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Abstract

A differential poset is a partially ordered set with raising and lowering operators
U and D which satisfy the commutation relation DU−UD = rI for some constant r.
This notion may be generalized to deal with the case in which there exist sequences
of constants {qn}n≥0 and {rn}n≥0 such that for any poset element x of rank n,
DU(x) = qnUD(x)+rnx. Here, we introduce natural raising and lowering operators
such that the set of unlabelled graphs, ordered by G ≤ H if and only if G is
isomorphic to an induced subgraph of H, is a generalized differential poset with
qn = 2 and rn = 2n. This allows one to apply a number of enumerative results
regarding walk enumeration to the poset of induced subgraphs.

1 Introduction

The class of posets known as differential posets were first introduced and studied by
Stanley [3]. Generalizations of this class of posets were studied by Stanley [4] and Fomin
[1]. A number of examples of generalized differential posets are given in these papers.
Another example, a poset of rooted unlabelled trees, was recently introduced by Hoffman
[2]. In the present paper, we discuss a new example of a generalized differential poset,
namely, the induced subgraph order on isomorphism classes of graphs. These results could
potentially have applications to the analysis of dynamic algorithms in which vertices are
added or removed from graphs in an unrestricted manner.

2 Definitions and Terminology

Let P be a locally finite, ranked partially ordered set with least element 0̂ and finitely
many elements of each rank. For x, y ∈ P, we say that y covers x if x < y and for any
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z ∈ P satisfying x ≤ z ≤ y, either x = z or y = z. We denote this by x l y. Let K
P

denote the vector space of formal, possibly infinite, linear combinations of elements of P
over a field K of characteristic zero. We can define operators U and D on KP by

U(x) =
∑

y∈P

u(x, y)y

and
D(x) =

∑

y∈P

d(y, x)y

for some weight functions u, d : P × P → K such that u(x, y), d(x, y) = 0 unless x l y.
Let ρ denote the rank function of P. Let Pn be the set of elements of rank n, namely,

Pn = {x ∈ P : ρ(x) = n}.

If A is an operator on K
P , then its restriction to K

Pn is denoted by An. (Note that for
composition of operators, the notation ABn may be used without ambiguity, since (AB)n

and A(Bn) are the same operator.) Fomin [1] studied partial orders for which there exists
a sequence of polynomials {fn}n≥0 for which

DUn = fn(UDn). (1)

We are typically interested in the case in which the polynomials fn are all linear, that is,
when there exist sequences {rn}n≥0 and {qn}n≥0 such that DUn = qnUDn + rnI. Posets
of this type are a generalization of r-differential posets, in which there is a constant
r such that rn = r and qn = 1 for all n ≥ 0. Differential posets were first introduced
and studied by Stanley [3]. Another special case, in which qn = 1 and {rn}n≥0 is any
sequence, is the case of sequentially differential posets, also introduced and studied
by Stanley [4].

A walk C on a poset P is a sequence of poset elements

C = (x1, x2, . . . , xk)

such that either xi l xi+1 or xi+1 l xi for 1 ≤ i ≤ k − 1. The shape of the walk is the
monomial W = Wk−1Wk−2 . . .W1 given by

Wi =

{

U if xi l xi+1,

D if xi+1 l xi.

The displacement of a walk of shape W is the number of instances of U in W minus
the number of instances of D in W . The length of a walk is the total number of U ’s and
D’s in W . The weight of the walk C is the product

w(C) =
∏

1≤i≤k−1

w(xi, xi+1),
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where

w(xi, xi+1) =

{

u(xi, xi+1) if xi l xi+1,

d(xi+1, xi) if xi+1 l xi.

Let C(x
W
→ y) denote the set of all walks of shape W which start at x and end at y. We

are interested in studying the sum of weights over walks from x to y of a given shape W ,
namely,

e(x
W
→ y) :=

∑

C∈C(x
W
→y)

w(C).

If W = Un, this notation is shortened to e(x
Un

→ y) = e(x → y). A further simplification
of notation is e(0̂ → x) = e(x). The key observation connecting these numbers to the
algebraic structure of a generalized differential poset is that

Wx =
∑

y∈P

e(x
W
→ y)y,

so answering the algebraic question of how to compute Wx will answer combinatorial
questions about enumeration of walks. It is often helpful to introduce the bilinear form
〈·, ·〉 given by

〈x, y〉 = δx,y =

{

1 if x = y,

0 if x 6= y.

extending linearly in both arguments to vectors of finite support. With this notation, we
have

e(x
W
→ y) = 〈y, Wx〉 .

3 The Induced Subgraph Order on Unlabelled Graphs

Let V denote the set of isomorphism classes of simple graphs. Define a partial order on V
by G ≤ H if and only if G is isomorphic to an induced subgraph of H. In this order, the
covering relation is given by G l H if and only if there exists a vertex of H which, when
deleted, leaves G. Equivalently, G l H if and only if there exists a subset S of vertices of
G such that when a new vertex v is added to G such that the neighbourhood of v is S,
the result is H. (We denote the graph obtained by adding the vertex v to G such that its
neighbourhood is S by G � S.) From this, by taking ρ(G) to be the number of vertices
of G, we see that V is ranked, and its least element is the graph with no vertices.

If G l H, we can define weights on the cover relations as follows. Let d(G, H) denote
the number of vertices v of H for which H \ {v} = G. Let u(G, H) denote the number
of subsets S of vertices of G such that G � S = H. These are natural cover weights to
use in the sense that the weight of a walk on this poset will correspond to the number
of ways one graph may be transformed into another through a sequence of additions and
deletions of vertices. Moreover, with these weights, for ρ(G) = n and a fixed labelling
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{1, . . . , n} of the vertices of G, we can write U and D as

U(G) =
∑

H∈V

u(G, H)H =
∑

S⊆{1,...,n}

G � S

and
D(G) =

∑

H∈V

d(H, G)H =
∑

i∈{1,...,n}

G \ {i}.

Our main theorem concerning the poset V is as follows.

Theorem 3.1 V, with cover weights u and d defined as above, is a generalized differential

poset with

DUn = 2UDn + 2nIn.

Proof: Let G ∈ V be such that ρ(G) = n. Fix a labelling {1, . . . , n} of the vertices of G.
Then

DU(G) = D

(

∑

S⊆{1,...,n}

G � S

)

=
∑

S⊆{1,...,n}

∑

i∈{1,...,n,v}

(G � S) \ {i}

=
∑

S⊆{1,...,n}

∑

i∈{1,...,n}

(G � S) \ {i} + 2nG,

and

UD(G) = U

(

∑

i∈{1,...,n}

G \ {i}

)

=
∑

i∈{1,...,n}

∑

S⊆{1,...,n},i6∈S

(G \ {i}) � S.

Note that if i 6∈ S, then the graphs (G \ {i}) � S and (G � S) \ {i} are the same, so

UD(G) =
∑

i∈{1,...,n}

∑

S⊆{1,...,n},i6∈S

(G � S) \ {i}.

Furthermore, if i 6∈ S, then the graph (G � S) \ {i} is the same as the graph (G � (S ∪
{i}) \ {i}, so

∑

i∈{1,...,n}

∑

S⊆{1,...,n},i6∈S

(G � S) \ {i} =
∑

i∈{1,...,n}

∑

S⊆{1,...,n},i∈S

(G � S) \ {i}.

From this, we obtain

UD(G) =
1

2

∑

i∈{1,...,n}

∑

S⊆{1,...,n}

(G � S) \ {i} =
1

2

∑

S⊆{1,...,n}

∑

i∈{1,...,n}

(G � S) \ {i},
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hence DU(G) = 2UD(G)+ 2nG for all G such that ρ(G) = n, so DUn = 2UDn +2nIn. �

It is of interest to note that the induced subgraph order is an example of a generalized
differential poset in which the multiplicative parameter qn is nontrivial — though the the-
ory developed by Fomin allows {qn}n≥0 to be an arbitrary sequence, the known examples
of generalized differential posets all have qn = 1.

4 Enumerative Results

Having proven that the induced subgraph order is a generalized differential poset, we now
have at our disposal all the algebraic and enumerative results pertaining to generalized
differential posets. This section provides a sample of those results. By Theorem 3.1, the
operators U and D on V satisfy relations of the form of Equation (1), where the sequence
{fn}n≥0 is given by

fn(t) = 2t + 2n.

Most of the results in this section are stated in terms of repeated composition of polyno-
mials from the sequence {fn}n≥0, so we introduce the notation

fa←b := fa ◦ fa−1 ◦ · · · ◦ fb

for a ≥ b, with the convention that fa←b = 0 if a < b. Observe that for the sequence
{fn}n≥0 corresponding to V, we have

fa←b(t) = 2a−b+1t + (a − b + 1)2a.

Our first tool is the following result of Fomin, which appears as part of Lemma 1.4.8
in [1].

Lemma 4.1 (Fomin) Let k ≥ 1. Then

DUk
n = Uk−1fn+k−1←n(UDn)

and

DkUn = fn←n−k+1(UDn−k+1)D
k−1
n .

We can use this lemma to write a special class of monomials W in a convenient canonical
form. If

W = UamDUam−1D . . . DUa1DUa0

for integers ai ≥ 0, we say W is an above-word if
∑

0≤i≤k ai > k for all 0 ≤ k ≤ m.
Monomials of this type correspond to walks which, in rank, do not go below their starting
points. With this definition in hand, we can prove the following.

Theorem 4.2 Let P be a generalized differential poset, and let

W = UamDUam−1D . . . DUa1DUa0
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be an above-word. Let bi =
∑

0≤j≤i aj − i. Then there exists a polynomial gW,n such that

Wn = U bmgW,n(UDn), namely

gW,n =
∏

0≤i≤m−1

fn+bi−1←n.

Proof: Use induction on m. The base case, m = 0, is trivial. Suppose m > 0 and
that the result holds for all smaller values of m. By Lemma 4.1,

Wn = UamDUam−1D . . .DUa1Ua0−1fn+a0−1←n(UDn) = W ′fn+a0−1←n(UDn),

where W ′ = UamDUam−1D . . .DUa1+a0−1. Let a′0 = a1 + a0 − 1, and a′i = ai+1 for
m − 1 ≤ i ≤ 1. Let b′i =

∑

0≤j≤i a
′
i − i. Note that

b′i = a0 + a1 − 1 +
∑

1≤j≤i

aj+1 − i

=
∑

0≤j≤i+1

aj − i + 1

= bi+1,

so, since W is an above-word, b′i > 0 for 0 ≤ i ≤ m− 1. Hence W ′ is also an above-word,
so applying the inductive hypothesis,

Wn = U b′
m−1

∏

0≤i≤m−2

fn+b′
i
−1←n(UDn)fn+a0−1←n(UDn)

= U bm

∏

0≤i≤m−2

fn+bi+1−1←n(UDn)fn+a0−1←n(UDn)

= U bm

∏

0≤i≤m−1

fn+bi−1←n(UDn).

Thus, by induction, the polynomial gW,n exists and is equal to the given formula. �

Theorem 4.2 provides a method of computing e(0̂
W
→ x) for any above-word W and

x ∈ P whose rank is equal to the displacement of W . Namely,

e(0̂
W
→ x) =

〈

x, W 0̂
〉

=
〈

x, Uρ(x)gW,0(UD0)0̂
〉

=
〈

x, gW,0(0)Uρ(x)0̂
〉

,

since D0̂ = 0. Thus, we obtain the following.

Corollary 4.3

e(0̂
W
→ x) = e(x)

∏

0≤i≤m−1

fbi−1←0(0).
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In particular, for the poset of induced subgraphs, we obtain this formula.

Corollary 4.4

e(0̂
W
→ x) = e(x)2

P

0≤i≤m−1
(bi−1)

∏

0≤i≤m−1

bi.

Note that for fixed W , these values depend only on e(x), which, for ρ(x) = n, is the
number of graphs on vertices {1, . . . , n} which are in the isomorphism class x.

To compute e(y
W
→ x) for y, x ∈ P and above-word W of displacement ρ(x) − ρ(y),

we can make use of the diagonalization of the operator UDn carried out by Fomin [1].
Namely, if ρ(y) = n, find a basis for KPn consisting of eigenvectors of UDn. Writing y

in terms of this basis, one can easily compute gW,n(UDn)y by evaluating the polynomial
gW,n at the eigenvalues of UDn.

5 Extensions

Matthew Walsh, in a private communication, observed that replacing the ground set of
V with the set of unlabelled multigraphs in which each edge appears with multiplicity at
most k − 1 gives a generalized differential poset with DUn = kUDn + knIn. (The proof
proceeds as the proof of Theorem 3.1, with the natural modifications.) Thus, we have
examples of generalized differential posets for which the sequence {qn}n≥0 is a constant
k, for any positive integer k.
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