0−...−vm−1∑
i=0

[
C + i

C, i

]
q

(−B′′
j ) (32)
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from Step 4. The answer will be −B′
j−1 for j > 1; it will be −B′qP ′

0−(N−v0−···−vm−1) for
j = 1.

The calculation is similar to the one in Step 5. Using the definition of B′′
j and and the

identity (31), we can rewrite (32) as

−qP ′
0−(N−v0−···−vm−1)

D−E+1∑
i=0

[
C + i

C, i

]
q

[
D − i

E,D − E − i

]
q

qiEqP ′′
j , (33)

where we now set

D = (m+ 1)N − 1 −
m−1∑
k=0

(m+ 1 − k)vk

E = mN −
m−1∑
k=0

(m− k)vk

D − E = N − v0 − v1 − · · · − vm−1 − 1.

The summand where i = D−E + 1 is zero, so we may adjust the upper limit of the sum
to be i = D − E instead. To continue simplifying, one must first verify the identity

P ′
j−1 = P ′′

j − i− (N − v0 − · · · − vm−1) (j > 1).

Assume j > 1 first. Using the last identity to eliminate P ′′
j , the expression (33)

becomes

−qP ′
0+P ′

j−1

D−E∑
i=0

[
C + i

C, i

]
q

[
D − i

E,D −E − i

]
q

qi(E+1).

Using the identity from Step 1, the sum (without the outside power of q) evaluates to B′.
Thus, when j > 1, the expression (32) evaluates to −B′

j−1 as claimed.
Now assume j = 1. Since P ′′

1 = i, the expression (33) becomes

−qP ′
0−(N−v0−···−vm−1)

D−E∑
i=0

[
C + i

C, i

]
q

[
D − i

E,D −E − i

]
q

qi(E+1).

Using the identity from Step 1, this becomes

−qP ′
0−(N−v0−···−vm−1)B′

as claimed.

Step 7. Let us recap the preceding calculations. We have evaluated the expression (29),
hoping to obtain the answer

(A′
0 −B′

m) − B′
1 − B′

2 − · · · −B′
m−1
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from (28). Instead, we obtained the answer

q−(N−v0−···−vm−1)(A′qP ′
0 − B′qP ′

0) − B′
1 −B′

2 − · · · − B′
m−1.

Now, use the identity from Step 2, setting

C = N − v0 − · · · − vm−1

D = mN − 1 −
m−1∑
k=0

(m− 1 − k)vk.

The result is
q−(N−v0−···−vm−1)(A′ − B′) = A′ − qP ′

mB′,

since one can check that P ′
m = D − C + 1 here. Multiplying by qP ′

0 , we see that

q−(N−v0−···−vm−1)(A′qP ′
0 − B′qP ′

0) = (A′
0 −B′

m),

so that (29) does indeed evaluate to the desired answer (28). This completes the proof.

Proving the Formula for C
(m)
n (q, 1/q). We are now ready to verify that

qmn(n−1)/2C(m)
n (q, 1/q) =

1

[mn + 1]q

[
mn + n

mn, n

]
q

. (34)

From (19) with t = 1/q, we have

C(m)
n (q, 1/q) = qmnE

(m)
n+1;1,0,...,0(q, 1/q).

Now, we use the formula just proved for the E’s with N = n + 1, v0 = 1, and vi = 0 for
i > 0. The reader may verify that, with these substitutions, we obtain

qmn(n−1)/2C(m)
n (q, 1/q) = qn−nm

{[
mn+ n

mn, n

]
q

−
[

mn + n

n− 1, mn+ 1

]
q

·
(

m−1∑
j=0

qnj+χ(j=m−1)

)}
.

The expression in the curly braces can be written[
mn + n

mn, n

]
q

·
(

1 − [n]q
∑m−1

j=0 q
nj+χ(j=m−1)

[mn+ 1]q

)
,

which in turn simplifies to[
mn + n

mn, n

]
q

·
(∑mn

k=0 q
k −∑mn

k=0 q
kχ(k 6= mn− n)

[mn + 1]q

)
=

1

[mn + 1]q

[
mn + n

mn, n

]
q

qmn−n.

The leftover power of q is exactly what is needed to cancel the outside power qn−nm. Thus,
we obtain the desired result

qmn(n−1)/2C(m)
n (q, 1/q) =

1

[mn + 1]q

[
mn + n

mn, n

]
q

.
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3.4 Recursions for C
(m)
n (q, t) based on removing the last row

We now present one more recursion (36) that is not based directly on formula (12). This
recursion is simpler in form than (23) because it has only four terms. However, one must
keep track of several new statistics in this recursion.

We need to introduce some temporary notation. Let D be an m-Dyck path of height
n. Let the bounce path of D have successive vertical moves (v0, v1, . . . , vs) and horizontal
moves (h0, h1, . . .) as usual. Here, vs is the last nonzero vertical move. Define

Q(D) = area(D);

T (D) = b(D);

Y (D) = s;

Zi(D) = vs−i for i ≥ 0;

K(D) = the total number of area cells in the top row of D;

W (D) = the number of area cells in the top row of D

left of the last vertical move of the bounce path.

Thus, Y (D) is one less than the total number of bounces needed to reach the top rim; the
statistics Zi(D) record the history of vertical moves near the end of the bounce path; and
W (D) counts the number of “extra” cells in the top row left of the bounce path. Define

D(m)
n,k to be the collection of paths D ∈ D(m)

n with K(D) = k, for 0 ≤ k ≤ m(n− 1).
For example, the 2-Dyck path E in Figure 6 has Q(E) = 41, T (E) = 30, Y (E) = 5,

Z0(E) = 3, Z1(E) = 1, W (E) = 1, and K(E) = 8. The 3-Dyck path D in Figure 7 has
Q(D) = 23, T (D) = 29, Y (D) = 8, Z0(D) = 1, Z1(D) = 1, Z2(D) = 0, W (D) = 0, and
K(D) = 5.

Now, define

Cn,k(q, t, y, z0, . . . , zm−1, w) =
∑

D∈D(m)
n,k

qQ(D)tT (D)yY (D)wW (D)

m−1∏
i=0

z
Zi(D)
i . (35)

(We suppress the dependence on m from the notation.) If k = m(n−1), there is only one

path D0 ∈ D(m)
n,m(n−1), which goes north n steps and then east mn steps. Thus, we obtain

the initial condition

Cn,m(n−1)(q, t, y, z0, . . . , zm−1, w) = qmn(n−1)/2zn
0 ,

since, by inspection, D0 has area mn(n− 1)/2 and a single nontrivial bounce of height n.
Write ~z to denote (z0, . . . , zm−1). We will show combinatorially that, for 0 ≤ k <

m(n− 1),

Cn,k(q, t, y, ~z, w) =z0q
kCn−1,k−m(q, t, ty, ~z, w)

+ q−1w−1 (Cn,k+1(q, t, y, ~z, w) − Cn,k+1(q, t, y, ~z, 0))

+ q−1tyz0z
−1
1 w−2Cn,k+1(q, t, y, wz1, wz2, . . . , wzm−1, w, 0).

(36)
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With the initial condition, this recursion uniquely determines the multivariable generating
functions Cn,k (by induction on n and backwards induction on k).

To prove this recursion, we classify a path D ∈ D(m)
n,k based on what happens at the

left edge of the top row of D. Exactly one of the following three cases must occur:

• Case 1: The path D reaches the top row by taking two consecutive north steps.
See Figure 6 for an example.

• Case 2: The path D reaches the top row by taking a north step preceded by an
east step, AND this east step did not block the progress of the next-to-last vertical
bounce move. This means that adding one more area cell to the top row of D would
not change the derived bounce path. See Figure 16 for an example.

• Case 3: The path D reaches the top row by taking a north step preceded by an east
step, AND this east step did block the progress of the next-to-last vertical bounce
move. This means that adding one more area cell to the top row of D would enable
the next-to-last bounce to reach the top rim, so that the total number of bounces
would decrease by one. See Figure 7 for an example.

c

2i

i

i 0 2 3 4 5
2 13v

1
3 (0)

6

2 45 3 3 4 (3)h
1

m = 2, n = 12, area(D) = 42, b(D) = 30

Figure 16: A path satisfying case 2 in the recursion analysis.

The three terms on the right side of (36) are the respective generating functions for
the paths in the three cases above.

To see this, first consider paths satisfying Case 1. We can uniquely construct each
such path D by first picking a path D′ of height n− 1 with k−m area cells in row n− 1,
and then placing k new area cells in row n to obtain D. See Figures 17 and 8 (where
D = E). The generating function for the choice of D′ is Cn−1,k−m(q, t, y, ~z, w). Adding
the new row influences the statistics as follows. The power of q increases by k since we
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added k new area cells. Let (v′0, . . . , v
′
s′) be the vertical moves in the bounce path for D′.

It is clear from Figure 17 that the bounce path of D will have vertical moves (v0, . . . , vs),
where s = s′, vi = v′i for i < s, and vs = v′s′ +1. Since only the last vertical move changed,
all horizontal moves before reaching the top rim are the same. Since vs = v′s′ + 1, the
power of z0 should increase by one when we pass from D′ to D. Since vi = v′i for i < s,
the powers of z1, z2, . . . should not change. Similarly, since s = s′, the power of y does not
change in the passage from D′ to D. The power of w does not change either, since there
are the same number of extra cells left of the last vertical move after adding the new row.
Finally, we have b(D) =

∑
i≥0 ivi =

∑
i≥0 iv

′
i + s = b(D′) + s, since vs = v′s + 1. We can

increase the power of t in the generating function by exactly s if we replace y by ty in
Cn−1,k−m(q, t, y, ~z, w). To see this, recall that Y (D′) = s′ = s and compare to definition
(35) [with D there replaced by D′]. Putting all this together, we see that the generating
function for paths in Case 1 is precisely z0q

kCn−1,k−m(q, t, ty, ~z, w).

new row

k − m

k

Figure 17: Constructing a path in Case 1 by adding a row.

We will treat the next two cases together. Note that all paths D satisfying Case 2
or 3 can be uniquely constructed by choosing a path D′ ∈ D(m)

n,k+1 and then removing
the leftmost area cell in the top row of D′. The generating function for the paths D′ is
Cn,k+1(q, t, y, ~z, w). However, to determine the effect of the cell removal on the bounce
statistic, we must know whether the removed cell was an “extra” cell or one that was part
of the bounce path. This complication forces the introduction of two separate cases.

If w(D′) = 0, then D′ has no extra area cells in its top row. The path D constructed
from D′ therefore belongs to case 3. Consider the definition (35) with D replaced by
D′ and k replaced by k + 1. If we substitute w = 0 in that definition (with the usual
convention that 00 = 1), we are left with the generating function for just those paths D′

with w(D′) = 0. By the sum rule, the generating function for just those paths D′ with
w(D′) > 0 must be Cn,k+1(q, t, y, ~z, w) − Cn,k+1(q, t, y, ~z, 0).
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In case 2, we start with a path D′ counted by the latter generating function. For
example, D′ could be the path D shown in Figure 16 with the cell c adjoined. To go
from D′ to D, we remove the cell in position c. This clearly decreases Q(D′) and W (D′)
by 1, but does not affect the other statistics that are determined by the bounce path. It
immediately follows that the generating function for the paths D in case 2 is

q−1w−1 (Cn,k+1(q, t, y, ~z, w) − Cn,k+1(q, t, y, ~z, 0))

To get a path D belonging to case 3, on the other hand, we must have started with a
path D′ such that w(D′) = 0. For example, the path D′ in Figure 18 is used to construct
the path D in Figure 7.

c

v
h
i

i

i 0 2 3 4 5
1 111 2

1
0 0

6

1 2 3 3 4 3 2
2
7 8 9

2
(0)
(2)

(0)
(2)

Figure 18: Constructing a path in Case 3 by deleting one cell.

The generating function for the choice of D′ is Cn,k+1(q, t, y, ~z, 0). We obtain D from
D′ by removing the leftmost area cell c in the top row of D′. To see how this affects the
statistics, compare Figure 18 to Figure 7. Clearly, the area Q(D) = Q(D′)− 1 because of
the removed cell. Let (v′0, . . . , v

′
s′) be the lengths of the vertical moves in the bounce path

forD′; let (v0, . . . , vs) be the lengths of the vertical moves in the bounce path forD. In this
case, removing the cell forces the last vertical move in D′ to be shortened by 1 unit, so that
there must be a new vertical move of length 1 afterwards in D. Thus, vi = v′i for i < s′,
vs′ = v′s′ −1, s = s′ +1, and vs = 1. We find that b(D)− b(D′) = (s′ +1) · 1− s′ · 1 = 1, so
that the bounce statistic has increased by 1. We also have Y (D) = Y (D′)+1, Z0(D) = 1,
Z1(D) = Z0(D

′)− 1, and Zi(D) = Zi−1(D
′) for i ≥ 2. Finally, we must compute the new

value W (D). After the bounce path for D takes the vertical step of length vs′ = v′s′ − 1
(this step is blocked by the east step introduced by the removed cell), the bounce path
moves east

Z1(D) + Z2(D) + · · ·+ Zm(D) = Z0(D
′) − 1 + Z1(D

′) + · · ·+ Zm−1(D
′) units.
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All the area cells above this horizontal move were present in D′; in D, all these cells exist
except the leftmost cell c. This implies that

W (D) = Z0(D
′) + · · ·+ Zm−1(D

′) − 2.

Consider the last term on the right side of (36):

q−1tyz0z
−1
1 w−2Cn,k+1(q, t, y, wz1, wz2, . . . , wzm−1, w, 0).

By the definition in (35) and the comments above,

Cn,k+1(q, t, y, z0, . . . , zm−1, 0) =
∑

D′ as in Case 3

qQ(D′)tT (D′)yY (D′)
m−1∏
i=0

z
Zi(D′)
i .

Therefore, making the indicated substitutions for the variables,

q−1tyz0z
−1
1 w−2Cn,k+1(q, t, y, wz1, wz2, . . . , wzm−1, w, 0)

=
∑
D′

qQ(D′)−1tT (D′)+1yY (D′)+1z1
0z

Z0(D′)−1
1 z

Z1(D′)
2 · · · zZm−2(D′)

m−1 wpow

(pow = Z0(D
′) + · · · + Zm−2(D

′) + Zm−1(D
′) − 2)

=
∑
D

qQ(D)tT (D)yY (D)z
Z0(D)
0 · · · zZm−1(D)

m−1 wW (D),

(37)

where the sums extend over the paths D′ and D appearing in the description of case
3 above. Thus, the third term in (36) is the correct generating function for the paths
belonging to case 3. This completes the proof of the recursion.

Remarks. The given recursion (36) keeps track of the last m vertical bounces Z0(D), ...
, Zm−1(D). This is necessary to determine what happens to the other statistics in certain
cases. Though it is not necessary here, we clearly could add even more variables zm, . . .
to keep track of the earlier bounce moves Zm(D), . . . if we wished. Later (§4), we shall
consider a more general recursion in which it becomes necessary to keep track of Zm(D).

We remark that a similar recursion can be proved for a suitable generalization of
HC

(m)
n (q, t). We do not give the details of the proof, which are quite messy, but merely

list the appropriate reinterpretations of the statistics. In this setting, one should take

Q(D) = h(D);

T (D) = area(D);

Y (D) = max
0≤i<n

γi(D);

Zi(D) = |{j : γj(D) = Y (D) − i}| for i ≥ 0;

K(D) = h(D) − h(D′),where D′ is obtained from D by

removing the rightmost value Y (D);

W (D) = the number of symbols in {Y (D) − 1, . . . , Y (D) −m} appearing

in γ(D) after the last occurrence of Y (D).

This gives an alternate way of proving that C
(m)
n (q, t) = HC

(m)
n (q, t).
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4 Trivariate Catalan Sequences

We now introduce three-variable sequences C
(m)
n (q, t, r) that generalize the higher q, t-

Catalan sequences. Our point of departure is the observation that

rab

[
a + b

a, b

]
q/r

=
∑

λ⊂Ra,b

q|λ|rab−|λ| =
∑

w∈R(0a1b)

qcoinv(w)rinv(w).

In other words, given a lattice path from the southwest corner to the northeast corner of
the rectangle Ra,b, we can keep track of both the area in Ra,b below the path and the area
in Ra,b above the path by making the indicated substitution in the q-binomial coefficient.
For convenience, set [

a+ b

a, b

]
q,r

= rab

[
a+ b

a, b

]
q/r

.
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m = 2, n = 12, area(E) = 41, area’(E) = 44, b(E) = 30

Figure 19: Visualizing the three statistics as counting cells.

We introduce a new statistic area′ on m-Dyck paths D of height n as follows. Given
D, draw the bounce path of D and the associated rectangles Ri as in Figure 8. Let R′

i

denote the rectangle Ri without its leftmost column. Define area′(D) to be the number of
complete cells below the bounce path of D plus the number of cells inside the rectangles
R′

i and above the path D. By contrast, area(D) is the number of complete cells below the
bounce path of D plus the number of cells inside the rectangles R′

i and below the path D.
For each m and n, define

C(m)
n (q, t, r) =

∑
D∈D(m)

n

qarea(D)tb(D)rarea′(D).

See Figure 19 for an example.
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In this figure, cells below the bounce path contributing to both area and area′ are
labelled by their weight qr. Cells above the bounce path but below the m-Dyck path
contribute only to area and are labelled q. Cells inside the rectangles R′

i but above the
m-Dyck path are labelled r. Finally, Figure 19 shows how we can interpret the bounce
statistic b(D) as counting certain cells in the picture as well. Specifically, we label each
cell in the column above a vertical bounce move with t. Equation (9) shows that the
number of such factors t is exactly b(D).

From Figure 19, we immediately deduce the symmetry result

C(m)
n (q, t, r) = C(m)

n (r, t, q).

For, we can interchange the number of cells labelled q and the number of cells labelled r
by merely rotating the contents of each shortened rectangle R′

i by 180◦. Note that this
rotation will not affect the bounce path, since it does not affect the leftmost columns of
the full rectangles Ri. The image of the path in Figure 19 under this involution is shown
in Figure 20.
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m = 2, n = 12, area(E’) = 44, area’(E’) = 41, b(E’) = 30

Figure 20: Interchanging area and area′ by flipping rectangles.

It is easy to incorporate area′ into formula (12). We have

C(m)
n (q, t, r) =∑

v∈V(m)
n

t
P

i≥0 ivi(qr)m
P

i≥0
1
2
vi(vi−1)

∏
i≥1

(qr)vi
Pm

j=1(m−j)vi−j

[
vi + vi−1 + · · ·+ vi−m − 1

vi, vi−1 + · · ·+ vi−m − 1

]
q,r

.

(38)

The new formula follows by recalling that the factors
[
vi+vi−1+···+vi−m−1
vi,vi−1+···+vi−m−1

]
q

keep track of

the area cells below the path in the rectangles R′
i, whereas the remaining powers of q in

(12) count the cells below the bounce path. Hence, to keep track of area′, it suffices to
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replace the latter occurrences of q by qr and to use q, r-binomial coefficients in place of
q-binomial coefficients.

The recursion in §3.2 is also easily modified. Define

En;v0,...,vm−1(q, t, r) =∑
(vm,vm+1,...)

t
P

i≥0 ivi(qr)pow1rpow2

∏
i≥m

[
vi + vi−1 + · · ·+ vi−m − 1

vi, vi−1 + · · ·+ vi−m − 1

]
q,r

,
(39)

where

pow1 = m
∑
i≥0

1

2
vi(vi − 1) +

∑
i≥1

vi

m∧i∑
j=1

(m− j)vi−j,

pow2 =
m−1∑
i=1

vi

(
(

i−1∑
j=0

vj) − 1

)
.

The extra power rpow2 accounts for the cells in the first m − 1 rectangles R′
i, which all

contribute to the r-statistic.
We have the recursion

En;v0,...,vm−1(q, t, r) =

tn−v0(qr)pow3

n−v0−···−vm−1∑
vm=0

rpow4

[
vm + · · ·+ v0 − 1

vm, vm−1 + · · · + v0 − 1

]
q,r

En−v0;v1,...,vm−1,vm(q, t, r),
(40)

where

pow3 = m

(
v0

2

)
+

m−1∑
i=1

v0vi(m− i),

pow4 = v0(v1 + · · ·+ vm−1) − v1 − vm(vm−1 + · · ·+ v0 − 1).

The initial condition is
En;n,0,...,0(q, t, r) = (qr)mn(n−1)/2t0.

The recursion from §3.4 requires a bit more work. For an m-Dyck path D, define
R(D) = area′(D), and set

Cn,k(q, r, t, y, z0, . . . , zm, w) =
∑

D∈D(m)
n,k

qQ(D)rR(D)tT (D)yY (D)wW (D)
m∏

i=0

z
Zi(D)
i . (41)

Observe that this generating function, unlike the original, keeps track of Zm(D) as well
as Zi(D) for i < m. We need to make one technical adjustment in the definition of Zm.
If D0 is the special path that goes north n steps and east mn steps, set Zm(D0) = 1; for
all other paths, define Zm(D) as in §3.4.

With this adjustment, the initial condition is

Cn,k(q, r, t, y, ~z, w) = (qr)mn(n−1)/2zn
0 z

1
m when k = m(n− 1).
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The new recursion, valid for 0 ≤ k < m(n− 1), is:

Cn,k(q, r, t, y, ~z, w) =

z0q
krk−1Cn−1,k−m(q, r, t, ty, z0, rz1, . . . , rzm, r

−2w)

+ q−1w−1r+1 (Cn,k+1(q, r, t, y, ~z, w) − Cn,k+1(q, r, t, y, ~z, 0))

+ q−1tyz0z
−1
1 w−2r2Cn,k+1(q, r, t, y, r

−1wz1, r
−2wz2, . . . , r

−2wzm, r
−1, 0).

(42)

To verify this equation, we need only check the correctness of the powers of r and zm.
We look at three cases, as in §3.4. In case 1, we go from D′ ∈ D(m)

n−1,k−m to D ∈ D(m)
n,k by

adding a new top row with k area cells. By definition, Zm(D′) = Zm(D). [Note that the
technical adjustment made to Zm(D0) has no effect here, since k < m(n− 1) implies that
(k −m) < m((n − 1) − 1), hence D′ 6= D0 and D 6= D0.] What happens to area′ when
we pass from D′ to D? In the new top row, k −W (D) of the k new area cells are below
the bounce path for D, hence contribute to area′. The last rectangle Rs has also gained
a new top row, which contains hs−1 = vs−1 + · · · + vs−m cells. Of these cells, the one in
the leftmost column does not count towards area′, nor do the W (D) new cells below the
path D. These observations explain why we replace z1, . . . , zm by rz1, . . . , rzm (leaving z0
alone) and multiply by rk−1 in the term

z0q
krk−1Cn−1,k−m(q, r, t, ty, z0, rz1, . . . , rzm, r

−2w).

For, the net gain in the power of r is

Z1(D
′)+· · ·+Zm(D′)+k−1−2W (D′) = vs−1(D)+· · ·+vs−m(D)+(k−W (D))−(W (D)+1),

as required.
The term from Case 2, namely

q−1w−1r+1 (Cn,k+1(q, r, t, y, ~z, w) − Cn,k+1(q, r, t, y, ~z, 0)) ,

is the easiest to derive. Recall that we go from D′ to D by removing the leftmost ordinary
area cell in the top row of D′, which is not below the bounce path of D′ or D. But
“removing” this cell from D′ causes the cell to contribute to area′ instead, since it belonges
to one of the rectangles R′ and is now above D. Thus, we have an extra factor r+1 in
the generating function. As for zm, note that D′ 6= D0 since W (D′) > 0 = W (D0), and
D 6= D0 since k < k + 1 ≤ m(n− 1). Thus, Zm(D′) = Zm(D).

Finally, consider the term from Case 3, namely

q−1tyz0z
−1
1 w−2r2Cn,k+1(q, r, t, y, r

−1wz1, r
−2wz2, . . . , r

−2wzm, r
−1, 0).

In this case, we go from D′ to D by removing the leftmost ordinary area cell c in the
top row of D′, causing a change in the end of the bounce path. (See Figures 18 and 7.)
Specifically, the bounce path of D has a new terminating vertical move vs of length 1, and
the previous vertical move vs−1 is one less than the corresponding move v′s−1 in D′. Note
that the top row of the last rectangle R∗

s−1 in D′ does not belong to the rectangle Rs−1
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in D. Every cell in the top row of R∗
s−1, except the leftmost one, contributed to R(D′),

because w(D′) = 0. The number of contributing cells is one less than the horizontal
dimension of R∗

s−1; this dimension is Z1(D
′)+ · · ·+Zm(D′). The conclusion is that R(D)

drops by
(Z1(D

′) + · · ·+ Zm(D′) − 1) (43)

as a result of the lost row in Rs−1.
On the other hand, consider cells in the top row of D′ that are to the right of the

bounce path in D′. After removing cell c from D′, the new bounce path for D stops at
the southwest corner of c, then goes east for a distance

Z0(D) + · · · + Zm−1(D) = (Z0(D
′) − 1) + Z1(D

′) + · · ·+ Zm−1(D
′),

then goes north one unit. The cells in the top row above this last east step used to count
towards area′(D′), being below the bounce path of D′, but will no longer count towards
area′(D). In more detail, cell c does not count towards area′(D) because it is in the
leftmost column of its rectangle. The other cells do not count towards area′(D) because
they count towards ordinary area instead. We conclude that R(D) drops by an additional

Z0(D
′) + · · ·+ Zm−1(D

′) − 1 (44)

as a result of the change in this part of the bounce path. The total change is

R(D) − R(D′) = −(1Z0(D
′) + 2Z1(D

′) + · · · + 2Zm−1(D
′) + 1Zm(D′)) + 2.

This change is modelled algebraically by the additional occurrences of r in the expression

q−1tyz0z
−1
1 w−2r2Cn,k+1(q, r, t, y, r

−1wz1, r
−2wz2, . . . , r

−2wzm, r
−1, 0).

The argument in the last two paragraphs is correct, unless R∗
s−1 has width zero. In

this situation, there is no leftmost column in R∗
s−1, so we should not have subtracted 1

in (43). But it is easy to see that this situation occurs iff D′ = D0. Then our technical
convention that Zm(D0) = +1 causes (43) to be correct after all, and the validity of (44)
is not affected either. Since the new value Zm(D) comes from the old value Zm−1(D

′)
(not from Zm(D′)), the technical convention for Zm(D0) does not affect the correctness
of the values of Zm(D) calculated using the recursion. This completes the proof of the
new recursion.

Finally, we describe an analogous way of adding a third statistic to the other combina-
torial sequence HC

(m)
n (q, t). We can “guess” what this statistic should be by seeing what

happens to area′ when we apply the bijection ψ from §2.5. We are led to the following
formula. For an m-Dyck path of height n, define

h′(D) =
∑

0≤i<j<n

m−1∑
k=0

χ (γi(D) − γj(D) + k ∈ {−1, 0, 1, . . . , m− 1}) −
n−1∑
i=0

χ(γi(D) > 0).

The first sum is similar to the one appearing in h(D). The second sum that is subtracted
may look surprising, but it arises from the fact that the leftmost column of each rectangle
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Ri does not count towards area′. Note that the total number of cells in these columns is
n− v0(φ(D)) =

∑n−1
i=0 χ(γi(D) > 0).

There is a formula analogous to (7) for h′(D). Define sc′m : Z → Z by

sc′m(p) =




m− p for 0 ≤ p ≤ m;
m+ 1 + p for −m ≤ p ≤ −1;
0 for other p.

(45)

Define adj′ : Z → Z by adj′(p) = −1 for p > 0 and adj′(p) = 0 for other p. Then

h′(D) =
∑

0≤i<j<n

sc′m(γi(D) − γj(D)) +

n−1∑
i=0

adj′(γi).

The proof is the same as the corresponding proof of (7).
Now, define

HC(m)
n (q, t, r) =

∑
D∈D(m)

n

qh(D)tarea(D)rh′(D).

We show that HC
(m)
n (q, t, r) equals the right side of (38) by modifying the earlier proof

to include r. It will follow that the bijection φ introduced in §2.5 maps the ordered triple
of statistics (h, area, h′) to the ordered triple (area, b, area′) (similarly for ψ = φ−1).

As in §2.4, we proceed by induction on the largest symbol s appearing in γ(D). When
s = 0, γ must consist of n zeroes, and h′(D) = mn(n − 1)/2. This is the same as the
power of r on the right side of (38).

For the induction step, it suffices to prove the following formula, which is the analogue
of (15) for h′:

h′(γ) − h′(δ) = mvs(vs − 1)/2 + vs

m∑
k=1

(m− k)vs−k + inv(w). (46)

Here, γ = γ(D) has largest symbol s > 0; vi is the number of occurrences of i in γ for
0 ≤ i ≤ s; δ is obtained from γ by erasing all the symbols s; and the word w records how
to insert the vs copies of s into δ to recover γ.

We still proceed by induction on coinv(w). If coinv(w) = 0, all vs copies of s were
inserted into δ just after the last occurrence of any symbol in the set {s− 1, . . . , s−m}.
The change h′(γ) − h′(δ) caused by this insertion is∑

i<j

sc′m(γi − γj) − vs

where the sum extends over all pairs (i, j) such that γi = s or γj = s. We subtract vs

since we introduced vs new positive entries (all equal to s) in γ.
First, consider the pairs (i, j) for which i < j and γi = s = γj. There are

(
vs

2

)
such

pairs, and each contributes sc′m(s − s) = sc′m(0) = m to the h′-statistic. This gives the
term mvs(vs − 1)/2 in (46).
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Second, consider the pairs (i, j) for which i < j and γi = s and γj 6= s. Since all
the copies of s in γ occur in a contiguous group following all instances of the symbols
s − 1, . . . , s − m, and since s is the largest symbol appearing in γ, j > i implies that
γj < s−m. Then sc′m(γi − γj) = 0, since γi − γj > m. So these pairs contribute nothing
to the h′-statistic.

Third, consider the pairs (i, j) for which i < j and γi 6= s and γj = s. Since s is the
largest symbol, we have γi < s. Write γi = s − k for some k > 0, and consider various
subcases. Suppose k ∈ {1, 2, . . . , m}. Then sc′m(γi −γj) = sc′m(−k) = m+1−k. For how
many pairs (i, j) does it happen that i < j, γi = s− k, and γj = s? There are vs choices
for the index j and vs−k choices for the index i; the condition i < j holds automatically,
since all occurrences of s occur to the right of all occurrences of s − k. Thus, we get a
total contribution to the h′-statistic of (m+ 1 − k)vs(vs−k) for this k. Adding over all k,
we obtain

vs

m∑
k=1

(m+ 1 − k)vs−k = vs

m∑
k=1

(m− k)vs−k +

m∑
k=1

vsvs−k.

On the other hand, if k > m, then sc′m(γi−γj) = scm(−k) = 0, so there is no contribution
to the h′-statistic.

Finally, recall that w is a rearrangement of vs zeroes and vs−1 + · · · + vs−m − 1 ones.
Since coinv(w) = 0, all zeroes in w occur at the end, and hence

inv(w) = vs(vs−1 + · · ·+ vs−m − 1) =

(
m∑

k=1

vsvs−k

)
− vs.

Thus, the change h′(γ)− h′(δ) is precisely the expression on the right side of (46). So
we are done when coinv(w) = 0.

To finish the induction step, it suffices to show that replacing 10 by 01 in w decreases
h′ by one (since this replacement also decreases inv(w) by one). Let w′ be the new word
after the replacement, with corresponding vector γ′ As in §2.4, we have

original γ = . . . (s− j) z1 z2 . . . z` (s− k) s . . .

where 0 ≤ j ≤ m, 1 ≤ k ≤ m, ` ≥ 0, and every zi < s −m. Replacing 10 by 01 in w
causes the s to move left, resulting in:

new γ′ = . . . (s− j) s z1 z2 . . . z` (s− k) . . . .

Note that the symbol s− j must exist, lest γ′0 = s > 0.
Let us examine the effect of this motion on the h′-statistic. When we move the s left

past its predecessor s− k in γ, we get a net change in the h′-statistic of

sc′m(s− [s− k]) − sc′m([s− k] − s) = sc′m(k) − sc′m(−k) = −1,

since 1 ≤ k ≤ m (see (45)). As before, since |s − zi| > m, moving the s past each zi

will not affect the h′-statistic at all. Thus, the total change in the h′-statistic is −1, as
desired.
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5 Open Problems and Recent Developments

There are several open problems involving the combinatorial polynomials C
(m)
n (q, t). The

main open problem is to prove that the conjectured combinatorial interpretation of the
higher q, t-Catalan sequences is correct, i.e., that OC

(m)
n (q, t) = C

(m)
n (q, t). It may be

possible to prove the equivalent assertion that SC
(m)
n (q, t) = C

(m)
n (q, t) by proving that

both sides satisfy the same recursion. A recursion characterizing C
(m)
n (q, t) appears in

§3.2. The first difficulty with this approach is finding the symmetric function formulas
that correspond to the generating functions En;v0,v1,...,vm−1(q, t) when some vi (besides v0)
is nonzero.

Another, purely combinatorial problem is to prove that the q and t statistics introduced
here for m-Dyck paths are jointly symmetric. This conjecture is only known to be true
when m = 1 by invoking the long proof in [5, 6]. Here, we have only proved the weaker
statement that the univariate distributions of the q and t statistics are the same.

Recall that the higher q, t-Catalan sequences all have (conjectural) interpretations in
representation theory, symmetric function theory, and algebraic geometry. It would be
interesting to find analogous interpretations for the trivariate q, t, r-Catalan sequences.

Remark: Since the initial submission of this article, a number of related combinatorial
developments have appeared in the literature. The present author has generalized many
of the combinatorial constructs presented here to paths inside certain trapezoidal shapes
[17, 18]. Haglund, Haiman, Loehr, and Remmel introduced statistics on labelled Dyck
paths and m-Dyck paths, which are conjectured to give the Hilbert series of certain dou-
bly graded Sn-modules [13, 20, 19, 17]. The same four authors and A. Ulyanov recently
conjectured a combinatorial formula for the monomial expansion of the Frobenius series of
these same modules [12]. Using ideas from these papers, Haglund conjectured a combina-
torial formula for the monomial expansion of the modified Macdonald polynomials H̃µ [8].
This conjecture has been proved by Haglund, Haiman, and the present author [10, 11].
Finding combinatorial statistics for the Kostka-Macdonald coefficients (which arise in the
Schur expansion of H̃µ) remains open. It seems likely that the new combinatorial for-
mula for Macdonald polynomials may soon shed additional light on the conjectures in
this paper and in [12].

Acknowledgement: The author thanks Jeffrey Remmel and James Haglund for many
helpful discussions regarding this problem.
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