
The circular chromatic index of flower snarks

Mohammad Ghebleh
Department of Mathematics

Simon Fraser University
8888 University Drive

Burnaby, BC, V5A 1S6, Canada
mghebleh@sfu.ca

Daniel Král’∗

Department of Applied Mathematics and
Institute for Theoretical Computer Science†

Charles University
Malostranské náměst́ı 25
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Abstract

We determine the circular chromatic index of flower snarks, by showing that
χ′

c(F3) = 7/2, χ′
c(F5) = 17/5 and χ′

c(Fk) = 10/3 for every odd integer k ≥ 7, where
Fk denotes the flower snark on 4k vertices.

1 Introduction

All graphs in this paper are finite and simple. A graph is k-edge-colorable if its edges can
be colored using k colors in such a way that no two adjacent edges receive the same color.
By a classical theorem of Vizing [11] every cubic graph is 4-edge-colorable, and hence cubic
graphs fall into two categories: those that are 3-edge-colorable, and those that require
four colors. Those of the latter kind that satisfy a mild connectivity requirement (cyclic
4-edge-connectivity) are called snarks. Snarks are of great interest [2, 4, 5, 12] because
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the non-existence of planar snarks is equivalent to the Four Color Theorem [9], and it is
known that a minimal counterexample to several important conjectures must be a snark,
see e.g. [5, 13].

Are some snarks closer to being 3-edge-colorable than others? This question can be
made precise using the concept of circular coloring, introduced by Vince [10] under the
name of star coloring. For r > 0, an r-circular edge-coloring of a graph G is a mapping
c : E(G) → [0, r) such that 1 ≤ |c(e)− c(f)| ≤ r− 1 for every two adjacent edges e and f
of G. The circular chromatic index of G is the infimum (in fact, the minimum) of all r > 0
such that G has an r-circular edge-coloring. The circular chromatic index of G is denoted
by χ′

c(G). It is not hard to show that the chromatic index of G (the least k such that G
is k-edge-colorable) is equal to dχ′

c(G)e, and hence the circular chromatic index provides
a finer measure of edge-colorability than the chromatic index. We refer the reader to the
survey [14, 15] for more details on circular colorings of graphs.

Zhu [14] asked whether there exists a snark with circular chromatic index four. Afshani
et al. [1] answered the question in the negative by showing that the circular chromatic
index of every bridgeless cubic graph is at most 11/3. The bound is tight as witnessed
by the Petersen graph. However, the Petersen graph is the only known bridgeless cubic
graph with circular chromatic index equal to 11/3, and so it seems natural to look for
other examples among known families of snarks.

There is another result on circular edge colorings that motivated our work. Kochol [8]
disproved the conjecture of Jaeger and Swart [3] that the girth of every snark is bounded
by an absolute constant by constructing snarks of arbitrarily high girth. However, the
conjecture holds in an approximate sense when relaxed to circular colorings: Kaiser et
al. [6] proved that for every ε > 0 there exists an integer g such that every cubic bridgeless
graph of girth at least g has circular chromatic index at most 3 + ε. This result was
extended in [7] to graphs with arbitrary maximum degree.

It is natural to ask whether perhaps the same conclusion (at least for cubic graphs)
holds under the weaker assumption that the graph have odd girth at least g, i.e., that the
graph have no odd cycle of length strictly less than g. We show that this is not the case
by proving that the family of snarks known as flower snarks provide a counterexample.
We were actually able to compute the circular chromatic index of flower snarks exactly.
Let us recall that for an odd integer k ≥ 3 the flower snark Fk, is the following graph [4]:
the vertex set of Fk consists of 4k vertices v1, . . . , vk and u1

1, u
2
1, u

3
1, . . . , u

1
k, u

2
k, u

3
k. The

graph is comprised of a cycle u1
1 · · ·u

1
k of length k and a cycle u2

1 · · ·u
2
ku

3
1 · · ·u

3
k of length

2k, and in addition, each vertex vi is adjacent to u1
i , u2

i and u3
i .

2 General bound

Let ε > 0 and set r = 10/3 − ε. We show that no flower snark has an r-circular edge-
coloring. The elements of [0, r) are referred to as colors. For 0 ≤ a ≤ b ≤ r, define
ρ(a, b) = ρ(b, a) to be min{b−a, r+a− b}, i.e., ρ(x, y) is the distance between x and y on
a circle of perimeter r. If b−a < r+a−b, then we say that b follows a; if b−a > r+a−b,
then a follows b. Two colors x and y are close if ρ(x, y) < 2/3 and they are far apart if
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ρ(x, y) > 2/3. A sequence (c0, c1, c2) of colors is of type A if c0, c1 and c2 are pairwise
far apart, and it is of type B if two of the colors are close and the remaining one is far
apart from both of the other two. A sequence (c0, c1, c2) of type A has positive sign if
0 ≤ ci ≤ ci+1 ≤ ci+2 < r for some i = 0, 1, 2, where index arithmetic is taken modulo 3,
and it has negative sign otherwise. In other words, the sequence (c0, c1, c2) has positive
sign if it can be obtained from the sorted sequence comprised of c0, c1 and c2 by an even
number of transpositions. We now define signs for sequences of type B. Let (c0, c1, c2) be
a sequence of colors of type B and let i, j, k be such that {i, j, k} = {0, 1, 2} and ci and
cj are close. The sequence (c0, c1, c2) has positive sign if the color ck follows both ci and
cj, and we say that it has negative sign if ci and cj both follow the color ck. Note that
for sequences of type B the sign need not be defined and in case it is defined, it does not
depend on the order of the elements in the sequence.

Similarly as in the original proof that flower snarks are not 3-edge-colored, a certain
parity argument is also involved in our proof. The following lemma captures this:

Lemma 1. Let c be an r-circular edge-coloring of a cubic graph G for r = 10/3− ε with
ε > 0. Let v be a vertex of G, u1, u2 and u3 be its neighbors, and ei and fi edges incident
with ui but not with v (for i ∈ {1, 2, 3}). If all the edges e1, e2, e3, f1, f2 and f3 are
distinct, then the following holds: either (c(e1), c(e2), c(e3)) and (c(f1), c(f2), c(f3)) are
both of type A and have the same sign or the two sequences are both of type B and have
different signs (in particular, the signs of both of them are defined).

Proof. For every color a let I(a) = {a+x : 1 ≤ x ≤ 4/3− ε} and J(a) = {a−x : 1 ≤ x ≤
4/3− ε}, where addition and subtraction is modulo r. Note that if the edges e, e′ and e′′

are distinct and share a vertex, then exactly one of c(e′) and c(e′′) belongs to I(c(e)) and
the other belongs to J(c(e)).

Let ci = c(vui), ai = c(ei) and bi = c(fi) for i = 1, 2, 3. Since the edges vu1, vu2 and
vu3 share a vertex, the sequence (c1, c2, c3) is of type A. By the symmetry, we may assume
that it has positive sign, i.e., c1 ∈ I(c3)∩ J(c2), c2 ∈ I(c1)∩ J(c3), and c3 ∈ I(c2)∩ J(c1).
Hence, any two colors in I(c3)∪ J(c2) are close, and the same holds for I(c1) ∪ J(c3) and
I(c2) ∪ J(c1). By reversing the roles of I and J , we may assume that a1 ∈ I(c1) and
b1 ∈ J(c1). Assume first that a1, a2 and a3 are pairwise far apart. Then, a3 ∈ I(c3)
(because a3 6∈ J(c3) since it is far apart from a1), and similarly a2 ∈ I(c2). Consequently,
b3 ∈ J(c3) and b2 ∈ J(c2). The circular intervals I(c1), I(c2) and I(c3) are pairwise
at distance at least 2/3, and the same holds for J(c1), J(c2) and J(c3). It follows that
(a1, a2, a3) has positive sign, and that (b1, b2, b3) is of type A and it also has positive sign.

The other case to consider is that two of a1, a2 and a3 are close. By the symmetry, we
may assume that a2 and a3 are close, i.e., a2 ∈ J(c2) and a3 ∈ I(c3). Hence, b2 ∈ I(c2) and
b3 ∈ J(c3). We have that every member of I(c1) follows every member of I(c3) ∪ J(c2),
because c1 is at distance one from one end of the circular interval I(c1), and each of
the circular intervals involved has length 1/3 − ε. Thus a1 follows a2 and a3. Since
b1, b2 ∈ I(c2)∪ J(c1), we deduce that b1 and b2 are close, and it follows similarly as above
that both b1 and b2 follow b3, as desired. We conclude that both (a1, a2, a3) and (b1, b2, b3)
are of type B and have different signs.
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Figure 1: The construction of a 10/3-circular edge-coloring of large flower snarks. The
colors of the edges are multiplied by three in the figure.

We are now ready to deduce the lower bound on the circular chromatic indices of
flower snarks:

Theorem 1. For every t ≥ 1, the circular chromatic index of the flower snark F2t+1 is
at least 10/3. Moreover, if t ≥ 3, then χ′

c(F2t+1) = 10/3.

Proof. Let t ≥ 1 and suppose for a contradiction that c is an r-circular edge-coloring of
F2t+1 with r < 10/3. We repeatedly apply Lemma 1 with v = vi, e1 = u1

i u
1
i−1, e2 = u2

i u
2
i−1,

e3 = u3
i u

3
i−1, f1 = u1

i u
1
i+1, f2 = u2

i u
2
i+1 and f3 = u3

i u
3
i+1 for i = 1, . . . , 2t + 1 (we set u1

0 =
u1

2t+1, u1
2t+2 = u1

1, u2
0 = u3

2t+1, u2
2t+2 = u3

1, u3
0 = u2

2t+1 and u3
2t+2 = u2

1 where appropriate).
In this way, we conclude that either the sequences (c(u1

2t+1u
1
1), c(u

3
2t+1u

2
1), c(u

2
2t+1u

3
1)) and

(c(u1
2t+1u

1
1), c(u

2
2t+1u

3
1), c(u

3
2t+1u

2
1)) are both of type A and have the same sign (which is

impossible since they differ by a single transposition) or they are both of type B and have
different signs (which is again impossible by the definition of the sign in this case). This
establishes that χ′

c(F2t+1) ≥ 10/3.
Figure 1 shows the construction of a 10/3-circular edge-coloring of F2t+1 for t ≥ 3. The

edges of the snark F2t+1 incident with the vertices v1, . . . , v7, u1
1, . . . , u

1
7, u2

1, . . . , u
2
7 and

u3
1, . . . , u

3
7 are always colored as in the figure. The remaining edges of F2t+1 are colored

using the pattern shown on the dashed edges. Note that the colors in the figure are
multiplied by three for better clarity.

3 The flower snark F3

An easy consequence of Lemma 1.3 of [14] is the following:

Proposition 1. Let G be a graph. If χ′
c(G) = p/q (where p and q are relatively prime),

then there exists a p/q-circular edge-coloring of G with colors 0/q, . . . , (p− 1)/q only and
each of these colors is assigned to at least one edge of G.

Since the edges colored with the colors 0/q, . . . , (q − 1)/q must form a matching in G,
we obtain the following from Proposition 1:
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Figure 2: A 7/2-circular edge-coloring of F3. The dashed edges wrap “around” the figure.
The colors of all the edges are multiplied by two.

Proposition 2. Let G be a graph. If χ′
c(G) = p/q (where p and q are relatively prime),

then q is at most the cardinality of a maximum matching of G.

We are now ready to determine the circular chromatic index of F3:

Theorem 2. The circular chromatic index of F3 is 7/2.

Proof. A 7/2-circular edge-coloring of F3 can be found in Figure 2. By Theorem 1, the cir-
cular chromatic index of F3 is at least 10/3. By Proposition 2, χ′

c(F3) ∈ {10/3, 17/5, 7/2}.
Assume that χ′

c(F3) = 10/3. By Proposition 1, there exists a 10/3-circular edge-
coloring c of F3 which is onto the set {0/3, . . . , 9/3}. By the pigeon-hole principle, at
least one of the colors is assigned to a single edge of F3 (the size of F3 is 18). Assume that
|c−1(9/3)| = 1. Observe that all the three sets c−1({0/3, 1/3, 2/3}), c−1({3/3, 4/3, 5/3})
and c−1({6/3, 7/3, 8/3}) of edges form matchings in F3 and at least two of them are
matchings of size six, i.e., perfect matchings. However, F3 does not contain two disjoint
perfect matchings since it is not 3-edge-colorable.

Assume that χ′
c(F3) = 17/5. By Proposition 1, there exists a 17/5-circular edge-

coloring c of F3 which maps onto the set {0/5, . . . , 16/5}. Observe that each of the colors is
assigned to a single edge of F3 except for one of the colors which is assigned to two edges of
F3. Assume that the exceptional color is 1/5. Both the sets c−1({0/5, 1/5, 2/5, 3/5, 4/5})
and c−1({1/5, 2/5, 3/5, 4/5, 5/5}) of edges of F3 are perfect matchings, say M1 and M2.
By their choice, |M1∩M2| = 5. However, two perfect matchings of a simple graph cannot
differ at a single edge.

4 The flower snark F5

A construction of 17/5-circular edge coloring of F5 depicted in Figure 3 shows that
χ′

c(F5) ≤ 17/5. We were not able to provide the matching lower bound without the
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Figure 3: An 17/5-circular edge-coloring of F5. The dashed edges wrap “around” the
figure. The colors of all the edges are multiplied by five.

assistance of a computer. By Theorem 1 and Proposition 2, it is enough to exclude the
cases that χ′

c(F5) = 10/3 or χ′
c(F5) = 27/8. A brute force algorithm for finding such an

edge-coloring will be too slow. Therefore, we designed a faster algorithm for verifying
the existence of p/q-circular edge-coloring of F2t+1 based on the following idea: first, we
construct an auxiliary graph of order p3. The vertices of this graph are all the sequences
of colors of length three. Two such sequences (a1, a2, a3) and (a′

1, a
′
2, a

′
3) are joined by an

edge if it is possible to extend the partial coloring c(ui
1u

i
2) = ai and c(ui

2u
i
3) = a′

i to the
three edges incident with the vertex v2. It is not hard to observe that F2t+1 has a p/q-
circular coloring if and only if the auxiliary graph contains a walk of length 2t + 1 from a
vertex (a1, a2, a3) to a vertex (a1, a3, a2) for some choice of a1, a2, a3 ∈ {0/q, . . . , (p−1)/q}.
Once the auxiliary graph is constructed (which may be done quite fast even if the brute
force algorithm for determining the adjacency of its vertices is used), the existence of the
walk can be decided in time linear in the size of the auxiliary graph. In this way, we
verified that F5 has neither 10/3-circular nor 27/8-circular edge-coloring. Based on the
discussion of the previous two sections, we conclude:

Theorem 3. The following holds for every t ≥ 1:

χ′
c(F2t+1) =







7/2 if t = 1,
17/5 if t = 2, and
10/3 otherwise.
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