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Abstract

This note deals with a formula due to G. Labelle for the summed cycle indices
of all rooted trees, which resembles the well-known formula for the cycle index of
the symmetric group in some way. An elementary proof is provided as well as
some immediate corollaries and applications, in particular a new application to
the enumeration of k-decomposable trees. A tree is called k-decomposable in this
context if it has a spanning forest whose components are all of size k.

1 Introduction

Polya’s enumeration method is widely used for graph enumeration problems — we refer to
[6] and the references therein for instance. For the application of this method, information
on the cycle indices of certain groups is needed — mostly, these are comparatively simple
examples, such as the cyclic group, the dihedral group or the symmetric group. A very
well-known formula gives the cycle index of the symmetric group S,, (we adopt the notation

from [6] here):
z50= > ]I kj]}k' (1)

One has . .
n skk
Z(Sp)t" = ex —t",
; (Sn) p;k

an identity which is of importance in various tree counting problems (cf. again [6]).
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In the past, several tree counting problems related to the automorphism groups of
trees have been investigated. We state, for instance, the enumeration of identity trees
(see [7]), and the question of determining the average size of the automorphism group in
certain classes of trees (see [9, 10]).

Therefore, it is not surprising that so-called cycle index series or indicatriz series [2, 8]
are of interest in enumeration problems. Given a combinatorial species F', the indicatrix
series is given by

c1 Co C3
57'85°85% ...

'16101!20202!30303! .

Zr(s1,82,...) = Z fereaies,..

c1+2c2+3c3+...<o0

Y

where f;, ¢,.cs,... denotes the number of F-structures on n = ¢; + 2¢3 + 3c¢3 + ... points
which are invariant under the action of any (given) permutation o of these n points with
cycle type (c1,co,...) (i.e. exactly ¢ cycles of length k). See for instance [2, 6, 8] and
the references therein for more information on cycle index series. Equivalently, it can be

defined via
1 .
Zp(s1,52,...) = E ] < E ﬁxF[a]x‘flxgza:?...) ,

n>0 oESy

where fix F[o] is the number of F-structures for which the permutation o is an automor-
phism and (o1, 09, ...) is the cycle type of o [2].

In this note, we deal with the special family 7 of rooted trees. Yet another reformu-
lation shows that the cycle index series is also

S Z(Au(T)),

TeT

where Z(Aut(T')) is the cycle index of the automorphism group of 7. The following
formula for the cycle index series is due to G. Labelle [8, Corollary A2]:

Theorem 1 The cycle index series for rooted trees is given by

c1—1 ¢ il

c1>0co,c3,...20 i>1 ]‘7, ]‘7,,]751

Note that the expression resembles (1), though it is somewhat longer. This result seems
to be not too well-known, but it certainly deserves attention. In [8], Labelle proves it in
a more general setting, using a multidimensional version of Lagrange’s inversion formula
due to Good [4]. On the other hand, Constantineau and J. Labelle provide a combinatorial
proof in [3].

First of all, we will give a simple proof (though, of course, less general than Labelle’s)
for this formula, for which only the classical single-variable form of Lagrange inversion will
be necessary; then, some immediate corrolaries are stated. Finally, the use of the cycle
index series is demonstrated by applying the formula to the enumeration of weighted trees
and k-decomposable trees.
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2 Proof of the main theorem

By the recursive structure of rooted trees and the multiplicative properties of the cycle
index, it is not difficult to see that Z = Z7(sq, So, . . .) satisfies the relation

1
Z = s1€exp <Z—Zm> ,
m

m>1

which is given, for instance, in a paper of Robinson [12, p. 344] and the book of Bergeron
et al. [2, p. 167]. Here, Z,, is obtained from Z by replacing every s; with s,,;. Now, we
prove the following by induction on k:

Cil—ls{il k 1 c;i—1
o - ;A C;
7= ¥ T (Si) ()

Cl,...,ckZO =2 v ]|Z .]|Z7.77EZ

c1>0

1
oo (Y1 3wz
m>km dlm,d<k

in the ring of formal power series. Then, for finite k, the coefficient of s{'...s* follows

at once, since >, (Zd\m,dgk dcd) Zm doesn’t contain the variables sy, ..., s.

First note that, by Lagrange’s inversion formula (cf. [5, 6]), we have

Cc—l
w = ‘ x€
=
and ( -
alc+a)" .
exp(aw) = Z o x
c>0
if w = xe™. This yields
Z Z_I_Z 1Z Zcil_l c1 CIZ
= §¢ ex — Ly | = S ex —4Lm |,
LeXP m el Tt P m
m>2 c1>1 m>2

which is exactly the desired formula for £ = 1. For the induction step, we note that

1
Z; = s;exp <ZaZml>

m>1
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and thus, by the induction hypothesis,

Ct121—18t1:1 k—1 1 . ci—1 . .
- ¥ CE (Sn) (T

C1y0,Cl—120 1=2 Jli Jli,j#i
1>0
1 1
exp E Z dCd Zk—i-ZE Z dcd Zm
dlk,d#k m>k djm,d<k
Ccl_lscl k—1 1 ei—1
1 1 : y i
= > o llge (e > Jes ) s
C1y0yCl—120 L i=2 " Jli Jli,j#i
c1>0
1 1 Ck—l
(S (ae i Tm) o«
x>0 jlk,j#k ilk,j#k

]{ch 1

—Z — d o

g lsp I 1 A\ N\ .
- Z | Hci!iCi chj chj 5i'

Cy:

Cl,...,c >0 1=2 jle Jli,g#%
c1>0
exp i deqg | Z | -
m
m>k dim,d<k
This finishes the induction. [

Corollary 2 The number t,, = |7,| of rooted trees on n vertices is given by

c1—1 1 ci—l
= Y S (D) (D)

Cy:

61+2cclz>+0...=n i>1 ]|2 ]|27j7&2
Proof: Simply set s;1 = s, = ... =1 in the identity
c;i—1
s 1 , , .
S zmmy= Y CEL () (T )
TeT, e1+2ept..=n s ™ ji jligi
€1

As a second corollary, we obtain Cayley’s formula for the number of rooted labeled
trees.

Corollary 3 The number of rooted labeled trees on n vertices is given by n™ 1.
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Proof: Note that the coefficient of s in the cycle index of a rooted tree 7" on n vertices
is precisely | Aut(7)|~!. Thus, we have

> 1Au(@) 7 = =

TeT,

n—1

n!

But % is exactly the number of different labelings of T', which finishes the proof. m

3 Further applications

Theorem 1 can also be applied to a general class of enumeration problems: let a set B
of combinatorial objects with an additive weight be given, and let B(z) be its counting
series. Now, if we want to enumerate trees on n vertices, where an element of B is assigned
to every vertex of the tree, the counting series is given by

el (2e) (5m)rer

c1+2ce+...=n i>1 7le VIR E=
c1>0

The coefficient of z equals the total weight. For example, the counting series for rooted
weighted trees on n vertices (i.e. each vertex is assigned a positive integer weight, cf.
Harary and Prins [7]) is given by

! z \“ 1 o 2\
o= Y () Oas (Se) (X)) ()
01+2cg;i-0...:n i>1 jli jli,j#e
el

The first few instances are

en=1WE==2=z+22+23+..,

1—2 =

e n=2 W(z)= (1522)2 =22 +223+320 4+ ..,

o n=23: W(z)z&%:2z3+5z4+1025+....

Finally, we are going to consider a new application of Theorem 1. This example deals with
the decomposability of trees: we call a tree k-decomposable (a special case of the general
concept of A-decomposability, see [1, 16]) if it has a spanning forest whose components
are all of size k. It has been shown by Zelinka [17] that such a decomposition, if it
exists, is always unique. The special case k = 2, which has already been investigated
by Moon [11] and Simion [13, 14], corresponds to perfect matchings. Now, let D(z)
denote the generating function for the number of k-decomposable rooted trees. Since a
decomposable rooted tree is made up from a rooted tree on k vertices (the component
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containing the root) and collections of k-decomposable rooted trees attached to each of
these k vertices, we obtain the following functional equation for k-decomposable trees:

D)= Y Cz_! E(x)QHCi!liQ (chj> (Z jcj) E(z")",

c1+2co+...=k i>1 Jli Jlé,j#i
c1>0

where E(z) = zexp (3,5, =D(z™)). For k = 2, we obtain

D(z) = 2% exp (Z%D(fn)) ;

giving the known counting series for trees with a perfect matching (Sloane’s A000151 [15],
see also [11, 13, 14]):

D(z) = 2% + 2% + 728 + 262° + 10720 + 458z"% + . ..
For k = 3, to give a new example, we have
D) = e (32 06m ) + 2 e (321 (D6 + DG)
r) = —€X — €T —ex - x .
2 ! m>1m 2 b m>1m ’

yielding
D(z) = 22" + 102° + 842" + 7882 + ...

Of course, it is possible to calculate the counting series of k-decomposable rooted trees for
arbitrary k in this way. The functional equation can also be used to obtain information
about the asymptotic behavior (cf. [6, 16]).
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