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Abstract

Consider the symmetric group Sn equipped with the Hamming metric dH . Pack-
ing and covering problems in the finite metric space (Sn, dH) are surveyed, including
a combination of both.

1 Introduction

Let n be a positive integer and consider the symmetric group Sn of all permutations of the
set {1, 2, ..., n}. There are several metrics on Sn, surveyed in [20]. The most important one
seems to be the Hamming metric dH . In the present paper, the finite metric space (Sn, dH)
will be called the Hamming permutation space. The packing and covering problems in
this space are the following.

• Let d be given and determine (or estimate) the largest cardinality of a d-packing,
i.e. of a subset C ⊆ Sn with the property that its elements are at a distance of at
least d from each other.

• Let e be given and determine (or estimate) the smallest cardinality of an e-covering,
i.e. of a subset C ⊆ Sn with the property that the balls of radius e around the
elements of C cover the whole space.

The first papers on packing in the Hamming permutation space are [19], where Deza
raised the problem in 1976, and [22]. Considerable research on covering in this space was
recently started by Kézdy/Snevily [26] and Cameron/Wanless [10]. But already in 1978,
a problem combining packing and covering was introduced by Deza/Vanstone [21, Section
3.4.].
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Similar problems are frequently discussed in other situations. Of special interest is the
classical coding theory, dealing with Qn, |Q| = q ≥ 2, equipped with the Hamming (or Lee)
metric, see for example [3], [6], [7], [14], [27], [28], [36]. Recently, combinations of packing
and covering problems in (Qn, dH) have been considered, see [29] and its references. The
connection between coding theory and the corresponding problems on permutations was
pointed out by Blake et al. [5] in 1979.

Packing and covering problems in graph theory, using the length of the shortest path
as a metric, can be interpreted as generalizations of the respective problems in coding
theory, but not of the respective problems on permutations. Modifying these problems
one can get six closely connected extremal cardinalities. In 1978, Cockayne et al. [11]
proved them to be related by a single string of inequalities. These cardinalities are now
standard in graph theory, compare [24].

A common generalization of packing and covering problems in both graph theory and
the Hamming permutation space, was given 2003 in [31] where the notion of a finite
metric space is used. That paper also contains the transformation of the six extremal
cardinalities mentioned above to finite metric spaces.

In coding theory, a standardization of the notations regarding packing and covering
has taken place, the letters A and K (more precisely: Aq(n, d) and Kq(n, R)) indicate the
extremal cardinalities of the classical packing and covering problems. In graph theory, β
and γ (more precisely: β0(G) and γ(G)) became standard instead. Furthermore, i (more
precisely: i(G)) indicates an extremal number related to a problem combining packing
and covering. In [31], the letters β, γ and i were transferred to finite metric spaces.

The aim of the present paper is to survey results on packing and covering problems
in the Hamming permutation space, including a combination of both. This seems to be
necessary since some papers are hard to trace and many different notations have been
used up to now. Furthermore, the author hopes to promote the use of β, γ and i also in
the Hamming permutation space.

Extremal problems concerning subgroups (instead of subsets) of Sn as well as asymp-
totic results will not be surveyed in this paper.

The paper is organized as follows: Section 2 recalls necessary notations and some basic
results. In Section 3, bounds are given which appear if the parameters of a packing or
covering problem are modified, i.e. if at least two different Hamming permutation spaces
are involved. In Section 4, so-called destructive bounds are studied which destroy the
hope of finding very small sets solving the covering problem and very large sets solving the
packing problem. In Section 5, so-called constructive bounds arising from constructions of
suitable sets of permutations are discussed. Some conjectures are mentioned in Section 6.
Finally, Section 7 presents existence problems for sets which satisfy bounds with equality.
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2 Notation

Let n ∈ N and Sn be the symmetric group of all permutations of the set {1, 2, ..., n}. The
identity permutation is denoted by id. Clearly,

dH : Sn × Sn → {0, 1, 2, ..., n}, (π, π′) 7→ |{x ∈ {1, 2, ..., n} : π(x) 6= π′(x)}|
is a metric on Sn, called the Hamming metric. The finite metric space (Sn, dH) will be
called the Hamming permutation space. Two permutations π, π′ ∈ Sn agree in exactly
n − dH(π, π′) positions which is also the number of fixed points of π−1π′. Let D(Sn) :=
dH(Sn×Sn) be the set of all distances which appear in Sn. Since two permutations cannot
differ in exactly one position, D(Sn) = {0, 2, 3, 4, ..., n}. A ball of radius e ∈ D(Sn) around
π ∈ Sn is denoted by

Be(π) := {π′ ∈ Sn : dH(π, π′) ≤ e}.
Its volume depends only on the radius, not on the centre. Hence,

Ve := |Be(π)| =
e∑

k=0

(
n

k

)
k!

k∑
x=0

(−1)x

x!

for all π ∈ Sn. To avoid formal problems in Section 4, put B1(π) := B0(π) = {π} and
V1 := V0 = 1.

Consider now a subset C of the symmetric group Sn. Its packing radius is denoted by

p(C) := max{e′ ∈ D(Sn) : Be′(π) ∩ Be′(π
′) = ∅ ∀π, π′ ∈ C with π 6= π′}.

If C contains at least two permutations,

d(C) := min{dH(π, π′) ∈ D(Sn) : π, π′ ∈ Sn with π 6= π′}
is called the minimum distance of C. In contrast to the situation in coding theory, the
inequality 2p(C) + 1 ≤ d(C) might fail: Take for example

C =

{
id,

(
1234

2341

)}
⊆ S4

implying p(C) = 2 and d(C) = 4. If C is nonempty then its covering radius is denoted by

t(C) := max{min{dH(π, π′) ∈ D(Sn) : π′ ∈ C} : π ∈ Sn}
and ∆(C) := max{dH(π, π′) ∈ D(Sn) : π, π′ ∈ C} is called its diameter. Clearly, C is
e-covering iff t(C) ≤ e. Since e, e′ ∈ D(Sn) with e > e′ imply Be(π) \ Be′(π) 6= ∅, the
inequality p(C) ≤ t(C) follows.

If the length of the shortest path joining two vertices of a finite (undirected loop-free)
graph (V, E) is used as a metric on V , then another finite metric space is generated. In the
graph theoretical literature concerning that space, an e-covering is called e-domination.
Furthermore, a subset C is called e-independent iff its elements are at a distance > e
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from each other. Hence, the connection to d-packings is obvious. In the following, only
the notions of independent subsets and covering subsets will be used. Furthermore, only
e ∈ D(Sn) is considered, other cases like e = 1 are dull.

Clearly, every subset of an e-independent set is also e-independent. Furthermore, every
superset of an e-covering is also e-covering. The only minimal e-independent subset of Sn

is the empty set, the only maximal e-covering subset is Sn itself. The determination of
maximal e-independent subsets and of minimal e-covering subsets in case of e ∈ D(Sn) \
{0, n} is nontrivial while the situation e ∈ {0, n} is again trivial. Clearly, a subset is
maximal e-independent iff it is simultaneously e-independent and e-covering.

Let γn(e) denote the smallest cardinality of a minimal e-covering subset of Sn. Let
in(e) and βn(e) denote the smallest and the largest cardinality of a maximal e-independent
subset of Sn, respectively. The words minimal in the definition of γn(e) and maximal in
the definition of βn(e) can be omitted. Up to now, nearly nothing has been shown about
the largest cardinality of minimal e-covering subsets of Sn.

The smallest cardinality f(n, s) of a subset of Sn with a covering radius ≤ n − s is
considered in [10]. Hence, γn(e) = f(n, n − e). In [33], U(Sn, dH , e) is used instead.

The largest cardinality of a d-packing in Sn is denoted in [35] by M(n, d). In [30] and
[33], u(n, d) and u(Sn, dH , d) are used instead. The maximal cardinality of a subset of
Sn with the property that any two distinct permutations agree in at most λ positions is
denoted in [19] and [22] by R(n,≤ λ). Hence, βn(e) = M(n, e + 1) = R(n,≤ n − e − 1).

In [30], the smallest cardinality of a maximal d-packing in Sn is denoted by v(n, d). In
[21] and [10], the smallest cardinality of a maximal subset of Sn with the property that any
two distinct permutations agree in at most k positions is denoted by Rminmax(n,≤ k) and
m(n, k), respectively. Hence, in(e) = v(n, e+1) = m(n, n−e−1) = Rminmax(n,≤ n−e−1).

Clearly,
1 ≤ γn(e) ≤ in(e) ≤ βn(e) ≤ n! (1)

holds true in analogy to the result of Cockayne et al. [11]. As mentioned above, the
situation e ∈ {0, n} is trivial since γn(0) = n! and βn(n) = 1.

Since γn(e), in(e), βn(e) ∈ N, every real lower bound α′ on one of these desired values
implies the lower bound dα′e and every real upper bound α′′ implies the upper bound
bα′′c. These rounding rules can be applied to all of the following estimations.

3 Modifications

Clearly, γn and βn are monotonously decreasing functions. If the parameter n is modified,
some estimations can be proved.

Theorem 1 Let n, ň ∈ N and e ∈ D(Sn) as well as ě ∈ D(Sň).

(i) 1
n+1

γn+1(e) ≤ γn(e) ≤ γn+1(e) and γn+1(e + 2) ≤ γn(e) if e ≤ n − 1.

(ii) 1
n+1

βn+1(e) ≤ βn(e) ≤ βn+1(e) and βn+1(e + 3) ≤ βn(e) if 0 < e ≤ n − 2.

(iii) min{βn(e), βň(ě)} ≤ βn+ň(e + ě + 1).

the electronic journal of combinatorics 13 (2006), #A1 4



Proof: Let y ∈ {1, 2, ..., n}. Denote by τy,n the unique transposition in Sn with τy,n(y) = n
and τy,n(n) = y, if y < n. Otherwise put τn,n := id. If π ∈ Sn then denote the extension
of π to a permutation of {1, 2, ..., n + 1} with a fixed point n + 1 by π̄. If π ∈ Sn

with π(n) = n then denote the restriction of π to a permutation of {1, 2, ..., n − 1} by
res(π). If π is an arbitrary permutation in Sn then put π′ := res(τπ(n),n ◦ π) ∈ Sn−1. Let
ρ : {1, 2, ..., ň} → {n+1, n+2, ..., n+ ň}, x 7→ n+x. Denote the concatenation of π ∈ Sn

and π̌ ∈ Sň with x 7→ π(x) if x ≤ n and x 7→ ρπ̌ρ−1(x) if x > n by π ⊕ π̌ ∈ Sn+ň.

(i) Let C ⊆ Sn+1 be e-covering with |C| = γn+1(e). Put C ′ := {π′ ∈ Sn : π ∈ C}. Let
σ ∈ Sn then ∃π ∈ C with dH(σ̄, π) ≤ e. Since dH(σ, π′) ≤ dH(σ̄, π) also C ′ ⊆ Sn is
e-covering and |C ′| ≤ |C| holds true. This proves the second estimation.
Let C ⊆ Sn be e-covering with |C| = γn(e). Put C̄ := {π̄ ∈ Sn+1 : π ∈ C}
and C̃ :=

⋃n+1
y=1{τy,n+1 ◦ π̄ ∈ Sn+1 : π ∈ C}. Let σ ∈ Sn+1 then ∃π ∈ C with

dH(σ′, π) ≤ e. Since dH(σ, π̄) ≤ dH(σ′, π) + 2 and dH(σ, τσ(n+1),n+1 ◦ π̄) = dH(σ′, π)

it follows that C̄ ⊆ Sn+1 is (e + 2)-covering and C̃ is e-covering. Finally,
∣∣∣C̄∣∣∣ = |C|

and
∣∣∣C̃∣∣∣ = (n + 1)|C| prove the third and the first estimation, respectively.

(ii) Let C ⊆ Sn+1 be e-independent with |C| = βn+1(e). Then Cy := {π′ ∈ Sn : π ∈ C
and π(n+1) = y} is also e-independent ∀y ∈ {1, 2, ..., n+1}. Furthermore, ∃y with
|Cy| ≥ 1

n+1
|C|. This proves the first estimation.

Let C ⊆ Sn be e-independent with |C| = βn(e). Then C̄ := {π̄ ∈ Sn+1 : π ∈ C} is
also e-independent and |C̄| = |C| holds true. This proves the second estimation.
Let C ⊆ Sn+1 be (e + 3)-independent with |C| = βn+1(e + 3). Then C ′ := {π′ ∈
Sn : π ∈ C} is e-independent and |C ′| = |C| holds true. This proves the third
estimation.

(iii) Let C = {π1, π2, ..., πβn(e)} ⊆ Sn be e-independent and let Č = {π̌1, π̌2, ..., π̌βň(ě)} ⊆
Sň be ě-independent. Put C̃ := {πj ⊕ π̌j ∈ Sn+ň : 1 ≤ j ≤ min{βn(e), βň(ě)}}. By

construction, C̃ is (e + e′ + 1)-independent and
∣∣∣C̃∣∣∣ = min

{
|C| ,

∣∣∣Č∣∣∣} holds true. 2

The first estimation of part (i) is due to Cameron/Wanless [10]. The first and second
estimation of part (ii) are given by Deza [19]. The third estimations of part (ii) as well
as part (iii) are due to the present author [30]. The remaining two estimations of part (i)
seem to be new.

4 Destructive Bounds

In this section, lower bounds on γn(e) and in(e) as well as upper bounds on βn(e) are
surveyed. In general, one may say that these bounds destroy the hope of finding e-covering
sets of very small cardinality as well as e-independent sets of very large cardinality. Hence,
they will be called destructive in this paper. A first trivial example is γn(e) ≥ 2 if
0 < e < n.
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The following additional definitions are useful in this context. Let C ⊆ Sn. The set
of all distances appearing in C will be denoted by D(C). If the subset C is nonempty
with diameter ∆(C) ≤ e ∈ D(Sn), it will be called an e-antiset. If Sn =

⊎
j∈J Cj is a

decomposition of the symmetric group into e-antisets, βn(e) ≤ |J | holds true. Frankl/Deza
[22] proved in 1977 a fundamental statement using antisets:

Theorem 2 (Set-Antiset Bound) Let C, C ′ ⊆ Sn with D(C) ∩ D(C ′) ⊆ {0}. Then

|C| · |C ′| ≤ n!. (2)

If C is an e-antiset then

βn(e) ≤ n!

|C| .

Proof: Let π, σ ∈ C and π′, σ′ ∈ C ′ with π◦π′ = σ◦σ′. Then dH(π, σ) = dH(π◦π′, σ◦π′) =
dH(σ ◦ σ′, σ ◦ π′) = dH(σ′, π′) ∈ D(C) ∩D(C ′). Hence, π = σ and π′ = σ′. Consequently,
|C| · |C ′| = |C ◦ C ′| ≤ |Sn| = n!. 2

In [13], inequality (2) is called the duality bound. In coding theory [1], an analogous
theorem is called the code-anticode bound. It refers to the theory of association schemes
due to Delsarte [16].

Theorem 2 motivates the search for large e-antisets in Sn, started in [19] and [22]. The
following construction was presented in general by the present author [31] in 2003, while
special cases were already given by Frankl/Deza [22] in 1977.

Put
Ik(π, σ) := {x ∈ {1, 2, ..., k} : π(x) 6= σ(x)}

for k ∈ {0, 1, ..., n} and π, σ ∈ Sn. The number of permutations in Sn differing from a
given permutation σ ∈ Sn in all of the first k components does not depend on σ. Hence,
put

Fk(n) := |{π ∈ Sn : {1, 2, ..., k} = Ik(π, σ)}| =
k∑

x=0

(−1)x

(
k

x

)
(n − x)!

for k ∈ {0, 1, ..., n} and an arbitrary σ ∈ Sn.

Theorem 3 If e ∈ D(Sn) and j ∈
{
0, 1, ...,

⌊
e
2

⌋}
as well as σ ∈ Sn then

C(j)
e (σ) := {π ∈ Sn : j ≥ |In−e+2j(π, σ)|} ⊇ Bj(σ)

is an e-antiset with

∣∣∣C(j)
e (σ)

∣∣∣ = j∑
k=0

(
n − e + 2j

k

)
· Fk(e − 2j + k) ≥ Vj .

If e is even then C
( e
2
)

e (σ) = B e
2
(σ) and, hence,

∣∣∣∣C( e
2
)

e (σ)
∣∣∣∣ = V e

2
. Otherwise

C
( e−1

2
)

e (σ) = B e−1
2

(σ) ]
{
π ∈ Sn :

e − 1

2
= |In−1(π, σ)| and π(n) 6= σ(n)

}
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and, hence,

∣∣∣∣C( e−1
2

)
e (σ)

∣∣∣∣ = V e−1
2

+

(
n − 1

e−1
2

)
· F e+1

2

(
e + 1

2

)
.

The use of C(0)
e (π) proves the analog of the (Joshi-)Singleton bound

βn(e) ≤ n!

e!
. (3)

Additionally to (3),

in(e) 6= n!

e!
− 1 6= βn(e)

was proved in [30, p. 116, p. 102]. Using Hall’s condition, in(n − 1) ≥ n can easily be
shown. A combination with (1) and (3) yields

in(n − 1) = βn(n − 1) = n.

Furthermore, the sphere packing bound (or Hamming bound)

βn(e) ≤ n!

Vb e
2c

, (4)

which is given in the Hamming permutation space by Deza [19], turns out to be another
corollary of Theorem 3. The simple direct proof of (4) uses the fact that

⊎
π∈C Bb e

2c(π) ⊆
Sn is a disjoint union if C is e-independent. In case of e even, the application of C

( e
2
)

e (σ)

gives exactly (4). Otherwise, the application of C
( e−1

2
)

e (σ) is an improvement of (4).
Frankl/Deza [22] already showed (3) and this improvement of (4). As an example beyond

[22], one can find in [31] the application of C
(1)
5 (σ) for n = 10 with∣∣∣C(1)

5 (σ)
∣∣∣ = 132 >

∣∣∣C(0)
5 (σ)

∣∣∣ = 120 >
∣∣∣C(2)

5 (σ)
∣∣∣ = 118.

Tarnanen [35] showed in 1999 that the theory of association schemes can be applied
in order to find powerful upper bounds on βn(e) in particular cases if the character table
of Sn is available. He tabulated results for 7 ≤ n ≤ 10 and 3 ≤ e ≤ 6, for example
β7(3) ≤ 543 instead of 720 by Theorem 2 and 3.

A common generalization of an e-independent set and an e-antiset is the notion of an
L-clique: For a given L ⊆ D(Sn), a set C ⊆ Sn is called an L-clique if D(C) ⊆ L. Two
sophisticated bounds on L-cliques and, hence, also on βn(e) are mentioned in [13]: The
density bound, due to Cohen/Deza [12], can be interpreted as a common generalization
of inequality (2) and the first estimation of Theorem 1 (ii). The very general averaging
bound is due to Gabidulin/Sidorenko [23].

Dual to (4), the sphere covering bound

γn(e) ≥ n!

Ve
(5)
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is also easy to prove since
⋃

π∈C Be(π) = Sn if C is e-covering. The combination of (4)
and (5) gives βn(2e) ≤ γn(e). Both sphere bounds can be slightly improved in certain
cases by a proper decomposition of Sn: In [33], the method in general is discussed and
Sn =

⊎n
k=1{π ∈ Sn : π(1) = k} is applied. In [10], a special case is presented for γ5(2) ≥ 12.

It leads to the application of Sn = An ] (Sn \ An) with the alternating group An. Both
decompositions prove for example

βn(4) +

⌈
βn(4)

n

⌉(
n − 1

2

)
≤ (n − 1)!

and ⌊
βn(4)

2

⌋
+

⌈
βn(4)

2

⌉(
n

2

)
≤ n!

2

as well as

γn(2) +

⌊
γn(2)

n

⌋(
n − 1

2

)
≥ (n − 1)!

and ⌈
γn(2)

2

⌉
+

⌊
γn(2)

2

⌋(
n

2

)
≥ n!

2
.

Computer proofs of i5(3) ≥ 7 and β6(4) ≤ 18 are mentioned in [10] and [21], respec-
tively. This section is finished by giving some more lower bounds on γn(e).

Theorem 4 Let n ≥ 3.

(i) γn(n − 1) ≥
⌊

n
2

⌋
+ 1.

(ii) γn(n − 2) ≥
⌊

n
2

⌋
+ 2.

(iii) γn(n − 2) ≥ 6 for n ≥ 5.

The three parts of this theorem are due to Kézdy/Snevily [26], Cameron/Wanless [10]
and the present author [30, p. 117-119], respectively. The proof of each part uses Hall’s
condition. As an example, γ7(5) ≥ 6 is shown in the following.

Proof: Consider C ⊆ S7 with 2 ≤ |C| ≤ 5 and use C(x) := {π(x) : π ∈ C}. There
are distinct y3, y4 and an x1 as well as π1, π2 ∈ C with π1(x1) = y3 and π2(x1) = y4.
Put x2 := π−1

2 (y3) 6= x1. Hence, y3, y4 ∈ C(x1) and y3 ∈ C(x2). Hall’s condition
gives distinct y1 6∈ C(x1) and y2 6∈ C(x2). Furthermore, there are distinct x3, x4 with
y3 6∈ C(x3) and y4 6∈ C(x4) as well as x4 6= x2. Hence, |{x1, x2, x3, x4}| = 4. Put
C ′ := {σ ∈ S7 : σ(xj) = yj for 1 ≤ j ≤ 4}. Then |C ′| = 6 and for every π ∈ C there is at
most one σ ∈ C ′ with dH(π, σ) ≤ 5. This implies the existence of the desired σ ∈ C ′ with
dH(π, σ) > 5 for all π ∈ C. 2
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5 Constructive Bounds

In this section, upper bounds on γn(e) and in(e) as well as lower bounds on βn(e) are
given which arise from explicit constructions or at least existence proofs of proper subsets
of Sn. In these constructions, Latin squares are frequently used. Many details about them
can be found for example in [4], [15], [17], [18].

A very general bound is given in [25] with a reference to [2]. Its application to the
Hamming permutation space proves

γn(e) ≤ n!
1 + ln Ve

Ve

for e > 0. The analog of the Gilbert bound

βn(e) ≥ n!

Ve
(6)

is due to Deza [19]. Because of the material of the above sections, (6) does not need
to be proved by a construction any more. It turns out to be a corollary of (1) and (5)
which seems to be a new insight. Let π ∈ Se, then {π ⊕ π̌ ∈ Sn : π̌ ∈ Sn−e} shows
γn(2e) ≤ (n − e)!. (For the concatenation π ⊕ π̌ see the proof of Theorem 1.) In [30], it
is proved that in(2) ≤ n!

2
− 2 for n ≥ 4.

If there is a Latin square of order n without a transversal then

γn(n − 2) ≤ in(n − 2) ≤ n. (7)

In case of n even, the cyclic group gives such a Latin square and (7) is valid.

A construction [26] using a Latin square of order
⌊

n
2

⌋
+ 1 shows

γn(n − 1) ≤
⌊
n

2

⌋
+ 1

and, hence, equality follows from Theorem 4. Some constructions [10, Theorem 9] using
Latin squares with certain subsquares prove

γ4k+1(4k − 1) ≤ 5k + 2

and

γn(n − 2) ≤ n + 2
⌈
1

2

⌈
n + 1

3

⌉⌉

for n ≥ 8.
Every system of k mutually orthogonal Latin squares of order n implies βn(n−2) ≥ kn,

see for example [30]. The construction of certain finite nets due to Bruck [9, Theorem 5]
or mutually orthogonal Latin squares (see [18, p. 25]) gives

in(n − 2) ≤ n(n̂ − 1) ≤ βn(n − 2)
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with n̂ := min{pmj

j : j ∈ J} if
∏

j∈J p
mj

j is the prime factorization of n, also compare [30].

The alternating group An implies βn(2) ≥ n!
2

and the analog of the Singleton bound
(3) gives equality. Other well-known subgroups of Sn, see for example [8], prove

βn(n − 2) ≥ n(n − 1)

and
βn+1(n − 2) ≥ (n + 1)n(n − 1)

if n is a prime power as well as β11(7) ≥ 11!
7!

and β12(7) ≥ 12!
7!

. Again, bound (3) gives
equality in all cases.

Some constructions in particular cases show γ5(3) ≤ 6, i5(3) ≤ 7, β6(4) ≥ 18, γ7(5) ≤
8, γ9(7) ≤ 10, β10(8) ≥ 32 with equality in the first three cases, see [10], [21, Section 3.3.].

6 Conjectures

Some closely connected conjectures have been made concerning transversals and partial
transversals in Latin squares on the one hand, in(n− 2) and γn(n− 2) on the other hand:

(i) (Ryser, cf. [17, p. 32])
Every Latin square of odd order has a transversal.

(ii) (Brualdi, cf. [17, p. 103])
Every Latin square of order n has a partial transversal of size n − 1.

(iii) (Quistorff [30, p. 125])
in(n − 2) ≥ n. If n is odd then in(n − 2) ≥ n + 1.

(iv) (Kézdy/Snevily [26])
If n is even then γn(n − 2) = n. If n is odd then γn(n − 2) ≥ n + 1.

Clearly, (iv) is equivalent to

(iv)′ γn(n − 2) ≥ n. If n is odd then γn(n − 2) ≥ n + 1.

since (7) is valid if n is even.

Theorem 5 (iv) ⇒ (iii) ⇒ (i),(ii).

Proof: (iv)⇒(iii) follows from (1) and (iii)⇒(i) from (7). In order to verify (iii)⇒(ii),
observe that every given Latin square of order n induces an (n−1)-independent C ⊆ Sn+1

with |C| = n and π(n + 1) = n + 1 ∀π ∈ C. Because of (iii), C is not (n − 1)-covering,
implying the existence of a σ ∈ Sn+1 \ ⋃π∈C Bn−1(π). Then there are at least n − 1
positions xj with 1 ≤ xj ≤ n and σ(xj) ≤ n. This proves the existence of a partial
transversal of size n − 1 in the given Latin square. 2
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7 Satisfying Bounds with Equality

Fascinating existence problems appear if one searches for sets which satisfy some of the
destructive bounds with equality. Let e ∈ D(Sn). Due to Ahlswede et al. [1], a subset
C ⊆ Sn is called e-diameter perfect if there is an e-antiset C ′ ⊆ Sn with |C| · |C ′| = n!.
This notion is a generalization of e-perfect sets, discussed below. Situations where bound
(3) or (4) are satisfied with equality (without using integer roundings) are of a special
interest.

An e-independent set C ⊆ Sn of cardinality n!
e!

is called a sharply (n− e)-transitive set
of permutations. It is e-diameter perfect and can also be characterized by the following
property: Given distinct x1, x2, ..., xn−e and distinct y1, y2, ..., yn−e, there is exactly one
π ∈ C with π(xj) = yj for all j ∈ {1, 2, ..., n − e}. The existence problem is trivial if
e ∈ {0, 2, n − 1, n}. Sharply multiply transitive sets of permutations are surveyed in [8],
[30]. A recent nonexistence result, using Theorem 2 and (implicitly) Theorem 3 is given
in [32].

A set C ⊆ Sn with the property that the balls of radius e around the elements of C
are disjoint and exhaust the whole space, i.e.

⊎
π∈C Be(π) = Sn, is called an e-perfect set.

C is e-perfect iff it is an e-covering set of cardinality n!
Ve

. Hence, it is e-diameter perfect.

Furthermore, every (2e)-independent set of cardinality n!
Ve

is e-perfect. The existence

problem of e-perfect sets is trivial if e = 0. Clearly, a necessary condition is n!
Ve

∈ N. The
nonexistence of certain 2-perfect sets, including the case n = 11, was proved in [34] using
another metric. No further results concerning this problem are known (to the author).
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[7] Bogdanova, G.T. / Österg̊ard, P.R.J.: Bounds on Codes over an Alphabet of Five
Elements, Discrete Math., 240 (2001), 13-19.

the electronic journal of combinatorics 13 (2006), #A1 11



[8] Bonisoli, A. / Quattrocchi, P.: Existence and Extension of Sharply k-Transitive
Permutation Sets: A Survey and some New Results, Ars Comb., 24A (1987), 163-
173.

[9] Bruck, R.H.: Finite Nets, I. Numerical Invariants, Can. J. Math., 3 (1951), 94-107.

[10] Cameron, P.J. / Wanless, I.M.: Covering Radius for Sets of Permutations, Discrete
Math., 293 (2005), 91-109.

[11] Cockayne, E.J. / Hedetniemi, S.T. / Miller, D.J.: Properties of Hereditary Hyper-
graphs and Middle Graphs, Cand. Math. Bull., 21 (1978), 461-468.

[12] Cohen, G. / Deza, M.: Distances invariantes et L-cliques sur certains demi-groupes
finis, Math. Sci. Hum., 67 (1979), 49-69.

[13] Cohen, G. / Deza, M.: Some Metrical Problems on Sn, Annals of Discrete Math., 8
(1980), 211-216.

[14] Cohen, G. / Honkala, I. / Litsyn, S. / Lobstein, A.: Covering Codes, North-Holland,
Amsterdam, 1997.

[15] Colbourn, C.J. / Dinitz, J.H. (eds.): The CRC Handbook of Combinatorial Designs,
CRC Press, Boca Raton, New York, London, Tokyo, 1996.

[16] Delsarte, P.: An Algebraic Approach to the Association Schemes of Coding Theory,
Phillips Res. Rep. Suppl., 10 (1973).
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[18] Dénes, J. / Keedwell, A.D.: Latin Squares - New Developments in the Theory and
Applications, Annals of Discrete Math., 46 (1991).

[19] Deza, M.: Matrices Dont Deux Lignes Quelconque Cöıncident dans un Nombre
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