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Abstract

Pálfy proved that a group G is a CI-group if and only if |G| = n where either
gcd(n, ϕ(n)) = 1 or n = 4, where ϕ is Euler’s phi function. We simplify the proof
of “if gcd(n, ϕ(n)) = 1 and G is a group of order n, then G is a CI-group”.

In 1987, Pálfy [6] proved perhaps the most well-known result pertaining to the Cayley
isomorphism problem. Namely, that a group G of order n is a CI-group if and only if
either gcd(n, ϕ(n)) = 1 or n = 4, where ϕ is Euler’s phi function. It is worth noting that
every group of order n is cyclic if and only if gcd(n, ϕ(n)) = 1. It is the purpose of this
note to simplify some parts of Pálfy’s original proof.

Definition 1 Let G be a group and define gL : G → G by gL(x) = gx. Let GL =
{gL : g ∈ G}. Then GL is the left-regular representation of G. (It is a subgroup of the
symmetric group SG of all permutations on G.) We define a Cayley object of G to be
a combinatorial object X (e.g. digraph, graph, design, code) such that GL ≤ Aut(X),
where Aut(X) is the automorphism group of X (note that this implies that the vertex set
of X is in fact G). To say that G is a CI-group means that if X and Y are any Cayley
objects of G such that X is isomorphic to Y , then some group automorphism of G is an
isomorphism from X to Y .

CI-groups are characterized by the following result due to Babai [1].

Lemma 1 For a group G, the following are equivalent:

1. G is a CI-group,

2. for every γ ∈ SG, there exists δ ∈ 〈GL, γ−1GLγ〉 such that δ−1γ−1GLγδ = GL.
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We will not simplify all of Pálfy’s proof, so it will be worthwhile to discuss exactly
which part of his proof we will simplify. First, we will not deal with groups G such that
|G| = 4 at all. Second, we will only be concerned with showing that if gcd(n, ϕ(n)) = 1,
then Zn is a CI-group. Third, Pálfy’s original proof can be broken into two cases, with
the first dealing with the case where 〈(Zn)L, γ−1(Zn)Lγ〉 is doubly-transitive and the
second dealing with the case where 〈(Zn)L, γ−1(Zn)Lγ〉 is imprimitive (note that as Zn

is a Burnside group [3, Theorem 3.5A] for n composite, these are the only nontrivial
cases). The doubly-transitive case was reduced by Pálfy to the imprimitive case using
the fact that all doubly-transitive groups are known [2], which is a consequence of the
Classification of the Finite Simple Groups. We shall do the same, using Pálfy’s argument.
Pálfy handled the imprimitive case by using a sequence of lemmas (Lemmas 1.1-1.4 in [6])
which, while not overly difficult, do involve some tedious calculations and do not seem
to make transparent why the condition gcd(n, ϕ(n)) = 1 is crucial. We shall show that
Lemma’s 1.2-1.4 of [6] can more or less be replaced by an application of Philip Hall’s
generalization of the Sylow Theorems for solvable groups.

Let π be a set of primes. A π-group is a group G such that every prime divisor of |G|
is contained in π. A Hall π-subgroup H of G is a subgroup of G such that H is a π-group,
and no prime contained in π divides |G|/|H|. Hall π-subgroups need not exist, but we
remind the reader that Hall’s Theorem [4, Theorem 6.4.1] states that they do exist if G
is solvable, and in that case any two Hall π-subgroups of G are conjugate in G.

Definition 2 Let G be a transitive permutation group of degree mk that admits a com-
plete block system B of m blocks of size k. If g ∈ G, then g permutes the m blocks of B
and hence induces a permutation in the symmetric group Sm, which we denote by g/B.
We define G/B = {g/B : g ∈ G}. Let fixG(B) = {g ∈ G : g(B) = B for every B ∈ B},
and for B ∈ B, let StabG(B) = {g ∈ G : g(B) = B}.

We shall use Pálfy’s notation, repeated here for convenience. Let x be the n-cycle
(0 1 . . . n − 1) (so that 〈x〉 = (Zn)L) and y any conjugate of x in Sn such that 〈x, y〉
admits a complete block system of m blocks of size k. Let xm = z0z1 · · · zm−1 where each
zi is a k-cycle that permutes i. Finally, let P = 〈zi : i ∈ Zm〉. The following result
combines Lemmas 1.2, 1.3, and 1.4 of [6].

Lemma 2 If 〈x, y〉 admits a complete block system B with m blocks of size k such that

ym ∈ P , Zm is a CI-group, and gcd(m, k ·ϕ(k)) = 1, then 〈y〉 is conjugate to 〈x〉 in 〈x, y〉.

Proof. As 〈x〉 and 〈y〉 are abelian, and a transitive abelian subgroup is regular [3,
Theorem 4.2A (v)], we have that fix〈x〉(B) and fix〈y〉(B) have order k and 〈x〉/B, 〈y〉/B
are cyclic of order m. As Zm is a CI-group, by Lemma 1, there exists δ1 ∈ 〈x, y〉/B such
that δ−1

1 〈y〉δ1/B = 〈x〉/B. We thus assume without loss of generality that 〈y〉/B = 〈x〉/B.
For i ∈ Zm, we have that x−1zix = zσ(i) for some σ ∈ Sm and, as ym ∈ P and 〈y〉 is

abelian, we also have that y−1ziy = zai

δ(i) for some δ ∈ Sm and ai ∈ Z
∗
k. We conclude that

both x and y normalize P , so that x and y normalize P ′ = P ∩ 〈x, y〉. Thus P ′ / 〈x, y〉.
Hence P ′ /Stab〈x,y〉(B), B ∈ B, so that Stab〈x,y〉(B)|B is a transitive group of degree k and
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contains a normal regular abelian subgroup of degree k. By [3, Corollary 4.2B], we have
that Stab〈x,y〉(B)|B is isomorphic to the semidirect product Aut(Zk) n Zk = N(k). It is
well known that Aut(Zk) is solvable of order ϕ(k), so that N(k) is solvable of order ϕ(k)·k.
By the Embedding Theorem [5, Theorem 2.6], 〈x, y〉 is permutation group isomorphic to
a subgroup of the wreath product (〈x, y〉/B) o N(k) so that 〈x, y〉 is permutation group
isomorphic to a subgroup of Zm o N(k). Hence 〈x, y〉 is solvable. Let π be the set of
primes dividing m. As |Zm o N(k)| = m · [ϕ(k) · k]m and gcd(m, ϕ(k)) = 1 , we have that
gcd(m, [ϕ(k) · k]m) = 1. Thus 〈xk〉 and 〈yk〉 are Hall π-subgroups of 〈x, y〉 and by Hall’s
Theorem are conjugate in 〈x, y〉. We may thus assume without loss of generality that
〈xk〉 = 〈yk〉.

As P ′ is abelian, ym commutes with xm. As 〈yk〉 = 〈xk〉 and ym commutes with yk,
we have that ym also commutes with xk. As 〈xm, xk〉 = 〈x〉 is a transitive abelian group,
and a transitive abelian group is self-centralizing [3, Theorem 4.2A (v)], we have that
ym ∈ 〈x〉. As 〈yk〉 ≤ 〈x〉, we have that 〈y〉 ≤ 〈x〉 so that 〈y〉 = 〈x〉.

For completeness, we include the following proof. Note that it is essentially Pálfy’s
original proof, with Lemma 2 replacing Lemmas 1.2, 1.3, and 1.4 of [6].

Theorem 3 (Pálfy) If n is a positive integer and gcd(n, ϕ(n)) = 1, then Zn is a CI-

group.

Proof. Let n = p1 · · · pr be the prime factorization of n. (Note that p1, . . . , pr are
distinct, because n is relatively prime to ϕ(n).) We proceed by induction on r.

If r = 1, then any two regular cyclic subgroups of Sn are Sylow n-subgroups of Sn,
and thus are conjugate. The result then follows by Lemma 1.

Assume that the result holds for all n with gcd(n, ϕ(n)) = 1 such that n has r − 1
distinct prime factors. Let n have r ≥ 2 distinct prime factors, and x be as above. Let
y ∈ Sn be any n-cycle (so that 〈y〉 is conjugate to 〈x〉 in Sn). As Zn is a Burnside group,
by [3, Theorem 3.5A], we have that 〈x, y〉 is either doubly-transitive or imprimitive.

If 〈x, y〉 is imprimitive, admitting a complete block system B of m blocks of size k,
then by [6, Lemma 1.1], there exists y′ ∈ Sn such that y′ is conjugate of y in 〈x, y〉 and
(y′)m ∈ P . By Lemma 2, we then have that 〈y′〉 is conjugate to 〈x〉 in 〈x, y′〉, so that
〈x〉 is conjugate to 〈y〉 in 〈x, y〉. By Lemma 1, Zn is a CI-group and the result follows by
induction.

If 〈x, y〉 = Sn, then clearly 〈y〉 is conjugate to 〈x〉 in 〈x, y〉. If 〈x, y〉 = An, then by
[6, Lemma 3.1] we have that 〈y〉 and 〈x〉 are conjugate in An. Thus if 〈x, y〉 = An or Sn,
then the result follows by Lemma 1. Otherwise, by [6, Lemma 2.1], there exists a prime
divisor p of n such that the Sylow p-subgroups of 〈x, y〉 have order p. Then 〈xn/p〉 and
〈yn/p〉 are Sylow p-subgroups of 〈x, y〉 and are thus conjugate. Hence there exists y ′ ∈ Sn

such that 〈y′〉 is conjugate to 〈y〉 in 〈x, y〉 and (y′)n/p = xn/p. Then 〈xn/p〉 / 〈x, y′〉, and so
〈x, y′〉 admits a complete block system B consisting of n/p blocks of size p, reducing this
case to the imprimitive case above. The result then follows by induction.
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