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Abstract

This note contains two results on the distribution of k-crossings and k-nestings
in graphs. On the positive side, we exhibit a class of graphs for which there are
as many k-noncrossing 2-nonnesting graphs as k-nonnesting 2-noncrossing graphs.
This class consists of the graphs on [n] where each vertex x is joined to at most
one vertex y with y < x. On the negative side, we show that this is not the case
if we consider arbitrary graphs. The counterexample is given in terms of fillings of
Ferrers diagrams and solves a problem of Krattenthaler.

1 Introduction

Let G be a graph on [n] = {1, 2, . . . , n}, with multiple edges allowed but without loops or
isolated vertices. We say that the edges {i1, j1}, . . . , {ik, jk} are a k-crossing if i1 < i2 <

· · · < ik < j1 < · · · < jk, and that they are a k-nesting if i1 < i2 < · · · < ik < jk < · · · <

j1. A graph with no k-crossing is called k-noncrossing and a graph with no k-nesting is
called k-nonnesting. The largest k for which a graph G has a k-crossing (respectively, a
k-nesting) is denoted cros(G) (resp., nest(G)).

The left-right degree sequence of a graph on [n] is the sequence ((li, ri))1≤i≤n, where li
(resp., ri) is the left (resp., right) degree of vertex i; by the left (resp., right) degree of i

we mean the number of edges that join i to a vertex j with j < i (resp., j > i).
Chen et al.[1] show that the pair (cros(G), nest(G)) is symmetrically distributed among

the set of graphs whose degree sequence is a fixed element of {(0, 0), (0, 1), (1, 0), (1, 1)}n.
Recently it has been shown (see [3]) that for each degree sequence D there are as many
graphs with cros(G) ≤ k as with nest(G) ≤ k. The purpose of this note is to explore to
which extent the result of Chen et al. can be generalized to other classes of graphs. On
the positive side, we show that when restricting left degrees to {0, 1} there are as many
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graphs with (cros(G), nest(G)) = (k, 1) as with (cros(G), nest(G)) = (1, k), although in
this case the right degrees cannot be fixed. Computer assisted calculations show that
the pair (cros(G), nest(G)) is symmetrically distributed over all graphs with n ≤ 10 and
li ∈ {0, 1} for 1 ≤ i ≤ n; we believe that this is also the case for arbitrary n, but we
have no proof of this fact. On the negative side, we give an example showing that if we
consider arbitrary graphs, the pair (cros(G), nest(G)) is not symmetrically distributed.
As explained later in Section 3, this counterexample answers on the negative a question
of Krattenthaler on fillings of Ferrers diagrams.

2 Graphs with left degree equal to 1

For a subset L ⊂ [n], let GL be the set of graphs on [n] where the left degree of vertex i

is 1 if i ∈ L and 0 otherwise. (Note that GL might be empty.) Within GL, there are as
many 2-noncrossing k-nonnesting as 2-nonnesting k-noncrossing graphs.

Theorem 1 For any integer k ≥ 1 and any set L ⊂ [n], there are as many graphs in GL

with (cros(G), nest(G)) = (k, 1) as with (cros(G), nest(G)) = (1, k).

Proof. We assume that GL is nonempty since otherwise there is nothing to prove. We
denote by GL,1,≤k the set of graphs in GL with cros(G) = 1 and nest(G) ≤ k; similarly,
GL,≤k,1 denotes the graphs in GL with cros(G) ≤ k and nest(G) = 1. It is enough to show
that |GL,1,≤k| = |GL,≤k,1|.

We define a bijection from GL,1,≤k to GL,≤k,1 inductively on the number of elements of
L. If |L| = 1, then the only graph in GL has two vertices and one edge, and belongs to
both GL,1,≤k and GL,≤k,1. Assume that we have bijections φL′ : GL′,1,≤k → GL′,≤k,1 for all
L′ with |L′| < l. Now let |L| = l and pick G ∈ GL,1,≤k. Let x be the smallest element of
L; since G has no crossing and no isolated vertex, the neighbour of x is x − 1. Consider
the graph G′ obtained from G by removing the edge incident with x and all the isolated
vertices resulting from this, if any; relabel the set of vertices V (G′) if necessary so that
V (G′) = [|V (G′)|]. Let L′ be the set of vertices of G′ that have left degree equal to 1;
let H ′ be the image of G′ under φL′. We explain next how to complete H ′ to a graph
H in GL,≤k,1. It will be clear that the set of vertices with nonzero left degree in H is L

and that nest(H) = 1; after describing the construction we justify that cros(H) ≤ k. The
transformation from H ′ into H has 4 cases depending on the degrees of x and x− 1 in G.

(i) Suppose rx > 0 and rx−1 > 1 in G. Then H ′ has n vertices and L′ = L−{x}; obtain
H by adding the edge {1, x} to H ′.

(ii) Suppose rx > 0 and rx−1 = 1 in G. Then H ′ has n− 1 vertices and L′ = {j − 1|j ∈
L, j 6= x}. In this case to obtain H relabel the vertices of H ′ to {2, . . . , n}, add a
vertex 1 and join x to 1.

(iii) Suppose rx = 0 and rx−1 > 1 in G. Then again H ′ has n − 1 vertices and L′ =
{j − 1|j ∈ L, j 6= x}. In this case we need to introduce a new vertex between the
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vertices x−1 and x of H ′, then relabel the vertices correspondingly to {1, 2, . . . , n},
and then add the edge {1, x}.

(iv) Suppose rx = 0 and rx−1 = 1 in G. Then H ′ ahs n− 2 vertices and L′ = {j − 2|j ∈
L, j 6= x}. Similarly, here we need to introduce two new vertices, one between
vertices x−2 and x−1 of H ′ and another before vertex 1. Then relabel the vertices
and add the edge {1, x}.

We have to justify that this process does not create (k + 1)-crossings in the graph H.
By the inductive hypothesis, if there is a (k + 1)-crossing in H it must involve the new
edge {1, x}; moreover, since x is the first vertex with nonzero left degree, all edges in a
(k + 1)-crossing involving {1, x} must have their left ends among {1, 2, . . . , x − 1}. But
since G is in GL,1,≤k and x was the first element of L and there are no isolated vertices,
the vertices 1, 2, . . . , x − 2 are joined in G to vertices v1, . . . , vx−2, respectively, with the
property that v1 > v2 > · · · > vx−2; this x − 2 edges together with {x − 1, x} form an
(x−1)-nesting in G, hence we must have that x−1 ≤ k. So in H we cannot have created
a (k+1)-crossing by using an edge with a right-end in x, since there are at most k vertices
before it.

The inverse bijection GL,≤k,1 → GL,1,≤k is defined in a similar manner and we omit the
details.

2

3 Arbitrary graphs

We describe the example showing that the pair (cros(G), nest(G)) is not symmetrically
distributed for arbitrary graphs in the language of fillings of Ferrers diagrams. We explain
the correspondence between graphs and fillings of Ferrers diagrams after the statement of
Fact 2.

Given an integer partition λ1 ≥ λ2 ≥ · · · ≥ λs, the Ferrers diagram F of shape
(λ1, . . . , λs) is the arrangement of square cells, from top to bottom and left-justified, with
λi cells in row i. A filling of F consists of assigning a nonnegative integer to each cell of
the diagram. If we restrict to the integers 0 and 1 we refer to 01 fillings to distinguish
them from arbitrary fillings. A cell that has been assigned the integer 0 will be called
empty. A se chain of length k of the filling is a selection of rows r1 < · · · < rk and
columns c1 < · · · < ck such that the cells (ri, ci) are nonempty. A ne chain of length k of
the filling is a selection of rows r1 < · · · < rk and columns c1 < · · · < ck such that the
cells (ri, ck−i+1) are nonempty and with the additional condition that the cell (rk, ck) is
in the diagram.

We are interested in counting fillings where the sum of the entries is fixed. Let
N(F ; m; ne = k, se = l) be the number of arbitrary fillings of F where the sum of
the entries is m, the longest ne chain has length k and the longest se chain has length
l. We add a superscript 01 to denote 01 fillings. It is known (see [2] or [3]) that
N(F ; m; ne = k, se = ∗) = N(F ; m; ne = ∗, se = k), where the ∗ indicates that there is no
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restriction in the corresponding parameter. It is actually shown that one can also fix the
sums of the values of the filling along the rows and columns of the diagram. The same iden-
tity holds for 01 fillings, that is, N 01(F ; m; ne = k, se = ∗) = N 01(F ; m; ne = ∗, se = k),
but in this case it is only possible to fix row sums (see [4], where this result follows from
more general statements for moon polyominoes).

Krattenthaler [2, Problem 2] asks whether it is also the case that

N01(F ; m; ne = t, se = s) = N 01(F ; m; ne = s, se = t).

In his paper he shows that the equality holds when row and column sums are set to one.
In [4] there are simple examples showing that if the claim is true then the restrictions
on row and column sums must be dropped. We show that the answer to the problem is
negative by giving a counterexample for the smallest possible values of s and t.

Fact 2 For the Ferrers diagram F of shape (5, 5, 4, 3),

N01(F ; 8; ne = 1, se = 2) = 10 6= 11 = N 01(F ; 8; ne = 2, se = 1).

Before giving a proof of this fact, we make some remarks on the correspondence
between graphs and fillings of Ferrers diagrams.

We consider graphs where each vertex has either left or right degree equal to zero; these
graphs are called left-right graphs. A vertex with left degree (resp., right degree) equal
to zero is called opening (resp., closing). There is an easy correspondence introduced
in [3] between left-right graphs and fillings of Ferrers diagrams. Roughly speaking, to
each left-right graph G corresponds a filling L(G) of a Ferrers diagram F (G) whose shape
is determined by the sequence of opening and closing vertices of G. The row sums of the
filling L(G) give the left degrees of G and the column sums give the right degrees. Then
G has a k-crossing (k-nesting) if and only if L(G) contains a ne chain of length k (se
chain of length k). In this language, Theorem 1 above states that for all diagrams F the
equality N01(F ; m; ne = 1, se = k) = N 01(F ; m; ne = k, se = 1) holds when restricted to
fillings with row sums equal to 1.

In terms of graphs, Fact 2 translates as saying that for simple graphs on [9] with
opening vertices {1, 2, 3, 5, 7} and 8 edges in total, there are 10 with (cros(G), nest(G)) =
(1, 2) and 11 with (cros(G), nest(G)) = (2, 1). This does not show though that the pair
(cros(G), nest(G)) is not symmetrically distributed over all simple graphs on [9] with 8
edges. To find such an example, we look at a simpler way to associate diagrams to graphs.
This corresponds essentially to encoding the adjacency matrix of a graph on [n] in the
diagram ∆n = (n−1, n−2, . . . , 2, 1) (this encoding was used by Krattenthaler in [2] to give
alternative proofs of some of the results of [1]). We have that N 01(∆n; m; ne = k, se = l)
is the number of simple graphs G on [n] with m edges and (cros(G), nest(G)) = (k, l). By
an argument similar to the proof below of Fact 2, it can be shown that N 01(∆7; 11; ne =
1, se = 2) = 20 6= 21 = N 01(∆7; 11; ne = 2, se = 1).

Fact 2 above is for 01 fillings, but we can deduce from it a similar statement for
arbitrary fillings. Note that the value of N(F ; m; ne = k, se = l) can be deduced from
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the values of N 01(F ; i; ne = k, se = l) for 1 ≤ i ≤ m. The reason is that given a 01 filling
of F with i nonempty entries, the number of ways of extending this filling to an arbitrary
one with the same empty cells and with the sum of the entries equal to m depends only
on i. Hence it follows that for the smallest m for which N 01(F ; m; ne = 2, se = 1) 6=
N01(F ; m; ne = 1, se = 2) we must have that N(F ; m; ne = 2, se = 1) 6= N(F ; m; ne =
1, se = 2).

We now turn to the proof of Fact 2. The statement can be checked by computer, but
for completeness we give a sketch of the counting by hand.

Proof of Fact 2.

Let F be the diagram with shape (5, 5, 4, 3). First we show that N 01(F ; 8; ne = 1, se =
2) = 10. Label the cells of F as on the left hand-side of Figure 1. We distinguish several
cases in the counting.

Figure 1: Figures used in the proof of N 01(F ; 8; ne = 1, se = 2) = 10.

(i) Cell d is in the filling. Then, since the maximum ne chain must have length one, we
have that i, j, k, n, o, p are empty. In total, we need 9 empty cells. To destroy the
other ne-chains of length 2, each of the following pairs must contain an empty cell
{h, q}, {a, e}, {b, f}. Hence c, g, l, m are in the filling. The situation is depicted on
the right hand-side of Figure 1, where × denotes a cell in the filling and ◦ denotes
an empty cell. Now to avoid a se-chain of length 3 we have that e must be empty as
well, which forces a to be in the filling and hence f is empty and b is in the filling.
The last cell must be one of {h, q} and since there are no more restrictions, this
gives two possible fillings in this case.

(ii) Assume now that d is empty and that a is in the filling. By an argument analogous to
the one in the previous case, we have that e, f, i, j, n, o are empty and that b, c, g, l, m

are in the filling. The remaining two cells must be chosen one from each of the pairs
{h, p}, {k, q}. Of the four possible combinations, there is one that contains a ne-
chain of length 2, so there are three possibilities in this case.

(iii) If d and a are empty and e is in the filling, then j, k, o, p must be empty. Now we
need 3 more empty cells but each of the four pairs {h, n}, {i, q}, {b, f}, {m, c} must
contain an empty cell (the latter to avoid a se-chain of length 3). So there are no
possible fillings in this case.
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(iv) If a, d, e are empty and b is in the filling, by an argument similar to that of case (i)
we deduce that f, h, i, j, o are empty and that c, g, l, m, n, p are in the filling. Now
the remaining cell in the filling can be either k or q, so two possibilities.

(v) If a, b, d, e are empty, by the same sort of argument as in the previous cases, we
deduce that h, i, j must also be empty.

(vi) Finally, if a, b, d, e, i, j, h are all emtpy, then the remaining two empty cells must
be one from each of the pairs {f, p}, {k, q}. It is easy to see that three of the four
possibilities give suitable fillings.

This shows that N 01(F ; 8; ne = 1, se = 2) = 10. The proof that N 01(F ; 8; ne =
2, se = 1) = 11 follows a similar argument. For completeness we list all possible fillings
in Figure 2.

2

Figure 2: The 11 fillings of (5, 5, 4, 3) with ne = 2 and se = 1
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