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Abstract

Let 0 ≤ p ≤ 1/2 and let {0, 1}n be endowed with the product measure µp

defined by µp(x) = p|x|(1 − p)n−|x|, where |x| =
∑

xi. Let I ⊆ {0, 1}n be an
intersecting family, i.e. for every x, y ∈ I there exists a coordinate 1 ≤ i ≤ n such
that xi = yi = 1. Then µp(I) ≤ p.

Our proof uses measure preserving homomorphisms between graphs.

One of the fundamental questions first studied in extremal graph theory is the question
of bounding the size of an intersecting family of sets. The most basic theorem in this vein
is the Erdős-Ko-Rado theorem ([2]) that states that if k ≤ n/2 and F is an intersecting
family of k-subsets of {1, . . . , n} then |F | ≤ (

n−1
k−1

)
. The theorem we present here is the

analogue of the EKR theorem in the setting of the discrete cube endowed with the product
measure. This useful theorem, and several generalizations thereof has been proven and
reproven in several papers (see e.g. [4], [5], [1], [3]), but curiously enough none of these
proofs seem to be related to the one we present here which relies in a mysterious way on
a decomposition of the n dimensional torus into 1-dimensional circles.

Here is the main theorem:

Theorem 1.1 Let 0 ≤ p ≤ 1/2 and let {0, 1}n be endowed with the product measure µp

defined by µp(x) = p|x|(1 − p)n−|x|, where |x| =
∑

xi. Let I ⊆ {0, 1}n be an intersecting
family, i.e. for every x, y ∈ I there exists a coordinate 1 ≤ i ≤ n such that xi = yi = 1.
Then µp(I) ≤ p.

Before proving the theorem we must introduce some notation. All graphs G considered
in this note will come endowed with a probability measure µG defined on their vertex set.
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Figure 1: The Graph G

Given two graphs H and G a homomorphism between them is a mapping φ : V (H) →
V (G) such that

{x, y} ∈ E(H) ⇒ {φ(x), φ(y)} ∈ E(G).

Note that no restriction is imposed on the image of nonedges in H . Note also that the
inverse image of an independent set in G is an independent set in H . We will say that a
homomorphism from φ : H → G is measure preserving if for every A ⊆ V (G)

µH(φ−1(A)) = µG(A).

We will write H → G if there exists a measure preserving homomorphism from H to G.
We will also need the notion of a weak graph product: given graphs G1, G2 their product
G1 × G2 is defined as follows:

V (G1 × G2) = V (G1) × V (G2)

and
{(u1, u2), (v1, v2)} ∈ E(G1 × G2) ⇔ {ui, vi} ∈ E(Gi) for i = 1, 2.

We will write Gn to denote the n-fold product of G with itself, and always consider the
product measure on the product of graphs. Note that if H → G via a homomorphism φ
then Hn → Gn via the homomorphism φn which is just the application of φ coordinatewise.

For a graph G define

ᾱ(G) = max{µG(I) | I ⊆ V (G), I is an independent set}.
Note that if H → G then ᾱ(H) ≥ ᾱ(G). Furthermore, since projection on a coordinate
is a measure preserving homomorphism, ᾱ(Hn) ≥ ᾱ(H) for any graph H .

We now can present the proof of the theorem.
Proof: First note that if p = 1/2 then µp is the uniform measure and the theorem is
trivial because if a vector in {0, 1}n belongs to I then the antipodal vector to it cannot.
Hence we shall assume 0 < p < 1/2. Let us begin by defining two graphs, G and H .
G is a graph on two vertices, V (G) = {0, 1}. There is an edge between 0 and 1, and
also a loop from 0 to itself, as illustrated in Figure 1. The measure µG is defined by
µ(1) = p, µ(0) = 1 − p. It is not hard to see that Gn is the non-intersection graph of
{0, 1}n, i.e. that for x, y ∈ {0, 1}n

{x, y} 6∈ E(Gn) ⇔ ∃1 ≤ i ≤ n, xi = yi = 1.

Furthermore due to the product measure on Gn our theorem now translates precisely to
the statement ᾱ(Gn) ≤ p.
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Next consider the graph H defined as follows. The vertex set of H is the (continuous!)
interval [0, 1] with the points 0 and 1 identified, i.e. the circle. There is an edge between
two points x and y if the short arc between them on the circle is of length greater than p.
(Note that had we not assumed p < 1/2 then this graph would be empty.) We consider
H endowed with the uniform measure. It seems clear that the maximal measure of an
independent set in this graph is obtained by an arc of length p, and indeed this is so.

Lemma 1.2 ᾱ(H) = p.

Proof: Let I ⊆ V (H) be an independent set of maximal measure. We may assume that
I is closed (replacing I by its closure will not spoil independence.) Therefore we can find

x and y, two points in I of maximal distance. Assume
y

xy is the short arc between x and

y on the circle. Consider the arc C =
y

ab of length 1/2 that contains the arc
y

xy such that
the chord ab is parallel to xy . A short reflection shows that replacing all points in I that
are not in C by their antipodal points can only decrease the diameter of the set hence will
not spoil the independence. Since I could not have contained any pair of antipodal points
this does not decrease the measure. Hence we may assume that I is contained in C, and

therefore in
y

xy and so the maximal possible value of µH(I) is obtained by an interval of
length p.

2

A special property of H that we will use is that ᾱ(Hn) ≤ ᾱ(H) for any n ≥ 1. Recalling
that the reverse inequality always holds, we have equality, ᾱ(Hn) = p. To see that
indeed ᾱ(Hn) ≤ ᾱ(H) note that the vertex set of Hn, the n-dimensional torus, may be
partitioned into sets of the form

Cx = {x + (t, t, . . . , t)|t ∈ [0, 1]}

where addition is done modulo 1. It is not hard to see that each such set is a circle on
which the induced graph, with its conditional measure, is isomorphic to H . Hence for any
independent set I ⊆ V (Hn) and any such set Cx we have the 1-dimensional observation

µCx(I ∩ Cx) ≤ p.

Integrating over all x shows that µHn(I) ≤ p as required.
Finally we observe that H → G (take any mapping that maps an arc of length p to 1

and the complement to 0.) Hence

ᾱ(Gn) ≤ ᾱ(Hn) = ᾱ(H) = p.

This completes the proof of the theorem.
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