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Abstract

In this paper, we prove the existence of a cyclic (v, 4, 1)-BIBD for v = 12t + 4,
3 ≤ t ≤ 50 using computer programs, which are useful in recursive constructions
for cyclic designs. Applications of these designs to optical orthogonal codes are also
mentioned.
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1 Introduction

A group divisible design of block-size k, index λ and group type gv ((k, λ))-GDD of type
gv in short ) is a triple (X,G,B), where X is a set of vg points, G is a partition of X into
groups of size g, and B is a collection of k-subsets of X (blocks) with the property that
each block meets each group in at most one point and any two points from two distinct
groups are contained in exactly λ blocks. A (k, λ)-GDD with group type 1v is called a
balanced incomplete block design, denoted by (v, k, λ)-BIBD. A BIBD with λ = 1 is called
a Steiner 2-design.

For a (k, λ)-GDD, (X,G,B), let σ be a permutation on X. For a group G ∈ G and a
block B ∈ B, let Gσ = {xσ : x ∈ G} and Bσ = {yσ : y ∈ B}. If Gσ = {Gσ|G ∈ G} = G
and Bσ = {Bσ|B ∈ B} = B, then σ is called an automorphism of (X,G,B). If there
is a automorphism σ of order v = |X|, then the GDD is said to be cyclic, denoted by
(k, λ)-CGDD. Similarly, a cyclic (v, k, λ)-BIBD is denoted by (v, k, λ)-CBIBD.
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For a (k, λ)-CGDD or a (v, k, λ)-CBIBD, the set of points X can be identified with
Zv, the residue group of integers modulo v. In this case, the design has an automorphism
σ : i 7→ i + 1 (mod v).

Let B = {b1, · · · , bk} be a block of a cyclic Steiner 2-design. The block orbit containing
B is defined by the set of distinct blocks

B + i = {b1 + i, · · · , bk + i} (mod v)

for i ∈ Zv. If a block orbit has v blocks, then the block orbits is said to be full, otherwise
short. An arbitrary block from a block orbit is called a base block. A base block is also
referred to as a starter block or an initial block. The block orbit which contains the
following block is called a regular short orbit{

0,
v

k
,
2v

k
, · · · , (k − 1)v

k

}
.

It is readily to show that a block orbit of a (v, k, 1)-CBIBD must be a full or a regular
short orbit. In this case, it can be shown that a necessary condition for the existence of
a (v, k, 1)-CBIBD is that

v ≡ 1, k (mod k(k − 1)).

A (v, k, 1)-CBIBD with v ≡ 1 (mod k(k−1)) has no short orbit, while a (v, k, 1)-CBIBD
with v ≡ k (mod k(k−1)) has a single regular short orbit as well as full orbits. It is easy
to see that the existence of a (v, k, 1)-CBIBD with v ≡ k (mod k(k − 1)) is equivalent
to the existence of a (k, 1)-CGDD of type kv/k.

To construct a CGDD or a CBIBD, we just need to find out all the base blocks.
There is a very extensive literature on cyclic BIBDs with particular attention to cyclic

Steiner 2-design [18] (see also [3]). In general, given k and λ, to establish the spectrum of
value of v for which there exists a (v, k, λ)-CBIBD is a very difficult problem. It has been
solved for k = 3 and λ = 1 by Peltesohn [24] and for k = 3 and λ > 1 by Colbourn and
Colbourn [19]. The case (k, λ) = (4, 1) has been treated in many papers. Constructions
for (v, 4, 1)-CBIBDs can be found, for instance, in [1, 2, 4, 6, 9, 10, 11, 13, 14, 21, 25].
It is reasonable to believe that a (v, 4, 1)-CBIBD exists for any admissible v ≥ 37, but
the problem is far from settled. We summarized the known results on (v, 4, 1)-CBIBD as
follows.

Theorem 1.1 (1) ([6, 14]) There exists a (v, 4, 1)-CBIBD for any prime p ≡ 1 (mod 12);
(2) ([19, 6, 7, 14]) There exist a (v, 4, 1)-CBIBD and a (4v, 4, 1)-CBIBD, where v is a

product of primes congruent to 1 modulo 12;
(3) ([10]) There exists a (4u, 4, 1)-CBIBD for any positive integer u such that any

prime factor p of u satisfies the conditions p ≡ 1 (mod 6) and gcd((p − 1)/6, 20!) 6= 1;
(4) ([11]) There exists a (4nu, 4, 1)-CBIBD, where n ≥ 3 is a positive integer and u

is a product of primes congruent to 1 modulo 6, or n = 2 and u is a product of primes
congruent to 1 modulo 6 such that gcd(u, 7 × 13 × 19) 6= 1;

(5) ([1, 2]) There exists a (12t+1, 4, 1)-CBIBD for t ≤ 50 with one exception of t = 2;
There exists a (12t+4, 4, 1)-CBIBD for t ∈ T2 = {3, 4, 5, 6} and there is no (12t+4, 4, 1)-
CBIBD for t = 1, 2.
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Constructions of designs fall into two categories, direct and recursive. The existence of
a (v, k, 1)-CBIBD for small value v plays an important role in the recursive constructions
for new cyclic BIBDs. However, many (v, k, 1)-CBIBDs for small values v can not be
obtained from known recursive constructions. It is desired to get them by direct con-
structions. In this paper, we continue to investigate the existence of (v, 4, 1)-CBIBDs.
For some small values v, we mainly use direct constructions to give the base blocks of
(v, 4, 1)-BIBDs, which are believed to be useful in the recursive constructions for larger
cyclic BIBDs.

Specifically, we shall prove the following theorem.

Theorem 1.2 There exists a (12t + 4, 4, 1)-CBIBD for 3 ≤ t ≤ 50. There is no (12t +
4, 4, 4)-CBIBD for t = 1, 2.

In section 2, some known recursive constructions for cyclic BIBDs will be described.
The proofs of Theorem 1.2 will be given in Section 3. Some infinite classes of cyclic
BIBDs are provided in Section 4, and are translated into optimal optical orthogonal
codes in Section 5.

2 Recursive Constructions

In this section, we display some known recursive constructions for CBIBD which will be
used in Sections 4.

Colbourn and Colbourn [19] showed the following constructions for cyclic BIBDs.

Lemma 2.1 (Productive Construction, [19]) Assume that u is an integer which is relative
prime to (k − 1)!.

(i) If there exists a (v, k, 1)-CBIBD with no short orbit (i.e., v ≡ 1 (mod k(k − 1))
and a (u, k, 1)-CBIBD, then there exists a (uv, k, 1)-CBIBD.

(ii) If there exists a (kv, k, 1)-CBIBD and a (ku, k, 1)-CBIBD, then there exists a
(kuv, k, 1)-CBIBD.

This construction was generalized by Jimbo and Kuriki [22] and Jimbo [23] utilizing
the notation of difference matrix. A similar construction was also given by Yin [26].

Let (G, ·) be a finite group of order v. A (v, k, λ)-difference matrix over G is a k × vλ
matrix D = (dij) with entries from G, such that for each 1 ≤ i < j ≤ k, the multiset

{dil · d−1
jl : 1 ≤ l ≤ vλ}

contains every element of G exactly λ times. When G is abelian, typically an additive
notation is used, so that the differences dil−djl are employed. In what follows, we assume
that G = Zv. We usually denote a (v, k, λ)-difference matrix over Zv by (v, k, λ)-DM.
Difference matrices have been investigated extensively, see, for example, [17] and the
references therein. Here is one example.
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Lemma 2.2 ([17]) Let v and k be positive integers such that gcd(v, (k − 1)!) = 1. Let
dij ≡ ij (mod v) for i = 0, 1, · · · , k − 1 and j = 0, 1, · · · , v − 1. Then D = (dij) is
a (v, k, 1)-DM over Zv. In particular, if v is an odd prime number, then there exists a
(v, k, 1)-DM over Zv for any integer k, 2 ≤ k ≤ v.

The following construction for cyclic designs can be found in Yin [26].

Lemma 2.3 (i) If there exists a (k, 1)-CGDD of group type gv with no short orbit and a
(u, k, 1)-DM over Zu, then there exists a (k, 1)-CGDD of group type (ug)v.

(ii) If there exist a (k, 1)-CGDD of group type gv and (g, k, 1)-CBIBD, then there exists
a (gv, k, 1)-CBIBD.

Buratti [7] showed the following construction.

Lemma 2.4 Let v and k be integers such that p ≡ 1 (mod k) holds for each prime p in
v. If there exists a (v, k, 1)-CBIBD, then there exists a (kv, k, 1)-CBIBD.

3 Proof of Theorem 1.2

In this section, we deal with the existence of (12t + 4, 4, 1)-CBIBDs for t ∈ [7, 50]. Some
of them are obtained by recursive constructions stated in Section 2. Others are obtained
using computer algorithms which will be stated below.

First we use recursive constructions.

Lemma 3.1 There exists a (12t + 4, 4, 1)-CBIBD for t = 28, 48.

Proof. For t = 28, 48, we have 12t + 4 = 4p1p2, where p1 = 5, p2 = 17 or 29. Clearly,
primes p1 and p2 are both congruent to 1 modulo 4. From Theorem 1.1 (5) a (4p1p2, 4, 1)-
CBIBD is obtained by Lemma 2.4.

Lemma 3.2 There exists a (12t + 4, 4, 1)-CBIBD for each t ∈ T = {10, 12, 14, 20, 22,
24, 26, 32, 34, 36, 42, 50}.

Proof. For each t ∈ T , we have 12t + 4 = 4u, where u = 3t + 1 is a prime ≡ 1 (mod 6)
or a product of two primes ≡ 1 (mod 6). The parameters are listed below.

t = 10, u = 31; t = 12, u = 37; t = 14, u = 43; t = 20, u = 61;
t = 22, u = 67; t = 24, u = 73; t = 26, u = 79; t = 32, u = 97;
t = 34, u = 103; t = 36, u = 109; t = 42, u = 127; t = 50, u = 151.

By Theorem 1.1 (3) we obtain the desired (4u, 4, 1)-CBIBDs.

Lemma 3.3 There exists a (12t + 4, 4, 1)-CBIBD for each t ∈ {9, 17, 25, 37, 43}.
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Proof. For t = 9, 17, 25, we have 12t + 4 = 42u, where u = 7, 13, 19. The corresponding
CBIBDs are provided in Theorem 1.1 (4).

For t = 37, we have 12t + 4 = 43 · 7. By Theorem 1.1 (4) there exists a (43 · 7, 4, 1)-
CBIBD.

For t = 43, we have 12t + 4 = 4 · 10 · 13. There exist a (4 · 10, 4, 1)-CBIBD and a
(4 ·13, 4, 1)-CBIBD from Theorem 1.1 (5). By Lemma 2.1 (ii) we obtain a (4 ·10 ·13, 4, 1)-
CBIBD since gcd(13, 6) = 1.

Next we consider direct constructions. The results of the following lemmas are ob-
tained by a computer. In computer searching, a method we used in computer program
is applying multipliers of blocks. Since our constructions are over Zv, we can use both
the addition and the multiplication of Zv. We say that w ∈ Z∗

v is a multiplier of the
design, if for each base block B = {x1, x2, x3, x4}, there exists some g ∈ Zv such that
C = w ·B + g = {w · x1 + g, w · x2 + g, w · x3 + g, w · x4 + g} is also a base block. We say
that w ∈ Z∗

v is a partial multiplier of the design, if for each base block B ∈ M, where M
is a subset of all the base blocks, there exists some g ∈ Zv such that C = w ·B + g is also
a base block.

In the computer program, we first choose a (partial) multiplier w. Our experiences
tell us that choosing a w which has long orbits in the multiplication group of Zv usually
gives better results. Then we start to find base blocks in the following way. When a base
block B is found, the algorithm requires that wB, w2B, · · · , wsB can also be different base
blocks, where s is a positive number. If we can find all the base blocks in this way, then
wi, 1 ≤ i ≤ s are multipliers of the design. Otherwise, these are partial multipliers, and
the algorithm tries to find the remaining base blocks. To decide the value of s is also
important for the success of the algorithm. In practice, we usually let s be as large as
possible at the beginning. Then the value of s is reduced if the search time is too long.

In most case, a “shuffling and backtracking” algorithm is also used. This program
consists of two parts. One part is a standard backtracking algorithm used to find base
blocks. The other part is a shuffling algorithm which shuffles the blocks already found.
So this is not an exhaustive search. A start point is set for the shuffling algorithm. For
example, if there are 15 base blocks need to be found, then we may set the start point
at 5. That means the shuffling algorithm will be called after 5 base blocks have been
found. A simple shuffling algorithm just exchanges two blocks. However, we will set the
frequency of the calling shuffling algorithm. In our experience, to choose the start point
and the appropriate frequency is important for the success of the search.

Lemma 3.4 There exists a (12t + 4, 4, 1)-CBIBD for each t ∈ {8, 40}.

Proof Apart from the base block {0, 3t + 1, 6t + 2, 9t + 3} with the regular short orbit,
we list the multipliers for these designs and part of the base blocks so that other base
blocks can be obtained by these blocks and the multipliers, in the follows.

For t = 8, the multipliers are 7i, i = 0, 1 and base blocks are:
{0, 1, 3, 9}, {0, 4, 20, 59}, {0, 5, 31, 53}, {0, 11, 30, 62}.
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For t = 40, the multipliers are 9i, 0 ≤ i ≤ 4 and base blocks are:
{0, 1, 3, 8}, {0, 4, 14, 25}, {0, 13, 28, 44}, {0, 17, 37, 66}, {0, 19, 58, 92},
{0, 26, 59, 129}, {0, 32, 118, 254}, {0, 35, 183, 283}.
In what follows, we list the partial multipliers and their related base blocks, denoted as

D blocks (blocks to be developed), which are multiplied by each of the partial multipliers.
The remaining base blocks are listed as R blocks. Here, the base block with the regular
short orbit is written in Italic.

Lemma 3.5 There exists a (12t + 4, 4, 1)-CBIBD for each t ∈ {7, 11, 13, 15, 16}.

Proof. For t = 7, the partial multipliers are: 3i, 0 ≤ i ≤ 2.
D block is: {0, 1, 5, 18}.
R blocks are:
{0, 2, 21, 32}, {0, 6, 31, 41}, {0, 7, 27, 55}, {0, 8, 24, 50}, {0, 22, 44, 66}.
For t = 11, the partial multipliers are: 3i, 0 ≤ i ≤ 4.
D block is: {0, 1, 7, 29}.
R blocks are:
{0, 5, 41, 24}, {0, 2, 12, 71}, {0, 8, 56, 98}, {0, 4, 105, 89}, {0, 15, 40, 79},
{0, 13, 43, 104}, {0, 34, 68, 102}.
For t = 13, the partial multipliers are: 3i, 0 ≤ i ≤ 2.
D blocks are: {0, 1, 5, 11}, {0, 7, 29, 56}
R blocks are:
{0, 19, 67, 110}, {0, 14, 46, 71}, {0, 16, 78, 125}, {0, 17, 37, 105}, {0, 23, 108, 64},
{0, 2, 60, 134}, {0, 31, 65, 107}, {0, 40, 80, 120}.
For t = 15, the partial multipliers are: 3i, 0 ≤ i ≤ 3.
D blocks are: {0, 1, 5, 11}, {0, 8, 25, 81}.
R blocks are:
{0, 13, 100, 114}, {0, 23, 150, 62}, {0, 26, 106, 68}, {0, 2, 69, 134}, {0, 29, 89, 147},
{0, 19, 47, 129}, {0, 20, 63, 140}, {0, 46, 92, 138}.
For t = 16, the partial multipliers are: 3i, 0 ≤ i ≤ 7.
D blocks are: {0, 1, 5, 38}.
R blocks are:
{0, 16, 116, 136}, {0, 10, 144, 21}, {0, 18, 53, 122}, {0, 14, 166, 48}, {0, 7, 91, 63},
{0, 23, 65, 129}, {0, 6, 83, 109}, {0, 32, 86, 126}, {0, 49, 98, 147}.

Lemma 3.6 There exists a (12t + 4, 4, 1)-CBIBD for each t ∈ {18, 19, 21, 23}.

Proof. For t = 18, the partial multipliers are: 3i, 0 ≤ i ≤ 4.
D blocks are: {0, 1, 5, 18}, {0, 7, 50, 114}.
R blocks are:
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{0, 14, 102, 79}, {0, 20, 80, 148}, {0, 8, 52, 123}, {0, 22, 48, 143}, {0, 16, 94, 180},
{0, 25, 186, 66}, {0, 33, 75, 144}, {0, 11, 49, 73}, {0, 55, 110, 165}.
For t = 19, the partial multipliers are: 3i, 0 ≤ i ≤ 11.
D block is: {0, 1, 5, 54}.
R blocks are:
{0, 2, 184, 78}, {0, 18, 208, 64}, {0, 8, 79, 95}, {0, 14, 206, 96}, {0, 19, 51, 171},
{0, 6, 176, 104}, {0, 29, 86, 138}, {0, 58, 116, 174}.
For t = 21, the partial multipliers are: 3i, 0 ≤ i ≤ 12.
D block is: {0, 1, 7, 43}.
R blocks are:
{0, 12, 96, 121}, {0, 8, 80, 32}, {0, 19, 56, 168}, {0, 16, 65, 179}, {0, 2, 113, 199},
{0, 4, 73, 177}, {0, 14, 185, 225}, {0, 23, 61, 181}, {0, 64, 128, 192}.
For t = 23, the partial multipliers are: 3i, 0 ≤ i ≤ 3.
D blocks are: {0, 1, 5, 18}, {0, 7, 23, 49}, {0, 8, 37, 75}.
R blocks are:
{0, 40, 120, 170}, {0, 20, 76, 168}, {0, 2, 97, 180}, {0, 6, 131, 47}, {0, 22, 107, 82},
{0, 32, 246, 137}, {0, 10, 103, 184}, {0, 31, 221, 99}, {0, 11, 157, 44}, {0, 35, 124, 176},
{0, 28, 86, 116}, {0, 70, 140, 210}.

Lemma 3.7 There exists a (12t + 4, 4, 1)-CBIBD for each t ∈ {27, 29, 30, 31, 33}.

Proof. For t = 27, the partial multipliers are: 5i, 0 ≤ i ≤ 7.
D blocks are: {0, 1, 3, 7}, {0, 8, 17, 166}.
R blocks are:
{0, 48, 108, 255}, {0, 12, 139, 208}, {0, 33, 302, 112}, {0, 21, 165, 67}, {0, 34, 195, 77},
{0, 13, 52, 143}, {0, 41, 277, 64}, {0, 28, 116, 252}, {0, 56, 152, 215}, {0, 57, 123, 188},
{0, 24, 68, 105}, {0, 82, 164, 246}.
For t = 29, the partial multipliers are: 3i, 0 ≤ i ≤ 7.
D blocks are: {0, 1, 5, 11}, {0, 7, 24, 67}.
R blocks are:
{0, 22, 291, 66}, {0, 13, 170, 128}, {0, 39, 194, 235}, {0, 20, 181, 58}, {0, 2, 112, 238},
{0, 62, 131, 222}, {0, 14, 220, 79}, {0, 32, 145, 265}, {0, 26, 144, 96}, {0, 64, 142, 213},
{0, 16, 138, 185}, {0, 8, 266, 186}, {0, 29, 103, 257}, {0, 88, 176, 264}.
For t = 30, the partial multipliers are: 11i, 0 ≤ i ≤ 8.
D blocks are: {0, 1, 5, 22}, {0, 8, 58, 263}.
R blocks are:
{0, 13, 126, 340}, {0, 32, 265, 89}, {0, 3, 42, 301}, {0, 51, 195, 299}, {0, 2, 296, 196},
{0, 26, 82, 143}, {0, 14, 98, 227}, {0, 12, 60, 312}, {0, 16, 234, 94}, {0, 15, 43, 171},
{0, 6, 180, 160}, {0, 33, 165, 200}, {0, 91, 182, 273}.
For t = 31, the partial multipliers are: 3i, 0 ≤ i ≤ 9.
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D blocks are: {0, 1, 5, 11}, {0, 8, 75, 193}.
R blocks are:
{0, 28, 116, 84}, {0, 20, 60, 264}, {0, 48, 274, 134}, {0, 25, 147, 121}, {0, 35, 74, 326},
{0, 47, 189, 259}, {0, 2, 251, 168}, {0, 17, 256, 240}, {0, 44, 105, 170}, {0, 13, 248, 180},
{0, 51, 154, 232}, {0, 94, 188, 282}.
For t = 33, the partial multipliers are: 3i, 0 ≤ i ≤ 9.
D blocks are: {0, 1, 7, 23}, {0, 13, 37, 164}.
R blocks are:
{0, 36, 118, 360}, {0, 5, 139, 354}, {0, 35, 85, 245}, {0, 14, 154, 340}, {0, 34, 172, 278},
{0, 25, 80, 305}, {0, 30, 385, 250}, {0, 59, 247, 17}, {0, 20, 130, 295}, {0, 29, 94, 298},
{0, 10, 284, 62}, {0, 2, 70, 145}, {0, 87, 177, 292}, {0, 100, 200, 300}.

Lemma 3.8 There exists a (12t + 4, 4, 1)-CBIBD for each t ∈ {35, 38, 39, 41}.

Proof. For t = 35, the partial multipliers are: 3i, 0 ≤ i ≤ 23.
D block is: {0, 1, 11, 351}.
R blocks are:
{0, 21, 159, 96}, {0, 15, 367, 319}, {0, 16, 272, 312}, {0, 5, 109, 285}, {0, 8, 192, 289},
{0, 7, 336, 53}, {0, 13, 145, 271}, {0, 19, 47, 136}, {0, 35, 251, 80}, {0, 39, 264, 64},
{0, 24, 56, 291}, {0, 106, 212, 318}.
For t = 38, the partial multipliers are: 3i, 0 ≤ i ≤ 20.
D block is: {0, 1, 5, 94}.
R blocks are:
{0, 6, 210, 159}, {0, 11, 372, 303}, {0, 2, 299, 322}, {0, 17, 407, 224}, {0, 60, 368, 192},
{0, 38, 384, 264}, {0, 20, 290, 130}, {0, 26, 344, 266}, {0, 44, 403, 342}, {0, 10, 50, 106},
{0, 19, 147, 49}, {0, 34, 310, 124}, {0, 32, 112, 212}, {0, 18, 260, 306}, {0, 33, 87, 155},
{0, 29, 261, 398}, {0, 64, 166, 337}, {0, 115, 230, 345}.
For t = 39, the partial multipliers are: 3i, 0 ≤ i ≤ 24.
D block is: {0, 1, 5, 114}.
R blocks are:
{0, 14, 416, 65}, {0, 39, 195, 105}, {0, 2, 154, 202}, {0, 38, 286, 366}, {0, 16, 136, 313},
{0, 22, 442, 280}, {0, 13, 268, 170}, {0, 32, 104, 190}, {0, 6, 184, 344}, {0, 10, 332, 122},
{0, 18, 448, 216}, {0, 8, 96, 304}, {0, 40, 413, 94}, {0, 53, 117, 179}, {0, 118, 236, 354}.
For t = 41, the partial multipliers are: 3i, 0 ≤ i ≤ 26.
D block is: {0, 1, 18, 211}.
R blocks are:
{0, 24, 328, 142}, {0, 2, 267, 403}, {0, 16, 165, 88}, {0, 12, 80, 324}, {0, 6, 336, 305},
{0, 4, 200, 284}, {0, 20, 48, 368}, {0, 49, 444, 104}, {0, 60, 152, 376}, {0, 36, 388, 256},
{0, 40, 116, 228}, {0, 32, 96, 236}, {0, 8, 155, 434}, {0, 44, 100, 332}, {0, 124, 248, 372}.

Lemma 3.9 There exists a (12t + 4, 4, 1)-CBIBD for each t ∈ {44, 45, 46, 47, 49}.
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Proof. For t = 44, the partial multipliers are: 3i, 0 ≤ i ≤ 8.
D blocks are: {0, 1, 5, 11}, {0, 7, 23, 49}, {0, 8, 25, 96}.
R blocks are:
{0, 57, 285, 202}, {0, 37, 134, 417}, {0, 19, 364, 114}, {0, 31, 160, 421}, {0, 34, 199, 420},
{0, 56, 422, 251}, {0, 53, 140, 393}, {0, 43, 136, 342}, {0, 50, 391, 327}, {0, 29, 222, 448},
{0, 28, 430, 308}, {0, 41, 85, 467}, {0, 52, 246, 369}, {0, 47, 305, 196}, {0, 38, 446, 132},
{0, 55, 456, 214}, {0, 74, 156, 365}, {0, 133, 266, 399}.
For t = 45, the partial multipliers are: 3i, 0 ≤ i ≤ 15.
D blocks are: {0, 1, 5, 19}, {0, 7, 35, 125}.
R blocks are:
{0, 51, 224, 464}, {0, 17, 102, 255}, {0, 24, 377, 473}, {0, 43, 331, 259}, {0, 16, 456, 296},
{0, 25, 176, 457}, {0, 8, 504, 283}, {0, 56, 208, 129}, {0, 75, 219, 374}, {0, 32, 339, 305},
{0, 68, 425, 225}, {0, 29, 453, 340}, {0, 64, 192, 376}, {0, 136, 272, 408}.
For t = 46, the partial multipliers are: 3i, 0 ≤ i ≤ 28.
D blocks are: {0, 1, 7, 24}.
R blocks are:
{0, 50, 436, 494}, {0, 34, 234, 138}, {0, 32, 197, 512}, {0, 12, 314, 374}, {0, 55, 380, 508},
{0, 2, 250, 416}, {0, 35, 228, 424}, {0, 16, 137, 384}, {0, 28, 373, 479}, {0, 10, 408, 382},
{0, 4, 150, 286}, {0, 46, 472, 206}, {0, 61, 312, 466}, {0, 36, 118, 304}, {0, 30, 478, 354},
{0, 8, 246, 102}, {0, 40, 185, 376}, {0, 139, 278, 417}.
For t = 47, the partial multipliers are: 7i, 0 ≤ i ≤ 32.
D block is: {0, 1, 3, 29}.
R blocks are:
{0, 58, 244, 355}, {0, 15, 368, 216}, {0, 65, 177, 449}, {0, 16, 360, 48}, {0, 24, 327, 432},
{0, 33, 120, 497}, {0, 40, 455, 168}, {0, 4, 375, 166}, {0, 17, 280, 81}, {0, 11, 491, 243},
{0, 41, 137, 465}, {0, 8, 151, 231}, {0, 56, 313, 489}, {0, 72, 167, 264}, {0, 142, 284, 426}.
For t = 49, the partial multipliers are: 5i, 0 ≤ i ≤ 30.
D block is: {0, 1, 3, 12}.
R blocks are:
{0, 30, 352, 424}, {0, 34, 96, 450}, {0, 61, 407, 215}, {0, 22, 112, 456}, {0, 6, 366, 470},
{0, 18, 312, 224}, {0, 32, 80, 408}, {0, 52, 287, 431}, {0, 16, 56, 474}, {0, 43, 237, 353},
{0, 71, 260, 150}, {0, 8, 341, 481}, {0, 46, 120, 334}, {0, 47, 409, 199}, {0, 37, 306, 197},
{0, 24, 78, 414}, {0, 42, 426, 106}, {0, 108, 222, 422}, {0, 148, 296, 444}.
Combining the above lemmas with Theorem 1.1, we complete the proof of Theorem

1.2.

4 Some classes of CBIBD

Using the results of small CBIBDs and recursive constructions, we can obtain classes of
CBIBD. It is readily seen that there exists a (u, 4, 1)-DM whenever u ≡ 1 (mod 6) from

the electronic journal of combinatorics 13 (2006), #R10 9



Lemma 2.2. Applying the recursive constructions in Section 2 and the results obtained
above, we have the following.

Lemma 4.1 There exists a (4uv, 4, 1)-CBIBD, where u is a product of primes p ≡ 1
(mod 6) such that gcd((p− 1)/6, 20!) 6= 1 and v = 3t+1 (not necessarily prime), 3 ≤ t ≤
50.

Proof. By Theorem 1.2, there exists a (4v, 4, 1)-CBIBD. Since gcd(u, 6) = 1 and there
exists a (4u, 4, 1)-CBIBD by Theorem 1.1(3), a (4uv, 4, 1)-CBIBD exists from Lemma 2.1
(ii).

Lemma 4.2 There exists a (4uv, 4, 1)-CBIBD, where u is a product of primes p such that
gcd((p−1)/6, 20!) 6= 1 and v = v1 · · · vm, vi = 6ti +1 (not necessarily prime), 2 ≤ ti ≤ 25.

Proof. By Theorem 1.2, there exists a (4vi, 4, 1)-CBIBD. Clearly, gcd(vj , 6) = 1, by
Lemma 2.1 (ii), there exists a (4v, 4, 1)-CBIBD. Since gcd(v, 6) = 1 and there exists a
(4u, 4, 1)-CBIBD by Theorem 1.1(3), the conclusion comes from Lemma 2.1 (ii).

Lemma 4.3 There exists a (4nuv, 4, 1)-CBIBD, where n ≥ 3, u is a product of primes
p ≡ 1 (mod 6) and v = v1 · · · vm, vi = 6ti + 1 (not necessarily prime), 2 ≤ ti ≤ 25.

Proof. By Theorem 1.2, there exists a (4vi, 4, 1)-CBIBD. Clearly, gcd(vj , 6) = 1, by
Lemma 2.1 (ii), there exists a (4v, 4, 1)-CBIBD. Since gcd(v, 6) = 1 and there exists a
(4nu, 4, 1)-CBIBD by Theorem 1.1(4), the conclusion comes from Lemma 2.1 (ii).

Chang [11] showed the following.

Lemma 4.4 Let t > 0 be odd. If there exists (16t, 4, 1)-CBIBD, then so does a (16tu, 4, 1)-
CBIBD for any u which is a product of primes congruent to 1 modulo 6.

Combing with Theorem 1.2, we have the following.

Lemma 4.5 There exists a (16tu, 4, 1)-CBIBD, where u is a product of primes congruent
to 1 modulo 6 and t = 7, 13, 19, 25, 31, 37.

5 Applications in OOCs

(v, k, 1)-CBIBDs are closely related to optical orthogonal codes which were introduced in
[15] and have many important applications (e.g., see [16]). The study of optical orthogonal
codes was first motivated by an application in a fiber optic code-division multiple access
channel which requires binary sequences with good correlation properties.

Let v, k be positive integers. A (0, 1) sequence of length v and weight k is a sequence
with exactly k 1’s and v−k 0’s. A (v, k, 1)-OOC, C, is a family of (0, 1) sequences (called
codewords) of length v and weight k satisfying two properties (all subscripts are reduced
modulo v).

the electronic journal of combinatorics 13 (2006), #R10 10



1) (The Autocorrelation Property)

∑
0≤t≤v−1

xtxt+i ≤ 1

for any x = (x0, x1, · · · , xv−1) ∈ C and any integer i 6≡ 0 (mod v);
2) (The Cross-Correlation Property)

∑
0≤t≤v−1

xtyt+i ≤ 1

for any
x = (x0, x1, · · · , xv−1) ∈ C
y = (y0, y1, · · · , yv−1) ∈ C

with x 6= y, and any integer i.
Identify any codewords x ∈ C with the subset of Zv whose characteristic function is

x. A (v, k, 1)-OOC may be more conveniently viewed as a set F of k-subsets of Zv with
the property that ∆F has no repeated elements. A trivial counting argument shows that
the size of a (v, k, 1)-OOC can not exceed b v−1

k(k−1)
c. The OOC is said to be optimal when

its size reaches this bound.
It is clear that a (12t + 4, 4, 1)-CBIBD leads to an optimal (12t + 4, 4, 1)-OOC. From

the results of previous section, we have the following results of OOCs.

Theorem 5.1 There exist an optimal (4u, 4, 1)-OOC, where u is a product of primes p
congruent to 1 modulo 12 and an optimal (16tu, 4, 1)-OOC, where u is a product of primes
congruent to 1 modulo 6 and t = 7, 13, 19, 25, 31, 37.

Theorem 5.2 There exist optimal OOCs as follows:

• An optimal (4uv, 4, 1)-OOC, where u is a product of primes p congruent to 1 modulo
12;

• An optimal (4uv, 4, 1)-OOC, where u is a product of primes p such that gcd((p −
1)/6, 20!) 6= 1;

• An optimal (4nuv, 4, 1)-OOC, where n ≥ 3, u is a product of primes p ≡ 1 (mod 6).

Where v = v1 · · · vm with vi = 6ti + 1 (not necessarily prime), 2 ≤ ti ≤ 25, 1 ≤ i ≤ m.
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