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Abstract

Let Sn be the group of permutations of [n] = {1, . . . , n}. The Bruhat order on Sn

is a partial order relation, for which there are several equivalent definitions. Three
well-known conditions are based on ascending chains, subwords, and comparison of
matrices, respectively. We express the last using fillings of tableaux, and prove that
the three equivalent conditions are satisfied in the same number of ways.

1 Preliminaries

Let Sn be the group of permutations of [n] = {1, . . . , n}. The Bruhat order on Sn is a
partial order relation that appears frequently in various contexts, and for which there are
several equivalent definitions. In this section we recall three of them and introduce some
reformulations of these definitions. For more about the Bruhat order, including details
and proofs of the equivalence of Definitions 1, 2, and 3, see [BB], [Fu], or [Hu].

1.1 Chains

For 1 6 i < j 6 n, let (i, j) ∈ Sn be the transposition i ↔ j. We say that v ≺ (i, j)v if
and only if the values i and j are not inverted in v.

Definition 1. The Bruhat order on Sn is the transitive closure of ≺.

In other words, v 4 w if and only if there exists a chain

v = v0
(i1,j1)−−−−→ v1

(i2,j2)−−−→ v2 −→ · · · (im,jm)−−−−→ vm = w , (1)
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such that, for all k = 1, . . . , m, we have vk−1 ≺ (ik, jk)vk−1 = vk. (To allow reflexivity
v 4 v, we allow chains with no edges). Then w0 = (n n−1 . . . 1) is the unique maximum
in the Bruhat order, and v 4 w if and only if ww0 4 vw0.

Definition. We say that the ascending chain (1) is a relevant chain if i1 6 i2 6 · · · 6 im.

Example 1. There are twenty-two ascending chains from (2134) to (4231), but only two
of them are relevant:

(2134)
(1,4)−−→ (2431)

(2,4)−−→ (4231)

(2134)
(1,3)−−→ (2314)

(1,4)−−→ (2341)
(2,3)−−→ (3241)

(3,4)−−→ (4231)

Notation. Let C(v, w) be the set of relevant chains from v to w.

Proposition 1. Let v and w be permutations in Sn. Then v 4 w if and only if C(v, w) 6= ∅.
Proof. It is clear that if C(v, w) 6= ∅, then v 4 w. The other implication (if v 4 w, then
there exists a relevant chain from v to w) will follow from the main result of this paper,
Theorem 1.

1.2 Subwords

For 1 6 i 6 n−1, let si ∈ Sn be the transposition (i, i+1); by convention, s0 is the identity.
A word is an array a = [i1, i2, . . . , im] with entries (letters) from {0, 1, . . . , n − 1}. The
length of the word a is m, the number of letters. To each word we attach the permutation
sa = si1si2 . . . sim . (If the word a is empty, then sa is the identity.) A subword of a word
a is a word a′ = [ε1i1, ε2i2, . . . , εmim], with εk ∈ {0, 1} for all k = 1, . . . , m.

Definition. Let w ∈ Sn. A reduced word for w is a word of minimal length with corre-
sponding permutation w.

A canonical construction of a reduced word for w is

a(w) = [an−1, . . . , a2, a1] ,

such that, for all k = 1, .., n− 1,

• ak is a (possibly empty) sequence of increasing consecutive letters, and

• sak
sak−1

. . . sa1 and w have the values 1, . . . , k in the same positions.

The reduced word a(w) corresponds to a special factorization of w as a product of (possibly
trivial) cycles. If ak = [k, . . . , jk−1] is a nonempty sequence of increasing consecutive
letters, with 1 6 k < jk 6 n, then sak

is the cycle k → k + 1→ · · · → jk → k in Sn, and
we denote this cycle by ck,jk

. If ak = [] is empty, then the corresponding permutation is the
identity, as is, by convention, the trivial cycle ck,k. The reduced word a(w) corresponds
to the decomposition

w = cn−1,jn−1 · · · c2,j2c1,j1 .
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Example. If w = (4231) ∈ S4, then

a1 = [1, 2, 3] sa1(1234) = s1s2s3(1234) = (2341) = c1,4

a2 = [2] sa2sa1(1234) = s2(2341) = (3241) = c2,3c1,4

a3 = [3] sa3sa2sa1(1234) = s3(3241) = (4231) = c3,4c2,3c1,4 ,

hence a(w) = [3, 2, 1, 2, 3], corresponding to the factorization (4231) = c3,4c2,3c1,4 . When
we want to emphasize the components a3, a2, and a1, we write the reduced word a(w)
either as [a3, a2, a1] = [[3], [2], [1, 2, 3]], or as

a(w) =
3
2
1 2 3

=
a3

a2

a1

,

and we read it from top to bottom and from left to right.

Notation. Let S(v, w) be the set of all subwords of a(w) that are words (not necessarily
reduced, even after deleting the zeros) for v.

Example 2. If v = (2134) and w = (4231), there are exactly two subwords of the reduced
word a(w) = [3, 2, 1, 2, 3] that are words for v = (2134):

S((2134), (4231)) = {[3, 0, 1, 0, 3], [0, 0, 1, 0, 0]} =
{ 3

0
1 0 3

,
0
0
1 0 0

}
.

A second definition of the Bruhat order, equivalent with Definition 1, is given in terms
of subwords. While the definition below is valid for any reduced word of w, we will
formulate it in terms of the canonical word a(w).

Definition 2. Let v and w be permutations in Sn. We say that v 4 w in the Bruhat
order if and only if there exists a subword of the reduced word a(w) whose corresponding
permutation is v. In other words, v 4 w if and only if S(v, w) 6= ∅.

1.3 Fillings

Let v be a permutation in Sn. The associated tableau T (v) is a tableau that has n boxes
on the first column and v(k) boxes on row k, for all k = 1, .., n. For every p, q ∈ [n], we
define

rv(p, q) = #{i 6 p | v(i) ≤ q} ,

the number of rows of T (v) contained in the top-left rectangle with p rows and q columns.

Example. If v = (2134) ∈ S4, then

T (v) =

��
�
���
����

and rv =




0 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4




the electronic journal of combinatorics 13 (2006), #N5 3



A third definition of the Bruhat order, equivalent with Definitions 1 and 2, is given in
terms of the arrays r.

Definition 3. Let v, w ∈ Sn. We say that v 4 w in the Bruhat order if and only if

rv(p, q) > rw(p, q), for all 1 6 p, q 6 n . (2)

For every u ∈ Sn and k ∈ [n] we have ru(n, k) = ru(k, n) = k, hence v 4 w if and only
if condition (2) is satisfied for all 1 6 p, q 6 n− 1.

Definition. A filling of the tableau T (v) is a labeling of the boxes of T (v) such that

1. The first box on the kth row is labeled with k, for all k = 1, .., n;

2. In each row, the labels are weakly decreasing;

3. In each column, the labels are distinct.

The standard filling of T (v) is a labeling of the boxes of T (v) such that all boxes on row
k are labeled by k.

Example. If w = (4231) ∈ S4, then

T (w) =

����
��
���
�

with standard filling

1 1 1 1
2 2
3 3 3
4

.

Definition. Let v, w ∈ Sn. A w−filling of T (v) is a filling of T (v) with the entries of the
standard filling of T (w).

Example 3. There are exactly two (4231)−fillings of T (2134):

1 1
2
3 3 3
4 2 1 1

and

1 1
2
3 2 1
4 3 3 1

Notation. Let F(v, w) be the set of w−fillings of T (v).

Proposition 2. Let v and w be permutations in Sn. Then v4w if and only if F(v, w) 6=∅.
Proof. Let v and w be permutations in Sn for which F(v, w) 6= ∅. For p, q ∈ [n−1], there
are p− rv(p, q) boxes on the first p entries of column q + 1 of T (v), and these boxes are
labeled by entries coming from the first p entries of column q + 1 of the standard filling
of T (w). Therefore p − rw(p, q) > p − rv(p, q), which implies that v 4 w. The other
implication (if v 4 w, then there exists a w−filling of T (v)) will follow from the main
result of this paper, Theorem 1.
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2 The Main Result

Let v and w be permutations in Sn. The main result of this paper is an algorithmic
construction of bijections among C(v, w), S(v, w), and F(v, w).

Theorem 1. If v, w ∈ Sn, then C(v, w), S(v, w), and F(v, w) have the same number of
elements.

By Definition 2, v 4 w if and only if S(v, w) is nonempty. Therefore, if v 4 w, then
C(v, w) and F(v, w) are nonempty, and this finishes the proofs of Propositions 1 and 2.
To summarize:

Corollary. Let v, w ∈ Sn. The following conditions are equivalent:

1. v 4 w;

2. S(v, w) 6= ∅;
3. C(v, w) 6= ∅;
4. F(v, w) 6= ∅.

The last three conditions are strongly equivalent: the sets S(v, w), C(v, w), and F(v, w)
are not only simultaneously nonempty, but in fact have the same number of elements for
all pairs (v, w).

Before showing the algorithmic constructions that prove Theorem 1, we say a few
words about the significance of this result for the computation of generators in the equiv-
ariant cohomology ring of flag varieties. A more detailed presentation will be given in a
forthcoming paper.

Let M = F ln(C) be the variety of complete flags in Cn. A generic linear action of the
compact torus T n on Cn induces an effective action of a subtorus T = T n−1 on M , and
the fixed point set MT corresponds bijectively to Sn. An equivariant cohomology class is
determined by its restriction to the fixed point set, and for each v ∈ MT , there exists a
canonical class τv, such that τv(w) = 0 if v 64 w. When v 4 w, τv(w) can be computed
by two different methods.

The first method, specific to flag varieties, uses (left) divided difference operators
([Kn]). If w0 is the longest permutation in Sn, then the divided difference method gives a
formula for τv(w) as a sum (of rational expressions) over S(ww0, vw0). The second method
applies to a more general class of Hamiltonian T−spaces, and uses normalized Morse
interpolation ([Za]). The value τv(w) is expressed as a sum (of rational expressions) over a
set of ascending chains from v to w, and modulo multiplication by w0, this set corresponds
bijectively to C(ww0, vw0). The construction of a bijection between S(ww0, vw0) and
C(ww0, vw0) is a first step in relating the two approaches. In a separate paper we will
complete the reconciliation, by showing that the rational expressions are the same for a
chain and for the corresponding subword, and we will discuss partial flag varieties, where
the relationship is somehow more complicated.
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2.1 Construction of Φ: C(v, w)→ S(v, w)

For every chain γ ∈ C(v, w), we construct a subword Φ(γ) ∈ S(v, w) by starting with the
reduced word a(w) and using the transpositions provided by the chain γ to delete letters
from a(w). The construction of Φ(γ) is based on the DELETE algorithm described below,
and each step of the algorithm is justified by next lemma.

Lemma 1. Let w ∈ Sn and a(w) = [an−1, . . . , a2, a1] be the canonical reduced word for
w. Let a′ = [a′

n−1, . . . , a
′
i, ai−1, . . . , a1] be a subword of a(w), such that a′

k is a subword
of ak for every k = i, . . . , n − 1. Let w′ = sa′ be the permutation associated to a′, and
w′′ = (i, j)w′. If w′′ ≺ w′, then there exists a unique word a′′ for w′′ such that

• a′′ = [a′
n−1, . . . , a

′
i+1, a

′′
i , ai−1, . . . , a1], and

• a′′
i is a subword of a′

i, obtained by deleting one letter from the leftmost consecutive
subsequence of a′

i.

Proof. The uniqueness of a′′ is clear, and the main idea behind the construction of a′′ is
to try to move the transposition (i, j), conjugated, to the other side of a′, one cycle at a
time.

Claim 1: (i, j)sa′
n−1
· · · sa′

i+1
= sa′

n−1
· · · sa′

i+1
(i, `) for some transposition (i, `).

This follows from the fact that the conjugation of any transposition is also a trans-
position. More precisely, if σ ∈ Sn, then σ(i, j)σ−1 is the transposition that swaps
σ(i) and σ(j). In our case σ = (sa′

n−1
· · · sa′

i+1
)−1, and since all the nonzero letters in

a′
n−1, . . . , a

′
i+1 are strictly greater than i, we have σ(h) = h for h 6 i. Then σ(i) = i, and

` = σ(j) = (sa′
n−1
· · · sa′

i+1
)−1(j) > i.

Claim 2: If (i, j)w′ ≺ w′, then the first consecutive subsequence in a′
i starts with i.

By applying sai−1
· · · sa1 , we do not create any inversion (as values) of the form (i, h),

for any h > i. If the first letter in a′
i is not i, then the remaining transpositions in a′

only operate with values strictly above i, and therefore cannot produce an inversion of
the form (i, h), for h > i. But (i, j) is such an inversion in w′, hence a′

i must start with i.
Let k = s−1

a′
i
(i). Then the first consecutive subsequence in a′

i is [i, i+1, . . . , k−1].

Claim 3: ` 6 k.
Since (i, j) is an inversion in w′, we have (w′)−1(i) > (w′)−1(j), hence

(sai−1
· · · sa1)

−1(sa′
n−1
· · · sa′

i
)−1(i) > (sai−1

· · · sa1)
−1(sa′

n−1
· · · sa′

i
)−1(j) .

But both (sa′
n−1
· · · sa′

i+1
sa′

i
)−1(i) and (sa′

n−1
· · · sa′

i+1
sa′

i
)−1(j) are greater than or equal to

i, and sai−1
· · · sa1 does not change the relative order of values greater than or equal to i.

Therefore

i 6 s−1
a′

i
(sa′

n−1
. . . sa′

i+1
)−1(j) < s−1

a′
i
(sa′

n−1
. . . sa′

i+1
)−1(i) = s−1

a′
i
(i) = k .

But (sa′
n−1
· · · sa′

i+1
)−1(j) = `, hence i 6 s−1

a′
i
(`) < k. Since the set {i, . . . , k} is invariant

under sa′
i
and sa′

i
(k) = i, it follows that i < ` 6 k.
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Claim 4: (i, `)ci,k = ci,`−1c`,k.
This follows from a simple computation and, in terms of reduced words, is written as

[i, i+1, . . . , `−1, . . . , i+1, i][i, i+1, . . . , k−1] = [i, i+1, . . . , `−2, 0, `, . . . , k−1].

The simple transpositions i, i+1, . . . , `−1 delete the first letters of the second word, but
then i, i+1, . . . , `−2 are added back.

Therefore a′′ is obtained from a′ by deleting the letter `−1 from a′
i.

The unique subword a′′ is obtained starting from a′ and using (i, j) to delete a letter
from a′, and we write that as

a′′ = DELETE(a′, (i, j)) .

We are now ready to define Φ: C(v, w) → S(v, w). Let γ ∈ C(v, w) be the relevant
chain

v = v0
(i1,j1)−−−−→ v1

(i2,j2)−−−→ v2 −→ · · · (im,jm)−−−−→ vm = w .

Based on Lemma 1, we construct inductively a sequence bm, bm−1, . . . , b1, b0 by:

• bm = a(w), and

• bk−1 = DELETE(bk, (ik, jk)) for k = m, m−1, . . . , 1.

Note that bk ∈ S(vk, w) for all k = m, m−1, . . . , 1, 0. We define

Φ(γ) = b0 ∈ S(v0, w) = S(v, w) .

Before proving that Φ is a bijection, we show how it works in a particular example.

Example. Let v = (2134), w = (4231), and γ ∈ C(2134, 4231), given by

(2134)
(1,4)−−→ (2431)

(2,4)−−→ (4231) .

Then a(w) = [[3], [2], [1, 2, 3]], [2, 3, 2] is a reduced word for the transposition (2, 4), and
[1, 2, 3, 2, 1] is a reduced word for (1, 4). The DELETE algorithm works as follows:

b2 = [3, 2, 1, 2, 3]

(2431)
(2,4)−−→ (4231)

2, 3, 2 → 3 → 2

2 → 2
1, 2, 3

b1 = [3, 0, 1, 2, 3]

b1 = [3, 0, 1, 2, 3]

(2134)
(1,4)−−→ (2431)

1, 2, 3, 2, 1 → 3 → 1, 2, 1
1, 2, 1 → 0 → 1, 2, 1

1, 2, 1 → 1, 2 , 3
b0 = [3, 0, 1, 0, 3]

Φ(γ) = [3, 0, 1, 0, 3] = [[3], [0], [1, 0, 3]] .

The notation 2, 3, 2→ 3 → 2 means [2, 3, 2][3] = [3][2], that is, (2, 4) is moved to the
other side of [3] as (2, 3). The boxed letters are the letters deleted at each step.
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2.2 The inverse of Φ

To prove that Φ is bijective, it suffices to construct an inverse (“subword-to-chain”) map
Φ−1 : S(v, w) → C(v, w). Since Φ has been constructed using the DELETE algorithm,
it is enough to show how one can reverse the algorithm, and trace back the sequence of
permutations that deleted the letters of the word a(w) = [an−1, . . . , a1]. A key remark is
that when we apply the DELETE algorithm following (in reverse order) the edges of a
relevant chain, we delete the letters from top to bottom, and from right to left. So for
the inverse procedure, we insert the letters from bottom to top, and from left to right.

Here is how this works for v = (2143), w = (4231) and the subword u′ = [[0], [0], [1, 0, 0]]
of a(w) = [[3], [2], [1, 2, 3]] (see Example 2). The last deleted letter is the 2 in the last
list. At that point, the preceding subword must have been [0, 0, 1, 2, 0], and to delete the
2, the transposition that acted on the last row must have been (1, 3), with word [1, 2, 1].
Tracing it back, we see that the original transposition must have been (1, 3), hence the
first edge of the chain is (2134) −→ (2314). So the reverse process goes as follows:

1, 2, 1 → 0 → 1, 2, 1
1, 2, 1 → 0 → 1, 2, 1

1, 2, 1 → 1, 2 , 0 → a
(2134)

(1,3)−−→ (2314)

1, 2, 3, 2, 1 → 0 → 1, 2, 3, 2, 1
1, 2, 3, 2, 1 → 0 → 1, 2, 3, 2, 1

1, 2, 3, 2, 1 → 1, 2, 3 → a
(2314)

(1,4)−−→ (2341)

2 → 0 → 2

2 → 2 → a
1, 2, 3

(2341)
(2,3)−−→ (3241)

3 → 3 → a
→ 2 →

1, 2, 3
(3241)

(3,4)−−→ (4231)

(The boxed letters are the letters that we push back into the subword.) Then the relevant
chain γ = Φ−1(a) corresponding to a = [0, 0, 1, 0, 0] is

(2134)
(1,3)−−→ (2314)

(1,4)−−→ (2341)
(2,3)−−→ (3241)

(3,4)−−→ (4231) .

To prove the reverse procedure works in general, it suffices to prove the following
lemma.

Lemma. Let w ∈ Sn and let a(w) = [an−1, . . . , a1] be the special reduced word for w.
Let a′′ = [a′′

n−1, . . . , a
′′
i , ai−1, . . . , a1] be a subword of a(w), such that a′′

k is a subword
of ak for every k = i, . . . , n − 1, and such that a′′

i has at least one letter deleted from
ai. Let `−1 be the leftmost deleted letter in a′′

i , hence a′′
i = [i, . . . , `−2, 0, . . . ]. Let

a′ = [a′′
n−1, . . . , a

′′
i+1, a

′
i, ai−1, . . . , a1] be the subword of a(w) obtained by un-deleting the
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letter `−1 from a′′
i , and let w′′ = sa′′ and w′ = sa′ be the permutations corresponding to

a′′ and a′. Then w′ = (i, j)w′′, w′ � w′′, and

a′′ = DELETE(a′, (i, j)) .

Proof. It is not hard to see that sa′′
i

= (i, `)sa′
i
, hence

w′′ = (sa′′
n−1
· · · sa′′

i+1
)sa′′

i
(sai−1

· · · sa1) = (sa′′
n−1
· · · sa′′

i+1
)(i, `)sa′

i
(sai−1

· · · sa1)

Let σ = sa′′
n−1
· · · sa′′

i+1
. Then σ(i, `)σ−1 is the transposition that swaps σ(i) and σ(`).

Since σ fixes all values less than or equal to i, it follows that σ(i) = i and σ(`) > i. If
j = σ(`), then σ(i, `) = (i, j)σ, which implies

w′′ = σ(i, `)sa′
i
(sai−1

· · · sa1) = (i, j)σsa′
i
(sai−1

· · · sa1) = (i, j)w′ .

The first deleted letter in a′′
i is `−1, so (sa′′

i
)−1(i) = `−1 and (sa′′

i
)−1(`) > `. Therefore

i 6 `−1 = (sa′′
i
)−1σ−1(i) < ` 6 (sa′′

i
)−1(`) = (sa′′

i
)−1σ−1(j) .

But (sai−1
· · · sa1)

−1 does not change the relative order of entries above i−1, hence

(w′′)−1(i) = (sai−1
· · · sa1)

−1(sa′′
i
)−1σ−1(i) < sa1)

−1(sa′′
i
)−1σ−1(j) = (w′′)−1(j) .

Therefore (i, j) is not an inversion (as values) in w′′, and w′′ ≺ (i, j)w′′ = w′. It is
clear that a′′ is obtained from a′ by deleting one letter with the help of the transposition
(i, j).

Let a ∈ S(v, w). Applying the reverse procedure for every deleted letter of a, moving
from bottom to top, and from left to right, we recover the relevant chain γ that produced
the subword. This proves that Φ has an inverse, so it is a bijection.

2.3 Construction of Ψ: C(v, w)→ F(v, w)

Let v, w ∈ Sn, and γ ∈ C(v, w). We start with the standard filling of T (w), and, using the
transpositions provided by the chain γ, change it to a w−filling of T (v). The construction
of Ψ(γ) is based on the SLIDE algorithm described below, and each step of the algorithm
is justified by Lemma 2.

Lemma 2. Let w ∈ Sn and fw be the standard filling of the associated tableau T (w).
Let u ∈ Sn and let fu be a w−filling of T (u), such that

• fu and fw match completely on the first i columns, and

• on column i+1, fu and fw match on boxes strictly above row u−1(i).

Let σ = (i, j)u. The associated tableau T (σ) is obtained from T (u) by moving (sliding)
the last j−i boxes, from the row u−1(j) of T (u) to the end of the row u−1(i). Let fσ be
the labeling of T (σ) obtained from fu by moving the fu−labels together with the boxes.
If σ ≺ u, then
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• fσ is a w−filling of T (σ);

• fσ and fw match completely on the first i columns;

• on column i+1, fσ and fw match on boxes strictly above row σ−1(i).

Proof. The only problem that might prevent fσ from being a w−filling of T (σ) is a
violation of the nondecreasing on rows condition, and this could only happen at the end
of row σ−1(j) = u−1(i). However, if σ = (i, j)u ≺ u, then (i, j) is an inversion (as values)
in u, hence u−1(i) > u−1(j). Therefore the boxes are moved downwards, and the second
hypothesis on fu implies that

fu[u
−1(j), i + 1] = fu[u

−1(j), i] ,

so we break between boxes with the same label. At the end of the row σ−1(j) of T (σ) we
have

fσ[σ−1(j), i + 1] = fσ[u−1(i), i + 1] = fu[u
−1(j), i + 1] = fu[u

−1(j), i] =

= u−1(j) < u−1(i) = fu[u
−1(i), i] = fσ[σ−1(j), i] ,

so fσ is a w−filling of T (σ).
The w−filling fσ matches completely with fw on the first i columns, because fσ and

fu match on the first i columns, and so do fu and fw. Moreover, on column i+1, we
haven’t changed anything above the row σ−1(i) = u−1(j), and that row is above the row
u−1(i).

The filling fσ is obtained starting from fu and using (i, j) to identify the sliding move,
and we write that as

fσ = SLIDE(fu, (i, j)) .

We are now ready to define Ψ: C(v, w) → F(v, w). Let γ ∈ C(v, w) be the relevant
chain

v = v0
(i1,j1)−−−−→ v1

(i2,j2)−−−→ v2 −→ · · · (im,jm)−−−−→ vm = w .

Based on Lemma 2, we construct inductively a sequence fm, fm−1, . . . , f1, f0 by:

• fm = fw, the standard filling of T (w), and

• fk−1 = SLIDE(fk, (ik, jk)) for k = m, m−1, . . . , 1.

Note that since im > im−1 > · · · > i2 > i1, the triple (u, fu, (i, j)) = (vk, fk, (ik, jk))
satisfies the hypotheses of Lemma 2 for every k = m, . . . , 1, hence the sequence (fk)k is
legitimately defined. Moreover, fk ∈ F(vk, w) for all k = m, m−1, . . . , 1, 0, and we define

Ψ(γ) = f0 ∈ F(v0, w) = F(v, w) .

Before proving that Ψ is a bijection, we show how it works in a particular example.
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Example. Let v = (2134), w = (4231), and γ ∈ C(2134, 4231) given by

(2134)
(1,3)−−→ (2314)

(1,4)−−→ (2341)
(2,3)−−→ (3241)

(3,4)−−→ (4231) .

The SLIDE algorithm works as follows, with the labels to be moved at each step in bold:

(4231)
(3,4)←−−− (3241)

(2,3)←−−− (2341)
(1,4)←−−− (2314)

(1,3)←−−− (2134)
1 1 1 1
2 2
3 3 3
4

→
1 1 1
2 2
3 3 3 1
4

→
1 1
2 2 1
3 3 3 1
4

→
1 1
2 2 1
3
4 3 3 1

→
1 1
2
3 2 1
4 3 3 1

.

Therefore

Ψ(γ) =

1 1
2
3 2 1
4 3 3 1

.

2.4 The inverse of Ψ

To prove that Ψ is bijective, it suffices to construct an inverse (“filling-to-chain”) map,
Ψ−1 : F(v, w) → C(v, w). Since Ψ is based on the SLIDE algorithm, it suffices to show
how one can reverse each step. Here is how it works in a particular case (see Examples 1
and 3):

1 1
2
3 3 3
4 2 1 1

←
1 1
2 2 1 1
3 3 3
4

←
1 1 1 1
2 2
3 3 3
4

(2134)
(1,4)−−−→ (2431)

(2,4)−−−→ (4231)

To prove the reverse procedure works in general, it suffices to prove the following
lemma.

Lemma. Let σ, w ∈ Sn such that σ 6= w, let fw be the standard filling of T (w), and
let fσ be a w−filling of T (σ). Let 1 6 i < n be defined by the condition that fσ and
fw match on columns 1, . . . , i, but differ on column i+1. Let 1 6 j 6 n be defined by
fσ[σ−1(j), i + 1] = σ−1(i), let u = (i, j)σ, and let fu be the labeling of T (u) obtained by
moving the last j−i labels on row u−1(i) = σ−1(j) to the end of row u−1(j) = σ−1(i).
Then fσ = SLIDE(fu, (i, j)).

Proof. The proof is based on the following sequence of claims.
Claim 1: 1 6 i < n, so i is well-defined.
The first columns of fσ and fw do match, so 1 6 i, and i 6= n, since σ 6= w.
Claim 2: σ−1(i) does appear on column i+1 of fσ, so j is well-defined.
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Otherwise, the entries on column i+1 would be the entries on column i, less the entry
σ−1(i), and the weakly decreasing condition would imply that columns i + 1 of fσ and fw

match.
Claim 3: i<j and (i, j) is not an inversion (as values) in σ, hence σ ≺ (i, j)σ = u.
This follows from the fact that j is the length of the row σ−1(j), hence j >i. Moreover,

the weakly decreasing condition implies σ−1(j) = fσ[σ−1(j), i] > fσ[σ−1(j), i+1] = σ−1(i).
Claim 4: fu is a w−filling of T (u).
The only problem might occur between columns i and i + 1 on row u−1(j). But

fu[u
−1(j), i + 1] = fσ[σ−1(j), i + 1] = σ−1(i) = fw[σ−1(i), i] = fσ[σ−1(i), i] = fu[u

−1(j), i] ,

so the labels are weakly decreasing on row u−1(j).
Claim 5: (u, fu, (i, j)) satisfy the hypotheses of Lemma 2.
First, fu and fw match on columns 1, . . . , i, since fσ and fw do. Let N be the number

of elements of the set

{σ−1(k) | σ−1(k) < σ−1(j) and k > i} = {w−1(k) | w−1(k) < w−1(j) and k > i} .

These are the smallest N labels on column i of fσ and fw. On the same rows, there are
N − 1 boxes on the column i+1 of T (σ), with the box for row σ−1(i) missing. The labels
of these N −1 boxes are taken from the set {w−1(k) | k > i}, and there are at most N −1
such labels less than w−1(j) = σ−1(j). Since every label on the column i + 1 of fσ is less
than or equal to the corresponding label on column i, that implies that fw and fσ match
on column i + 1 strictly above row σ−1(j), and hence fw and fu match on column i + 1
strictly above row u−1(i).

Claim 6: fσ = SLIDE(fu, (i, j)).
This is clear from the re-construction of fu.

The number of matches of fu and fw on column i+1 is strictly greater than the number
of matches on column i + 1 between fσ and fw. Therefore the re-construction algorithm
is finite: for every w−filling fv ∈ F(v, w) of the associated tableau T (v), by repeating
this procedure, we will get back to the standard filling of T (w). The transpositions (i, j)
give a relevant chain γ ∈ C(v, w), and Ψ(γ) = fv. Therefore Ψ has an inverse, hence it is
a bijection.
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