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Abstract
For n a positive integer, we show that the number of of 2n-tuples of integers
that are the row and column sums of some n x n matrix with entries in {0,1} is
evenly divisible by n+ 1. This confirms a conjecture of Benton, Snow, and Wallach.
We also consider a g-analogue for m x n matrices. We give an efficient recursion
formula for this analogue. We prove a divisibility result in this context that implies
the n 4 1 divisibility result.

1 Introduction

We study the number p(m,n) of (m + n)-tuples of integers that are the row and col-
umn sums of some m X n matrix with entries in {0,1}. For each n > 1, the sequence
{p(m,n)}°_, is a linear recursion of degree n. Moreover, this recursion is annihilated
by the polynomial (T" — (n + 1))™. It follows that if 1 < n < m, then p(m,n) is evenly
divisible by (n + 1)™ "', This confirms a conjecture of Benton, Snow, and Wallach.

For positive integers m and n, let M = M,, ,, be the set of m X n matrices with entries
in {0,1}. For M in M, we write M = (M;;).

We have two vector-valued functions on M: the vector (M) = (x1,...,xy) of row
sums, where x; = >, ., Mj; for 1 < i < m, and the vector y(M) = (y1,...,yn) of
column sums, where y; = >, _,.,, M;; for 1 < j <n.

Define RC = RC,,., to be the set of pairs of row and column sums (z(M),y(M)) as
M ranges over M. Our main result concerns the cardinality p(m,n) of RC,, ..
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Theorem 1 We have
1. p(1,1) =2.
2. p(m,n) = p(n,m) for m,n > 1.
3. If 1 <n <m, then p(m,n) = > _,.,(=1)"(7) (n + 1)'p(m — i, n).

Of these statements, part (1) is clear, and part (2) follows by taking transpose, for
2(M') = y(M) and y(M') = 2(M).
Part (3) says that, for each n > 1, the sequence {p(m,n)}>°_, is a linear recursion of

degree n that is annihilated by the polynomial (T'— (n+ 1))™. Note that, for any fixed n,
the recursion (3) is equivalent to p(m,n) = r,(m)(n + 1)™ for some polynomial r,(m) of
degree < n — 1.

Part (3) implies the following corollary.

Corollary 2 The number p(m,n) is evenly divisible by (n + 1)™ " if 1 <n < m.

Indeed each of the n terms in the sum representing p(m, n) is divisible by this quantity.
A second consequence of part (3) is an efficient algorithm for computing p(m,n).

Algorithm 3 We construct a table of the values p(i, j), for 1 <i,7 < m by induction on
j. First we fill in p(i,1) = 2, for 1 < i < m. Next, for a given j < m, having filled in
p(i,j") for 1 < j' < j, we fill in p(i,j) by induction on i, using part (2) if i < j and part
(3) ifi>j.

2 A generalization

We mention a mild generalization of Theorem 1 and its corollary. Define the polynomial
P = P,.(q = Z(xy)eRcmnqm, where |z| = x; + -+ + z,,,. We recover p(m,n) by
evaluating the polynomial P, ,, at ¢ = 1.

Theorem 4 We have
1. P;=1+q.
2. Py =P,y form,n > 1.
3. If 1 <n<m, then P, = Z1gign(_1)i+l(?>(1 +q+-+q") Poin

4. If 1 < n < m, then the polynomial P,,,, is evenly divisible by (1+q+---+¢")™ """
in Z[z).

Part (4) answers a conjecture of J. Benton, R. Snow, and N. Wallach in [1].
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3 Start of the proof

Let N = {0,1,...}. Define the weight of a matrix N to be the sum of its entries, and
write |N| for the weight of N. With this definition, we have |z(M)| = |M| = |y(M)]| for
M € M. Thus, a necessary condition for x and y to be row and column sums of a matrix
is that they have the same weight.

Clearly, the row sums of a member of M are at most n. Conversely, if v = (z1,...,2;)
and 0 < z; < n, let R = R(x) be the m X n matrix such that R;; = 1if 1 < j < x; and
R;; = 0 otherwise. Then R lies in M and has row sums equal to x. This proves:

Lemma 5 Let v = (x1,...,x,) € N™. Then x is the vector of row sums of an m x n
matriz with entries in {0,1} if and only if x; < n for all i.

Let a; be the number of rows of R that have exactly j ones. Write a = (ao, ..., a,) =
a(z) in N"™. We note that |a| = m, and write (") for the multinomial coefficient %,L'a,
With this notation, we have the following lemma.

Lemma 6 Let a in N"*! satisfy |a| = m. Then the number of z in N™ such that a(z) = a

Let A = (A1,...,A,) = A(z) be the column sums of the matrix R constructed above.
It satisfies the dominance condition:

A S>>\ (1)

Note that a in N"™! with |a] = m determines a dominant A in N* with m > Ay,

and vice versa. For, given A\, set \g = m and \,;1 = 0, and define a; = \; — A4, for
j=0,...,n. Conversely, given a in N"*! define \; = a; + -+ + a,.

The weights of these vectors are related by |z = |A[ = > ,, ja;.
Given y, A in N” with A dominant, we define y < X if

Yty S Ak A (2)

for all j in the range 1 < j < mn.
The symmetric group 5, acts on N” by permuting coordinates. For y € N™ and

o € Sp, we set Yo = (Yo1): - - - » Yo(n))-
The next result, proved in [2, Corollary 6.2.5] or [3, Theorem 16.1], gives necessary
and sufficient conditions for a pair of vectors to lie in RC,,, .

Lemma 7 Let x in N be the vector of row sums of a matriz in M, and set A = \(x).
Then (z,y) € RC if and only if y € N" satisfies

(1) lyl = [Al, and
(ii) yo XX for all o € S,.
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Let N(A) be the number of y € N” that satisfy (i) and (ii). Then

Panl@)= 30 NO@))g".

4 Key Lemma

Lemma 8 Let n > 1. There is a polynomial G = G, in Q|z1,..., 2, of total degree
<n —1 such that N(A) = G(\1,..., \,) for any dominant A = (A1, ..., \,) in N™.

To count N()\), we will condition on the first term y; of the vector y. We will need
a subsidiary function. Let N(A;¢) be the number of solutions of (i) and (ii) with y; = t.
By definition, N(A) = > ,~o N(A; ).

We need one more definition to state the next lemma. Suppose A = (Ay,...,\,) has
n parts, and A1 <t < \;. Then we define p(t) with n — 1 parts to be

M(t) = (/\17 <. ~7)\j—1,/\j + /\j+1 - t, /\j+2, .. 7/\n)

(In the definition of u(t), A; and A;+; have been removed and A\; + ;41 — t has been
inserted.) Note that if A is dominant, then so also is p(t) since A\; > A\j + Ajp1 —¢ > 4.

Lemma 9 We have:
(a) Ift < A, orift > Ay, then N(\;t) = 0.
(b) N(A;A) = N((A1y- oy Aue1))-
(¢) Suppose that \ji1 <t < \;. Then N(\;t) = N(u(t)).
Proof. If y; > A, then (ii) is violated. Suppose y satisfies (i) and y; < A,. Then
Yo+ ys+ -+ Y > A+ Ao+ -+ g,

thus (ii) is violated if o(n) = 1. Therefore N(A,y;) = 0, proving (a), and we turn to (b).
Set ' = (A1,..., A\n_1). We claim that the correspondence

W, y2- - Yn) = (Y2, Un)

gives a bijection between the sets counting N(A;y;) and N(X'). One direction follows
by definition: if (y1,...,y,) is counted by N(X), then (yo,...,y,) is counted by N ().
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Conversely, suppose that (ys,...,y,) is counted by N(X). Now (i) (for y and \) follows
since y; = A,,. To prove (ii), let ¢ € S,,. Set k = o7'(1). Now

Yo) T T Yo(j)

if 7 > k. The inequality is clear if 7 < k.
Part (c) is proved using the same correspondence used in part (b). The straightforward
but tedious calculation is omitted. m

Proof of Lemma 8. Suppose n =1 and let A = (A\;). Then N(A;) = 1, a polynomial of
degree 0.

Thus the lemma holds for n = 1. We proceed by induction to prove it for all n.
Suppose the lemma has been proved for n and we wish to prove it for n + 1.

We break up the sum that counts N()), by conditioning on y;. By Lemma 9(a), it is
enough to consider y; in the range A\, <y < Ay, Either y; = A, or A\ji1 <y < A fora
unique j in the range 1 < 57 < n, and therefore

NOY = N+ > Y. N,

1<j<n )\j+1 <t§)\]’

In view of Lemma 9(b) and (c), this yields

N = N h))+ > > N(u(). (4)

1<j<n )\j+1 <t§)\j

To see that N(\) is a polynomial of degree at most n, it suffices to show that each
term on the right is a polynomial of total degree at most n. This is true for the first term
N((A1,-..,An_1)) by the inductive hypothesis.

Each of the subsequent terms is itself a sum. By the inductive hypothesis, each
summand in each term is a polynomial of degree < n — 1. But, for any polynomial f, we
have that Zx<t§y f(t) is a polynomial in x and y of degree < deg f + 1.

By induction and (4) it follows that the coefficients of G are rational numbers. This
proves the lemma. B

5 End of the proof

Since G is a polynomial of degree < n — 1 by Lemma 8, so also is H defined by
H(ag,ay,...,a,) = Gp(A, ..., \y), since the transformation from A to a is linear.
By (3) we have

m a1+---+nan
Pro= 3 ()t anhgeen )

a€Ntl
la|=m
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Proof of Theorem 4. We are free to assume n < m.
We define the function E of the variables z, ..., z, by

E'(ZO7 cee Zn) = Z (7;) H(CLOa o an)€a0z0+...+anz'n . (6)

aeN"t1
la|=m

By (5) and (6), we have P, ,(¢) = £(0,log(q),2log(q), ..., nlog(q)).
The following lemma is proved by induction.

Lemma 10 Let H € Qlzo,...,2,] be a polynomial. Write z = (2q,...,2,) and a =
(ag,...,ay), and set a -z = apzg + -+ - + anz,. Then there is a linear differential operator
D in zy,...,z, such that H(z)e®* = De®*. Moreover, deg(D) = deg(H).

By the lemma, we have

E(z) = ae%;ﬂ (Z‘) Det* — D (Z (7:) e) '

|a|=m

By the multinomial theorem

Z (7:) e’ = (e - e)",

o

whence E is (€ + -+ -+ €)™ "1 times a polynomial f;(m,e®, ..., e*) whose degree in
mis <n—1.

Set f(m,q) = fi(m,1,q,...,¢"). When evaluated at z; = ilog(q), e* + -+ + e*n
becomes (1+ ¢+ -+ ¢"), whence Py, = f(m,q)(1+q+ -+ ¢")™ . Since f(m,q)
is a polynomial in m of degree at most n — 1, part (3) follows immediately.

Set m = (1+¢q+ -+ ¢*)" ™" Finally, to prove part (4), it remains to show that,
for each m, the coefficients of f(m,q), as a polynomial in ¢, are integers.

One way to see this is to regard f = P,,,,/m as a power series identity and formally
equate coefficients of ¢*, because 7 is a polynomial in ¢ with constant term 1. Theorem 4
is proved. ®
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