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Abstract

For undirected graphs it has been known for some time that one can bound the
diameter using the eigenvalues. In this note we give a similar result for the diameter
of strongly connected directed graphs G, namely

2 min, log(l/qﬁ(%'))J 1
log 725

D(G) < {

where X is the first non-trivial eigenvalue of the Laplacian and ¢ is the Perron vector
of the transition probability matrix of a random walk on G.

1 Introduction

For an undirected graph G on n vertices, we can upper bound the diameter D(G) by
using eigenvalues of the Laplacian [1, 2] as follows.

pe) < |+

log 2155

where 0 = A\g < A\; < --- < \,_1 denote the eigenvalues of the Laplacian of G.

A natural question is to see if it is feasible to extend such relations to directed graphs.
In a directed graph, the distance and diameter can be naturally defined: The distance
from a vertex u to a vertex v is the length of a shortest directed path from u to v. A
directed graph is strongly connected if for any two vertices v and v, there is a directed
path from u to v. The diameter of a strongly connected directed graph is defined to be the
maximum distance among pairs of vertices. If a directed graph is not strongly connected,

its diameter is taken to be infinity.
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In a recent paper [4], the Laplacian of a directed graph was defined. The eigenvalues
of this Laplacian turn out to be quite useful for capturing various isoperimetric properties
of directed graphs. For example, the spectral gap of the Laplacian can be used to bound
the mixing rate of random walks in directed graphs. The eigenvalues of the Laplacian
were also used to establish a general Cheeger inequality. In this note, we will establish
the following diameter bound by using the spectral gap of the Laplacian for a directed
graph.

Theorem 1. For a strongly connected graph G, the diameter D(G) of G satisfies
DG < {2 min, log(l/éb(x))J 41

log %

where X s the first non-trivial eigenvalue of the Laplacian and ¢ is the Perron vector of
the random walk on G.

We will define our terminology in Section 2 and give a proof for Theorem 1 in Section
3. In the last section we consider diameter bounds for Cayley graphs and give some other
remarks.

2 Preliminaries

In this section we define our terminology. Suppose G is a directed graph with vertex
set V(@) and edge set E(G). For a vertex u, the out-degree of u, denoted by d,, is the
number of edges leaving u.

A random walk on G is defined by its transition probability matrix P, where for
vertices u and v, the probability of moving from u to v is given by

L if (u,v) is an edge,

— duy
P(u,v) { 0 otherwise.

Thus, P(u,v) > 0 if and only if (u,v) is an edge, and > P(u,v) = 1.
In the remainder of this paper, a random walk on G means the typical random walk
as defined above unless specified otherwise. Since

Pl1=1 (1)

where 1 denotes the all 1s vector (as a column vector), the spectral radius is 1. The
Perron-Frobenius Theorem implies that the transition probability matrix P of a strongly
connected directed graph has a unique (up to scaling) left eigenvector ¢ with ¢(v) > 0
for all v achieving the spectral radius, i.e.,

oP = o, (2)

By scaling, we choose ¢ satisfying

ZQS(U) =1
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(Here we treat ¢ as a row vector.) We call ¢ the Perron vector of P, which is its stationary
distribution when the aperiodic condition is satisfied (i.e., the GCD of all cycle lengths is
1 [4]). Unlike undirected graphs, the Perron vector can have entries that are exponentially
small.

The Laplacian of a directed graph G is defined by

@1/2]3(1)—1/2 4 @—1/2p*q>1/2
B 2

L=1

where ® is a diagonal matrix with entries ®(v,v) = ¢(v) and P* denotes the conjugated
transpose of P. The Laplacian £ has eigenvalues 0 = \g < A\; < ... < \,_1, where the
first non-trivial eigenvalue A = \; satisfies the following [4]:

> 1 f(u) = f(v)Po(u) P(u,v)
A = inf = : (3)
o 2> | f()[(v)

3 Proof of the main theorem

To show that a directed graph G has diameter D, it is enough to show that for some
matrix M and for all vertices x and y, we have

MP(z,y) >0

provided that for  # y, we have M (z,y) = 0 if (z,y) € E(G).
We will use the following fact from [4]. For the sake of completeness we include a
proof which is short and different from the one in [4].

Lemma 1. Suppose that a strongly connected directed graph G has transition probability
matriz P and a lazy random walk P = (I + P)/2. Then the matriz M = ®Y2Pd-1/2
satisfies

M 2
2] P
11 2

for all vectors f satisfying f®Y/?1 = 0.
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Proof. We consider g with g®'/? = f and we have

I (a(@) + gw)) (@) Plr,y) [ o(y)

IFMIP Y ety

1A 42 9(y)*6(y)
ZZ l9(z) “6(x) P(x,y)

<
43 g6 (y)
SN l9@) — 9(w)|*6(@)Pla,y)
- 4> 19w oy
)\ Y
< 1--—.
- 2

The first inequality follows by the Cauchy Schwarz inequality ((3°, azb.)? <>, a2y, b2

with a, = )|/ o(x)P(z,y), by = z)P(z,y)) and (2) (ie., Y., ¢(z)P(z,y) =
o(y)). The next equahty is easﬂy verified notlng that |a + b|? + |a — b]* = |a|? + |b]* and
then using (2) and (1) (i.e., >, P(z,y) = 1). The final inequality follows from (3). O

As an immediate consequence, we have for F satisfying f®'/21 =0

M A
T

Proof of Theorem 1. For a fixed vertex x, we define f, by

fo(y) = { —v/o(z)p(y) otherwise.

Clearly, f, satisfies f,®'/?1 = 0. Note that 1®'/2 is a left eigenvector of M associated
with the eigenvalue 1. Now, for any positive integer k£ and any two vertices x and y of G,
we consider

|M*(z,y) = Vo(x)o(y) = |fuM"(y)|

< | fMF

A
1__k/2

< -2

since || fz|| = /1 — ¢(z) < 1.
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Suppose that we choose k satisfying
b LQ min,, log(1/¢(:1:))J ey

log(%

Then we have

A

Mi@y) = Vo)ely) — (1= 5)"
> ming(z) ~ (1 5)
> 0.
This shows that the diameter D(G) satisfies D(G) < k completing the proof. O

4 Concluding remarks

Of special interest is the case for directed Cayley graphs whose vertex set is a group I" and
the directed edges are generated by a subset B of elements of " as {(x,bzx) : x € T',b € B}.
For a directed Cayley graph, the condition of strong connectivity is equivalent to the
assumption that B is a generating set. Furthermore, the stationary distribution of a
directed Cayley graph is the uniform distribution. Therefore, we have the following:

Corollary 1. Suppose that a directed Cayley graph G has vertex set T' with |T'| = n and
edges of G are generated by a generating set B. Then the diameter D(G) of G satisfies

(&) < VlognJH

log %

where X is the first non-trivial eigenvalue of the Laplacian.

To compare the result for directed graphs with the known diameter bound for undi-
rected graphs, we consider known explicit constructions of Ramanujan graphs. By re-
placing each undirected edge by two directed edges of opposite directions, the associated
directed Ramanujan graph has the same eigenvalues. Corollary 1 yields an upper bound
within a factor of 4 of the bound for the undirected case.

We have now seen that the eigenvalues of the Laplacian can be used to control the
diameter of the graph. It is also known that the eigenvalues of the Laplacian are closely
related to the convergence of random walks in a directed graph. In [4] it is shown that in
a strongly connected directed graph, the first non-trivial Laplacian eigenvalue A\ provides
an upper bound for the rate of convergence for the lazy random walk as follows:

287y (t) < (1= A/2)"* max o (y) /2.
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Where A7y (t) is the total variation distance after ¢ steps, i.e.,

_ t _
Arv(t) = A?E(%)yé%?’é)’erA(P (y,2) — ¢(2))]

_ ]' t

= g max |P*(y, z) — ¢()].

zeV(G)

Is it possible to find a similar lower bound for the rate of convergence in terms of \?

Another important consequence of the Laplacian eigenvalues is its relationship with the
Cheeger constant of a directed graph [4]. It is of interest to see what further properties
of directed graphs can be controlled by the Laplacian eigenvalues. Can we bound the
average distance in terms of the Laplacian eigenvalues, for example?
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