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Abstract

We prove that the minimum number of distinct hamiltonian paths in a strong
tournament of order n is 55 . A known construction shows this number is best
possible when n =1 mod 3 and gives similar minimal values for n congruent to 0
and 2 modulo 3.

A tournament 7" = (V, A) is an oriented complete graph. Let h,(T") be the number
of distinct hamiltonian paths in 7" (i.e., directed paths that include every vertex of V).
It is well known that hp(T) = 1 if and only if T is transitive, and Rédei [3] showed
that h,(T") is always odd. More generally, if T is reducible (i.e., not strongly connected),
then there exists a set A C V such that every vertex of A dominates every vertex of
V' \ A. If we denote the subtournament induced on a set S as T'[S], then it is easy
to see that h,(T) = hy(T[A]) - h,(T[V \ A]). Clearly, this process can be repeated to
obtain h,(T) = h,(T[A1]) - hp(T[As]) - - - hy(T[A:]) where T[A4],...,T[A;] are the strong
components of 7. As a result, we generally consider h,(T) for strong tournaments 7'
In particular, we wish to find the minimal value of h,(T") as T ranges over all strong
tournaments of order n. Moon [1] bounded this value above and below with the following
result.

Theorem (Moon [1]). Let h,(n) be the minimum number of distinct hamiltonian paths
i a strong tournament of order n > 3. Then

3-8"3~1.026-5""1 forn=0 mod3
a"t < hy(n) << gt forn=1 mod 3

9.8"5~1.053-"! forn=2 mod3
where a = v/6 ~ 1.565 and 6= /5~ 1.710.
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This lower bound was used by Thomassen [2] to establish a lower bound for the number
of hamiltonian cycles in 2-connected tournaments.

Theorem (Thomassen [2]). Every 2-connected tournament of order n has at least
alzz=Y distinet hamiltonian cycles.

We shall prove that the upper bound for h,(n) by Moon is, in fact, best possible, and
consequently improve the lower bound on hamiltonian cycles in 2-connected tournaments
found by Thomassen.

We will call a tournament 7" nearly transitive when V(T') can be ordered vy, v, ..., v,
such that v, — v; and all other arcs are of the form v; — v; with ¢ < j. In other words,
reversing the arc v, — vy gives the transitive tournament of order n. As noted by Moon
[1], there is a bijection between partitions of V' \ {vy,v,} and hamiltonian paths that
include the arc v,, — vy, and there is a unique hamiltonian path of 7" that avoids this arc.
Hence, there are 272 + 1 distinct hamiltonian paths in a nearly transitive tournament of
order n.

Lemma 1. Let T be a strong tournament of order n > 5. Then, either T 1is nearly
transitive, or there exist sets A CV and B C 'V such that

e |A| >3 and |B| > 3.
o T[A] and T[B] are both strong tournaments.
o [ANB|=1and AUB=V.

Proof. First, assume that T is 2-connected. Choose vertices C' = {xg, 21, 2} such that
T|[C] is strong. Since T is 2-connected, every vertex of T" has at least two in-neighbors
and at least two out-neighbors. As each vertex z; has a single in- and out-neighbor on
the cycle C, we conclude that each x; beats some vertex in V' \ C and is beaten by a
vertex in V' \ C. If T'— C' is strong, then A = C' and B = V' \ {x¢, ;1 } satisfy the lemma.
Otherwise, let W, (resp. W;) be the set of vertices in the initial (resp. terminal) strong
component of T'— C'. As T is 2-connected, at least two vertices of C' have in-neighbors in
Wy, and at least two vertices of C' have out-neighbors in W;. Thus, at least one vertex of
C has both in-neighbors in W; and out-neighbors in W;. Without loss of generality, let
this vertex be zo. Then C and V' \ {z1, 22} satisfy the lemma.

Next, assume that 7' contains a vertex v such that T"— v is not strong and that no
sets A and B satisfy the lemma. Let ¢t be the number of strong components of T — v
and let W; be the set of vertices in the i*" strong component. If [W;| > 3, then choose
a vertex w € W; such that v — w. Then A = W, and B = |J._, Wi U {v,w} satisfy
the lemma. Similarly, if |W,| > 3, then A = (J'Z; W; U {v,w} and B = W, satisfy
the lemma for any w € W, such that w — v in T. Hence, since there does not exist
a strong tournament on two vertices, we can assume that W, = {w;} and W; = {w}
with v — w; and w; — v. Now, let W = UZ;; W;. If T[W] contains a cyclic triple, let
A = {uy,ug,ug} € W with T[A] cyclic. In this case A and B = V'\ {ug, u3} are sets which
satisfy the lemma. So we can assume that T'[W] and hence T'— v are both transitive.
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Finally, let W~ = WN N~ (v) and Wt = WNN*t(v). If WF # () and W~ # (), then
A=W~U{wy,v} and B=WT U {w,v} satisfy the lemma. Otherwise, either W+ = ()

or W= =0. If W+ =0, then N*(v) = {w;} and reversing the arc vw; gives a transitive
tournament of order n, and if W~ = @, N~ (v) = {w;} and a transitive tournament of
order n is obtained by reversing the arc w;v. In both cases, this implies that 7" is nearly
transitive. O

Our next lemma is probably widely known. The proof is an easy inductive extension
of the well known fact that in a tournament, every vertex v not on a given path P can be
inserted into P. We include the proof for completeness.

Lemma 2. Let P = vy — vg — -+ — v, and Q = uy — uy — -+ — u,, be vertex
disjoint paths in a tournament T'. Then there exists a path R in T such that

e V(R)=V(P)UV(Q)
o foralll <u<j <k, v precedes vj on R
o Foralll <i<j<m, u; precedes u; on R.

Proof. Note that we allow the special case where m = 0; in this case the path @) is a path
on 0 vertices, and R = P satisfies the lemma trivially.

The remainder of the proof is by induction on m. For m = 1, let i be the minimal
index such that u; — v;. If no such ¢ exists then R =v; — -+ — v, — uy. If i =1, then
R=u; — vy — --- — v, Inallothercases, R=v; — -+ = v;_1 —u; —v; — -+ — V.
So we assume the result for all paths @’ of order at most m—1. Let Q" = uqus - - - u,,_1 and
apply the induction hypothesis using the paths P and )’ to obtain a path R’ satisfying
the lemma. Next, we repeat the above argument with the portion of R’ beginning at u,, 1
and the vertex u,,. O

Theorem 1. Let hy(n) be the minimum number of distinct hamiltonian paths in a strong
tournament of order n. Then

3-8"3~1.026-5"1 forn=0 mod3
hy(n) > < p! forn=1 mod 3

9.08"5~1.053-"1 forn=2 mod3
where 3 = /5 ~ 1.710.

Proof. The proof is by induction. The result is easily verified for n = 3 and n = 4, and as
observed by Thomassen [2], h,(5) = 9. So assume the result for all tournaments of order
at most n — 1 and let T be a strong tournament of order n > 6.

As T is strong, by Lemma 1 there are two possibilities. If T" is a nearly transitive
tournament. Then h,(T) = 2""2+1, and for n > 6, this value exceeds 9- "5, Otherwise,
there exist sets A and B such that T'[A] and T[B] are strong tournaments with |A| = a > 3,
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|IBl=b>3, AUB =V and [ANB| = 1. Let {v} = AN B, and let Hy = PvP, be
a hamiltonian path of T[A], and Hp = Q1vQ2 a hamiltonian path of T[B]. We apply
Lemma 2 twice, and obtain paths R; and Ry such that V(R;) = V(P;) UV(Q;), and the
vertices of P; (resp. ;) occur in the same order on R; as they do on P; (resp. @;). Now
H = RyvR; is a hamiltonian path of 7. Furthermore, distinct hamiltonian paths of T'[A]
(resp. T'[B]) give distinct hamiltonian paths of 7. Hence by the induction hypothesis,

hy(T) > hy(T[A])h,(T[B]) > g* 5>t > gt

Furthermore, strict inequality holds unless @ = 1 mod 3 and b = 1 mod 3, which
implies that n = 1 mod 3 as well. When n = 2 mod 3, there are two cases, a =0 =0
mod 3 and without loss of generality « = 2 mod 3 and b = 1 mod 3. Using the same
induction arguments above, both cases give h,(T') > 9-4"°. Finally, in the case that n = 0
mod 3, we again have two possibilities, a = b = 2 mod 3 and without loss of generality
a=1 mod 3and b= 0 mod 3. In this case we find that h,(T) > min(81-3"?,3.5"73) =
3. /3, O

The construction utilized by Moon [1] in Theorem gives the identical upper bound
for h,(n) and equality is established.

Corollary 1. Let hy(n) be the minimum number of distinct hamiltonian paths in a strong
tournament of order n. Then

3-8"3~1.026-5"! forn=0 mod3
hy(n) =4 g1 forn=1 mod 3

9.8 %~ 1.053-8"' forn=2 mod3
where = /5 ~ 1.710.

Additionally, this result improves Thomassen’s bound on hamiltonian cycles in 2-
connected tournaments.

Corollary 2. Every 2-connected tournament of order n has at least 332" distinct hamil-
tonian cycles, with § = /5 ~ 1.710.
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