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Abstract

The set of cycle lengths of almost all permutations in Sn are “Poisson dis-
tributed”: we show that this remains true even when we restrict the number of
cycles in the permutation. The formulas we develop allow us to also show that al-
most all permutations with a given number of cycles have a certain “normal order”
(in the spirit of the Erdős-Turán theorem). Our results were inspired by analogous
questions about the size of the prime divisors of “typical” integers.

1 Introduction

Define Sn to be the set of permutations on n letters, and let `(σ) be the number of cycles
of σ ∈ Sn. It is well-known that

`(σ) ∼ log n for almost all σ ∈ Sn

(a fact we will reprove in Section 2). More precisely we mean that for any δ, ε > 0 if
n is sufficiently large then (1 + δ) logn > `(σ) > (1 − δ) logn for all but at most ε n!
permutations σ ∈ Sn.

Write σ = C1C2 · · ·C` where the C ′
is are cycles and ` = `(σ), and let di(σ) = d(Ci) be

the number of elements of Ci. We may order the cycles so that

1 ≤ d1(σ) ≤ d2(σ) ≤ · · · ≤ d`(σ) ≤ n

and therefore
0 ≤ log d1(σ) ≤ log d2(σ) ≤ · · · ≤ log d`(σ) ≤ logn.

Thus, for almost all σ ∈ Sn we have ∼ log n numbers log di(σ) in an interval [0, logn] of
length log n. How are these numbers distributed within the interval? Other than near the
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beginning and end of the interval we might, for want of a better idea, guess that these
numbers are “randomly distributed” in some appropriate sense, given that the average gap
is 1. That guess, correctly formulated, turns out to be correct. In probability theory one
uses the notion of a “Poisson point process” when one wishes to show that the event times
of a random variable are “randomly distributed”. However, in our question we do not
have random variables. Indeed the set of permutations on n letters are pre-determined,
as are their cycle lengths, so we need to create an analogy of the Poisson point process
for this non-random situation. A little loosely we proceed as follows:

A sequence of finite sets S1, S2, · · · is called “Poisson distributed” if there exist func-
tions mj, Kj, Lj → ∞ monotonically as j → ∞ such that Sj ⊆ [0, mj] and |Sj| ∼ mj; and
for all λ, 1/Lj ≤ λ ≤ Lj and integers k in the range 0 ≤ k ≤ Kj we have

1

mj

mj
∫

0
#{Sj∩[t,t+λ]}=k

1 dt ∼ e−λ
λk

k!
.

For example if each Sm is a set of m real numbers chosen uniformly and independently in
the interval [0, m], then this sequence of sets is almost surely Poisson distributed.

With this definition we prove in section 4 the following result (which can also be
deduced from the much stronger theorem of DeLaurentis and Pittel [4]):

Theorem 1 As n→ ∞, the sets of numbers

Dσ := {log d1(σ), log d2(σ), · · · log d`(σ)}

are Poisson distributed, for almost all σ ∈ Sn.

The precise statement of what we prove is: There exist functions K(n), L(n) → ∞ as
n→ ∞ such that for all ε > 0, if n is sufficiently large (depending on ε) then we have

(1 − ε)e−λ
λk

k!
≤ 1

log n

logn
∫

t=0
#{Dσ∩[t,t+λ]}=k

1 dt ≤ (1 + ε)e−λ
λk

k!
.

for any λ in the range 1/L(n) ≤ λ ≤ L(n) and any non-negative integer k ≤ K(n), for at
least (1 − ε) n! elements σ ∈ Sn.

Notice that if for each integer m ≥ 1 we select a permutation σm ∈ Sm at random
(that is, each permutation is selected with probability 1/m!) then Theorem 1 implies that
the sequence of sets Dσm , m ≥ 1 is almost surely Poisson distributed.

Evidently Dσ can only be distributed as in Theorem 1 if `(σ) ∼ log n. So what happens
if `(σ) is considerably smaller or larger? In other words, if we fix `, 1 ≤ ` ≤ n then what
do the sets Dσ typically look like when we consider those σ ∈ Sn with `(σ) = `? In
this case, the average gap between elements is (log n)/` so we might expect a Poisson
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distribution with this parameter. However, there are three obvious problems with this
guess:

• If ` is bounded then there cannot be a non-discrete distribution function for gaps
between elements ofDσ for each individual σ since there are a bounded number of elements
of Dσ. We deal with this relatively easy case separately and find the following in section
3.3:

Theorem 2 For large n and 2 ≤ ` ≤ 1
2
log logn consider Sn,` the set of σ ∈ Sn with

`(σ) = `. The distribution of the points

{log di(σ)/ logn : 1 ≤ i ≤ `− 1}

on (0, 1) as we vary over σ ∈ Sn,`, is the same as the distribution of `−1 numbers chosen
independently at random with uniform distribution on (0, 1). More precisely, for any ε in
the range 1/` > ε > (e/`)(`/ logn)1/(`−1), for any α0 = 0 < α1 < α2 < · · · < α`−1 ≤ α` =
1 with αj+1 − αj > ε, there are (`− 1)!ε`−1{1 + O(`/ logn)}|Sn,`| elements σ ∈ Sn,` with
log di(σ)/ logn ∈ (αi, αi + ε) for each 1 ≤ i ≤ `− 1.

• Since we are modelling Dσ with a continuous distribution function, it should be
very unlikely that there are repeated values in Dσ. However, in Proposition 1 below we
prove that there are ∼ `/mν cycles of length m in σ, for almost all σ ∈ Sn,` whenever
m = o(min{`/ν, n/(`/ν)}) where, here and henceforth,

eν − 1

ν
=
n

`
.

Therefore if ` ≤ n1/2−ε then we have this “discrete spectrum” for cycle lengths up to
around `/ν, containing a total of ∼ (`/ν) log(`/ν) cycles. Since ν ∼ log(n/`) this is o(`)
if ` = no(1), in which case these cycles are irrelevant in our statistical investigation. If ` is
bigger, say ` = nα+o(1) with α < 1/2, then there are ∼ (α/(1−α))` cycles in this discrete
spectrum.

• We cannot have many i with di(σ) > (n/`) log(n/`) : in fact, evidently no more than
`/ log(n/`) = o(`) if ` = o(n).
From these last two points we see that we should restrict our attention to cycle lengths in
the interval [`, (n/`) log(n/`)]. Notice that the average gap between the logarithm of cycle
lengths in this interval is ∼ log(n/`)/`, provided ` � n1/2−ε. Therefore we will prove in
section 5 (by modifying the proof of Theorem 1):

Theorem 3 Given ` and n with `, n/` → ∞ and ` � n1/2−ε consider Sn,` the set of
σ ∈ Sn with `(σ) = `. Almost all σ ∈ Sn,` contain ∼ `/mν cycles of length m, for almost
all m = o(`/v). Moreover the elements of the set

Dσ,` := {(log di(σ))/(log(n/`)/`) : log di(σ) ∈ Dσ, and ` ≤ di(σ) ≤ (n/`) log(n/`)}

are Poisson distributed for almost all σ ∈ Sn,`.
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When ` � n1/2+ε almost all cycles have length < n/`; indeed almost all σ ∈ Sn,`
contain ∼ `/mν cycles of length m, for almost all m ≤ n/` (by Proposition 1 below).
This cannot be modelled by any continuous distribution function.

Theorem 3 is proved by incorporating precise estimates on Stirling numbers of the
first kind (as proved in section 3) into the proof of Theorem 1. In reviewing the liter-
ature we found that these estimates allowed us to generalize one of the first results of
statistical group theory: Erdős and Turán [5] proved that almost all σ ∈ Sn have order
exp({1

2
+ o(1)} log2 n). This follows easily from our Theorem 1: The order of σ is given

by lcm[d1(σ), d2(σ), . . . , d`(σ)]. By Theorem 1 we know that log(d1(σ)d2(σ) . . . d`(σ)) ∼
1
2
log2 n, moreover a number theorist knows that log n “random integers” up to n, where

m chosen with probability 1/m, are unlikely to have many large common factors, and
thus the result: we formalize this last step in section 6 to complete the proof. Moreover,
from the estimates used to prove Theorem 3 it is not difficult to deduce the following
generalization by the same type of proof:

Theorem 4 Suppose that k → ∞ and log(n/k2)/ log log n→ ∞ as n→ ∞. Then almost
all σ ∈ Sn,k have order

exp

({

1

2
+ o(1)

}

k
log n log(n/k2)

log(n/k)

)

.

After proving this in section 6 we also prove that if log(k2/n)/ log logn→ ∞ as n→ ∞
with k � n/(log n)C , then almost all σ ∈ Sn,k have order

exp
(

{1 + o(1)}n
k

log(n/k) log(k2/n)
)

.

These results are given more precisely in section 6.4. However an interesting range remains
to be understood, where k =

√
n(logn)O(1). It is evident that there is a transition between

these two types of estimates (in fact the transition occurs as k runs through multiples of√
n logn), but I have been unable to obtain satisfactory results in this range.
There have been many recent developments in number theory and combinatorics ex-

amining the distributions of sets of eigenvalues and zeros, and of natural invariants of
permutations (for example, the “largest increasing subsequence” of a permutation). It
struck me that there are various “spectra” in multiplicative number theory that had not
been properly investigated, for example the set of all prime divisors of a given integer:
Hardy and Ramanujan showed that almost all integers have ∼ log log x prime factors,
and it has been shown that if pj(n) is the jth smallest prime factor of an integer then
log log pj(n) is “randomly distributed” with mean j, for a certain range of j, as we vary
over all integers n. Nonetheless the literature seems to lack an investigation of all of the
prime factors of n taken together, and in particular whether {log log p : p|n} is “Poisson
distributed” on [0, log log n], something we prove in a companion paper to this. In fact
having proved this we started to wonder whether one can prove analogous results about
the distribution of {log log p : p|n} for integers n with exactly k prime factors for values of
k in an appropriate range. We found that we could only prove such a result in the limited
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range k = (logn)o(1), and we wished to better understand the obstructions to extending
our proof.

Arratia, Barbour and Tavaré [1] explained how certain aspects of the distribution of
cycle lengths in a random permutation are analogous to the distribution of prime divisors
of random integers (and see Billingsley [2] and Knuth and Trabb Prado [10]). I thought
that maybe I should try to work out the analogous results for permutations, which should
be substantially easier, and hopefully be able to identify the obstructions to my earlier
proof in this new context. Thus Theorem 1 here is the analogy to the result I had already
proved about almost all integers, and working with exactly k cycles is analogous to working
with integers with exactly k prime factors. The discussion of the restriction of the domain
preceding the statement of Theorem 3 is indeed precisely what I was hoping to find in
this auxiliary investigation, and I have subsequently proved all that I was hoping to prove
about the distribution of prime divisors of integers (see [7]).

In the course of this research I have determined several more analogies between the
distribution of prime factors of integers and the distribution of cycle lengths in a permu-
tation, something I will discuss in detail in a further paper (see [8]). It may well be that
such results will allow us new insights into the structure of factorization of integers.

I believe it would be interesting to try to develop similar results to Theorem 1 for
other infinite families of groups. Obviously one will obtain much the same results for
finite index subgroups of Sn, but how about for other classical families?

It may well be that Theorems 1, 2 and 3 can be proved more easily in the spirit of
the ideas discussed in Shepp and Lloyd [13] (and thence Arratia, Barbour and Tavaré
[1]), since the distribution of cycle lengths in permutations follows a Poisson-Dirichlet
distribution (and the questions above involve aspects of that distribution, conditioning on
certain linear equations). However to do so, one would need to show that this distribution
holds here with a high level of uniformity and I have been unable to determine whether
this can be deduced from the existing literature.

Acknowledgements: On hearing a delightful proof, Paul Erdős would say that we have
been allowed to glimpse “The Book” in which the “supreme being” records the most
elegant proofs of each theorem. I would like to thank Rod Canfield for sharing with me
his delicious proof of (3.1) which I sketch there, a proof that, if not itself in “The Book”,
must at least appear in the pirated version! Thanks also to the referee for help in putting
a few phantoms to rest.

2 Poisson and Permutations

For σ ∈ Sn let C(σ) be the set of cycles of σ of degrees

1 ≤ d1(σ) ≤ d2(σ) ≤ · · · ≤ dk(σ) ≤ n,
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where k = k(σ), the number of cycles of σ. The expected number of cycles of length m
in σ is

1

n!

∑

σ∈Sn

∑

C∈C(σ)
d(C)=m

1 =
1

n!

∑

C: d(C)=m

∑

σ∈Sn
C∈C(σ)

1 =
n
∑

m=1

n . . . (n+ 1 −m)

m
· (n−m)!

n!
=

1

m
,

so that the expected length of the union of the cycles of length m in σ ∈ Sn, is 1. We
deduce that the expected value of k(σ) is (1/n!)

∑

σ∈Sn
k(σ) =

∑n
m=1

1
m

:= µn. Moreover

1

n!

∑

σ∈Sn

k(σ)2 =
n
∑

j=1

1

j
+

∑

C1,C2 disjoint cycles

1

n!

∑

σ∈Sn
C1,C2∈C(σ)

1 =
n
∑

j=1

1

j
+
∑

1≤i,j
i+j≤n

1

ij
,

so that
1

n!

∑

σ∈Sn

(k(σ) − µn)
2 =

n
∑

j=1

1

j
−

2n
∑

k=n+1

∑

1≤i,j≤n
i+j=k

1

ij
≤ µn,

where µn = logn+ γ +O(1/n). Thus k(σ) has normal order µn for σ ∈ Sn. In fact Feller
[6] elegantly showed that k(σ) is normally distributed with mean µn and variance ∼ µn,
a result we will reprove in a stronger form below.

Lemma 1 For any A > 0 we have

∑

r≥m

Ar

r!
≤ 1

eA+m

provided m ≥ 2 + 25A/3.

Proof. Since m ≥ 2A,
Ar+1

(r + 1)!
≤ A

m+ 1

Ar

r!
≤ 1

2

Ar

r!

and so
∑

r≥m

Ar

r!
≤ 2

Am

m!
≤ 2

3

(

eA

m

)m

by Stirling’s formula, in the form m! ≥ 3(m/e)m for all integers m ≥ 2; and the result
follows.

Let km(σ) be the number of cycles of length ≤ m in σ. Then

1

|Sn|
∑

σ∈Sn

(

km(σ)

r

)

=
∑

C1,...,Cr∈Sn
`(Ci)≤m

1

n!

∑

σ∈Sn
C1,...,Cr∈σ

1

=
∑

a1+···+am=r
a1+2a2+···+mam≤n

1

a1!1a1a2!2a2 . . . am!mam

≤ coefficient of xr in exp
(

x +
x

2
+ · + x

m

)

=
µrm
r!
,
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and equality holds if rm ≤ n. Therefore the proportion of permutations in Sn with no
cycles of length ≤ m is, by the inclusion-exclusion principle,

∑

r≥0

(−1)r
1

|Sn|
∑

σ∈Sn

(

km(σ)

r

)

=
∑

r≥0

(−1)r
µrm
r!

+O





∑

r>n/m

µrm
r!





= e−µm +O(2−n/m) (2.1)

provided n ≥ 2emµm, by Lemma 1. Since µm = logm+ γ+O(1/m) the quantity in (2.1)
equals

e−γ/m +O(1/m2) (2.2)

in this range.
The above also implies that km(σ) is Poisson distributed with Poisson parameter µm.

This holds uniformly for m � n/ logn. Since the average number of cycles of length
� n/ logn is log logn + O(1), we deduce a rather strong version of Feller’s result that
k(σ) is normally distributed with mean and variance ∼ log n.

The Buchstab function ω(u) is defined by ω(u) = 0 for 0 < u < 1,

ω(u) = 1/u for 1 ≤ u ≤ 2

and

uω(u) =

u−1
∫

0

ω(t) dt for all u > 2.

It is known that ω(u) → e−γ as u→ ∞; in fact ω(u) = e−γ +O(1/u2). We prove

Theorem 5 Define A(n,m) to be the number of permutations on n letters all of whose
cycles have length ≥ m. Then

A(n,m)

n!
=
ω(n/m)

m
+O

(

log logm

m2

)

Proof. Define a(n,m) = mA(n,m)/n! and ∆(n/m) = a(n,m) − ω(n/m). Now

nA(n,m) =
∑

σ∈Sn
C∈σ⇒`(C)≥m

∑

C∈σ

`(C) =
n
∑

b=m

b
∑

C∈Sn
`(C)=b

1
∑

σ∈Sn, C∈σ
C′∈σ⇒`(C′)≥m

1

=
n
∑

b=m

b
n!

(n− b)!

1

b
A(n− b,m)

and so, taking r = n− b,

a(n,m) =
1

n

n−m
∑

r=0

a(r,m). (2.3)
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Note that A(0, m) = 1, A(n,m) = 0 if 1 ≤ n ≤ m − 1 and A(n,m) = A(n, n) = n!/n if
m ≤ n ≤ 2m− 1. Therefore

∆(u) = 0 for 0 < u < 2

(when u is of the form n/m). Now by (2.3), whenever n ≤ N −m,

(N +m)a(N +m,m) − (n+m)a(n +m,m) =

N
∑

r=n+1

a(r,m)

=
N
∑

r=n+1

ω(r/m) +
N
∑

r=n+1

∆(r/m).

The latter term is ≤ (N −n) max
n/m<t≤N/m

|∆(t)|; and so writing u = N/m+1 and v = n/m

with v ≤ u− 2,

|∆(u)| ≤ max
v<t≤u−1

|∆(t)| + 1

um

∣

∣

∣

∣

N
∑

r=n+1

ω(r/m) −
N
∫

n

w

(

t

m

)

dt

∣

∣

∣

∣

. (2.4)

Now Maier [11]) showed that ω′(t) changes sign O(1) times in any interval of length 1;
and so

∣

∣

∣

∣

N
∑

r=n+1

w(r/m) −
N
∫

n

w

(

t

m

)

dt

∣

∣

∣

∣

� 1

since ω(u) = e−γ+O(1/u2). With v = u−2, (2.4) becomes |∆(u)| ≤ ∆∗(u−1)+O(1/um)
where ∆∗(u) := max0<t≤u |∆(t)|. Therefore, for u ≥ 2,

∆∗(u) ≤ ∆∗(u− 1) +O(1/um) � (log u)/m

by induction. This gives the theorem for u < log2m and (2.2) does so for u� logm.

3 Asymptotics for quotients of neighboring Stirling

numbers of the first kind

S(n, k), the Stirling numbers of the first kind, are defined as the size of Sn,k, the set of
σ ∈ Sn with exactly k cycles. Moser and Wyman [12] proved the following estimate for
S(n, k) when k and n/k → ∞ as n→ ∞: Define T = T (n, k) so that

n−1
∑

i=0

T

T + i
= k, and let ` = k −

n−1
∑

i=0

T 2

(T + i)2
.
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Then

S(n, k) =
Γ(n+ T )

Γ(T )

1

(2π`)1/2

1

T k

{

1 +O

(

1

`

)}

. (3.1)

Proof from “The Book” (see Canfield [3]) Let X0, X1, . . . be independent (binomial)
random variables with Prob(Xi = 1) = T/(T + i) and Prob(Xi = 0) = i/(T + i), where T
is chosen as above so that E(X0 +X1 + · · ·+Xn−1) = k. By the central limit theorem we
know that the random variable X0 +X1 + · · ·+Xn−1 satisfies a Poisson type distribution
with mean k and variance

n−1
∑

i=0

(E(X2
i ) − E(Xi)

2) =

n−1
∑

i=0

(

T

T + i
−
(

T

T + i

)2
)

= `;

therefore Prob(X0 + X1 + · · · +Xn−1 = k) ≈ 1/(2π`)1/2. On the other hand Prob(X0 +
X1 + · · ·+Xn−1 = k) equals the coefficient of Xk in

n−1
∏

i=0

(

TX + i

T + i

)

=
Γ(T )

Γ(n+ T )

∑

k≥0

S(n, k)T kXk,

and the result follows, being more precise about the “≈”.

We need the following consequence of (3.1): If k,m = o(n) and k → ∞, with 1 ≤
m� (n/k) log(n/k) and r � min{

√
k, log(n/k)} then

S(n−m, k − r)

S(n, k)
=

(n−m)!

n!

(

k

ν

)r{

1 +O

(

r2

k
+

m
n
k

log(n/k)
+

1

log(n/k)
+
m

n

) }

(3.2)
where ν satisfies ev − 1 = v(n/k).
Proof. Note that v → ∞ in our range as n→ ∞. Now

k =

n−1
∑

i=0

T

T + i
= 1 + T

n−1
∑

i=1

1

T + i
= T log

(

n+ T

1 + T

)

+O(1)

so that for K = k+O(1) we have eK/T − 1 = (n− 1)/(1 + T ) from which one can deduce
that T = {k +O(1)}/v = n(1 +O(1/k))/(ev − 1). Moreover

` = k − T 2(1/T − 1/(T + n) +O(1/T 2)) = k − nT/(T + n) +O(1)

= k

{

1 +O

(

1

v
+

1

k

)}

We wish to compare this with v′, T ′ and `′ which come from replacing n and k by n−m
and k − r. Note that v′ = v + O(m/n + r/k) = v + o(1) ∼ v, and `′ = `(1 + O( r

k
+ 1

v
)).

Define

gn(t) :=

n−1
∑

i=0

t

t+ i
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so that gn(T ) = k and gn−m(T ′) = k − r. Since g′n(t) ∼ gn(t)/t for all t ∼ T , and
gn−m(t) − gn(t) ∼ −mt/n in our range thus

|T ′ − T | � T

k

(

mT

n
+ r

)

� r

v
. (3.3)

Let τ be the integer nearest to T . Using (3.1) and results above we have

S(n−m, k − r)

S(n, k)
=

Γ(n+ τ)

Γ(n+ T )

Γ(n−m + T ′)

Γ(n−m+ τ)
· Γ(T )

Γ(T ′)

Γ(n+ 1)

Γ(n+ τ)

Γ(n−m+ τ)

Γ(n−m+ 1)

(n−m)!

n!

·
(

T

T ′

)k−r

(T )r
{

1 +O

(

r

k
+

1

v

)}

Now

Γ(n+ 1)

Γ(n + τ)

Γ(n−m+ τ)

Γ(n−m + 1)
=

τ−1
∏

j=1

(

n−m+ j

n + j

)

=
(

1 +O
(m

n

))T

= 1 +O

(

mT

n

)

= 1 +O
(m

ev

)

.

Also if t is large and |δ| � 1 then

log Γ(t + δ) − log Γ(t) = δ log t +O

(

δ

t

)

so that

log

(

Γ(n+ τ)

Γ(n+ T )
· Γ(n−m+ T ′)

Γ(n−m + τ)
· Γ(T )

Γ(T ′)

)

= (τ − T ) log(n+ T )

+ (T ′ − τ) log(n−m+ T ′)

+ (T − T ′) logT +O

(

1

n
+

|T − T ′|
T

)

= (T ′ − T ) log(n/T ) +O

(

m + T

n
+
r

k

)

by (3.3), and

log((T/T ′)k−r) = −(k − r) log

(

1 +
T ′ − T

T

)

= (T − T ′)
(k − r)

T
+O

(

k
(T ′ − T )2

T 2

)

=
k(T − T ′)

T
+O

(

r2

k

)

.
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by (3.3). Also

(T ′ − T ) log(n/T ) +
k(T − T ′)

T
= (T ′ − T )

((

log(ev − 1) − k

T

)

+ log(k/vT )

)

� r

v

(

1

ev
+
v

k

)

� 1

ev
+
r

k

since r � v. Combining these estimates together gives (3.2).

3.2. A consequence

Proposition 1 If k → ∞, k = o(n) and m� min{k/v, nv/k} where v is the solution to
ev − 1 = v(n/k) then

1

|Sn,k|
∑

σ∈Sn,k

∣

∣

∣

∣

∑

C∈σ
|C|=m

1 − k

mv

∣

∣

∣

∣

2

�
(

k

mv

)2{
1

v
+

m

k/v
+

m

n/(k/v)

}

.

Proof: The mean value for the number of cycles of length m in σ ∈ Sn,k is given by

1

|Sn,k|
∑

σ∈Sn,k

∑

C∈σ
|C|=m

1 =
∑

|C|=m
C∈Sn

1

|Sn,k|
∑

σ∈Sn,k
C∈σ

1

=
1

m

S(n−m, k − 1)/(n−m)!

S(n, k)/n!

=
k

mv

{

1 +O

(

1

k
+

1

v
+

m

(n/k) log(n/k)
+
m

n

)}

by (3.2), provided m � (n/k) log(n/k), k → ∞ and k,m = o(n). The mean square is, in
the same range.

1

|Sn,k|
∑

σ∈Sn,k







∑

C∈σ
|C|=m

1







2

=
1

S(n, k)

∑

C1,C2∈Sn
|C1|=|C2|=m

∑

σ∈Sn,k
C1,C2∈σ

1

=
1

m

S(n−m, k − 1)/(n−m)!

S(n, k)/n!

+
1

m2

S(n− 2m, k − 2)/(n− 2m)!

S(n, k)/n!

=

(

k

mv

)2{

1 +O

(

mv

k
+

1

v
+

m

(n/k) log(n/k)

)}

since if (ev
′ − 1)/v′ = (n−m)/(k − 1) then v′ = v +O( 1

k
+ m

n
). The result follows.
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3.3. Upper bounds

In this section we obtain the following upper bound on S(n−M, k − R) using (3.2):
In the range

R �M ≤ nR/2k, k = o(n), 1 ≤ R ≤ k − 1

we have

S(n−M, k − R)

S(n, k)
� (n−M)!

n!

(

k

v

)R

exp

(

O

(

R

log(n
k
)

+
R

k/ log k

)

− R2

2k

)

. (3.4)

Jordan [9] showed that

S(n, k) ∼ (n− 1)!

(k − 1)!
(log n+ γ)k−1

when k = o(log n) (which we reprove in (3.5) below). Therefore, for all 1 ≤ R ≤ k − 1,
we have

S(n−M, k −R)

S(n, k)
∼ (n−M)!

n!

R
∏

i=1

(

k − i

logn + γ

)

n

n−M
,

which implies (3.4) in our range with k = o(logn).
When k − R → ∞ we let ni = n − [iM/R] for 0 ≤ i ≤ R, so that n0 = n and

nR = n−M . Let vi be the solution to evi − 1 = vi(ni/(k − i)) We have

ni
k − i

≥ n− iM/R

k − i
≥ n− in/k

k − i
=
n

k

and thus vi ≥ v0 = v for all i. Therefore

S(n−M, k −R)

S(n, k)
=

R
∏

i=1

S(ni, k − i)

S(ni−1, k − (i− 1))

5
(n−M)!

n!

R
∏

i=1

(

k − i

vi

)

·

· exp

(

O

(

log

(

k

k − R

)

+
M

n
k

log n
k

+
R

log(n
k
)

))

since each vi ≥ v, which implies (3.4).
We can deduce (3.4) in the rest of our range, that is when k − R � 1, by writing

S(n − M, k − R)/S(n, k) = (S(n − M, k − R)/S(n1, k1))(S(n1, k1)/S(n, k)) with k1 =
[
√

log n] and n1 = [n−M(k − k1)/(k − R)] and using the result in the two ranges above
to bound these two terms.
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3.4. Stirling numbers S(n, k) with k small, and Theorem 2.

S(n, k) is the coefficient xk in

x(x + 1) . . . (x+ n− 1) = (n− 1)!x

n−1
∏

j=1

(1 + x/j)

= (n− 1)!x exp

(

n−1
∑

j=1

(

x

j
+ O

(

x2

j2

))

)

= (n− 1)!x exp
(

xµn−1 +O(x2)
)

,

so that

S(n, k) = (n− 1)!
µk−1
n−1

(k − 1)!
exp(O(k2/ log2 n)), (3.5)

an asymptotic estimate for k = o(log n). Note that, in particular, this gives

S(n− 2j, k − 2)/(n− 2j)!

S(n, k)/(n)!
=

n

n− 2j

(k − 1)(k − 2)

log2 n

{

1 +O

(

k

logn

)}

(3.6)

for 1 ≤ j ≤ n/3 and k = o(logn).
Suppose that 1 ≤ j1 < j2 < · · · < jk−1 are intergers with

j1 + j2 + · · ·+ jk−2 + 2jk−1 < n.

The number of σ ∈ Sn with cycle lengths j1, . . . , jk−1, jk(= n− j1 − j2 − · · ·− jk−1) equals

n!/j1j2 . . . jk (3.7)

This accounts for all σ ∈ Sn,k except those in which there is a repeated cycle length. The
number with a repeated cycle length is

≤
[n/2]
∑

j=1

∑

C1,C2∈Sn
|C1|,|C2|=j

#{σ ∈ Sn,k : C1, C2 ∈ σ}

≤
[n/2]
∑

j=1

n!

(n− 2j)!
· 1

2j2
S(n− 2j, k − 2)

≤
[n/3]
∑

j=1

(

n

n− 2j

)

(k − 1)(k − 2)

log2 n

S(n, k)

2j2

{

1 +O

(

k

log n

)}

+

[n/2]
∑

j=[n/3]+1

n!

2j2

using (3.6) and the trivial bound S(n− 2j, k − 2) ≤ (n− 2j)!,

� S(n, k)
k2

log2 n
+ (n− 1)! 5

k2

log2 n
S(n, k) = o(S(n, k)). (3.8)
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for 3 ≤ k = o(logn), using (3.5).
So select any 0 < α1 < α2 < · · · < αk−1 < 1 with αi+1−αi > ε for each i (where α0 = 0

and αk = 1). Therefore the proportion of σ ∈ Sn,k for which log di(σ)/ logn ∈ (αi, αi + ε]
for 1 ≤ i ≤ k − 1 equals, by (3.7) and (3.8),

n!

S(n, k)

∑

nα1<j1≤nα1+ε

nα2<j2≤nα2+ε

n
αk−1<jk−1≤n

αk−1+ε

1

j1j2 . . . jk−1(n− j1 − · · · − jk)
+O

(

k2

log2 n

)

.

Now j1 + · · · + jk−1 ≤ knαk−1+ε and so (n − j1 − · · · − jk) = n(1 + O(n−δ)) for, say,
δ = (1 − ε− αk−1)/2. Therefore, by (3.5), we get

(k − 1)!εk−1{1 +O(k/ logn)} +O(k2/ log2 n)

which implies Theorem 2.

4 Poisson distribution of cycles

Taking M small and N large, say 1 ≤M ≤ √
n ≤ N ≤ n, define

µr,L(σ) =
1

log(N/M)

logN
∫

t=log M
#{Dσ∩[t,t+L]}=r

1 dt.

Let m := [10 log logN/(log log logN)2] and assume r ≤ m/10. We will prove

1

n!

∑

σ∈Sn

∣

∣

∣

∣

µr,L(σ) − e−LLr

r!

∣

∣

∣

∣

≤ e−L
Lr

r!

1

2m
(4.1)

in the range

M ≤ N1−ε, L >
1

M
log logN and r, L ≤ log logN

(log log logN)2
. (4.2)

Taking M = (log logN)2 say, gives us Theorem 1.
In order to prove (4.1) we write

∑

r≥R

(

R

r

)

µr,L(σ) = ((A+B)R,L(σ))/ log(N/M)

where (A+B)R,L(σ) = AR,L(σ) +BR,L(σ) with

AR,L(σ) =
∑

C1,C2,...,CR disjoint cycles in σ

with d(C1)≤d(C2)≤···≤d(CR)≤d(C1)eL

M≤d(C1)≤N and d(CR)≤NeL

{

L− log

(

d(CR)

d(C1)

)}
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and

BR,L(σ) =
∑

C1,C2,...,CR disjoint cycles in σ

with N<d(C1)≤d(C2)≤···≤d(CR)≤NeL

{

L− log

(

d(CR)

N

)}

.

Now

µr,L(σ) − e−LLr

r!
=
∑

R≥r

(−1)R−r
(

R

r

){

(A+B)R,L(σ)

logN/M
− LR

R!

}

so that

1

n!

∑

σ∈Sn

∣

∣

∣

∣

µr,L(σ) − e−LLr

r!

∣

∣

∣

∣

≤
∑

R≥r

(

R

r

)

1

n!

∑

σ∈Sn

∣

∣

∣

∣

(A +B)R,L(σ)

logN/M
− LR

R!

∣

∣

∣

∣

. (4.3)

We will show that the overall contributions of the BR,L(σ) to the right side of (4.3) is
negligible, as are the contributions of the terms AR,L(σ) with R > m. To bound the
contributions of the remaining AR,L(σ) terms, namely those with r ≤ R ≤ m we will use
the Cauchy-Schwarz inequality and the bound

1

n!

∑

σ∈Sn

∣

∣

∣

∣

AR,L(σ)

logN/M
− LR

R!

∣

∣

∣

∣

2

� L2R

R!2
1

(logN)1−o(1)
, (4.4)

which holds in this range, and thus obtain (4.1).
To begin with we determine the mean values of AR,L(σ) when R ≤ m (though the

method works in a somewhat wider range):

1

n!

∑

σ∈Sn

AR,L(σ) =
∑

C1,...,CR disjoint cycles in Sn

with d(C1)≤···≤d(CR)≤d(C1)eL

and M≤d(C1)≤N

{

L− log

(

d(CR)

d(C1)

)}

(

n−
∑R

i=1 d(Ci)
)

!

n!

=
∑

M≤u≤N

u≤v≤ueL

(

L− log
(v

u

))

∑

C1,...,CR disjoint cycles in Sn
with u=d(C1)≤d(C2)≤···≤d(CR)=v

(

n−
∑R

i=1 d(Ci)
)

!

n!

(4.5)

In the final sum suppose there are gj cycles of size j so that each gj is a non-negative
integer with gu, gv ≥ 1, and gu+gu+1 + · · ·+gv = R. The number of choices of such cycles
is

n!
(

n−
∑k

i=1 d(Ci)
)

!
· 1

ugugu!
· 1

(u+ 1)gu+1gu+1!
. . .

1

vgvgv!
.

Thus the final sum in (4.5) is

1

R!







(

∑

u≤j≤v

1

j

)R

−
(

∑

u+1≤j≤v

1

j

)R

−
(

∑

u≤j≤v−1

1

j

)R

+

(

∑

u+1≤j≤v−1

1

j

)R






(4.6)
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by the inclusion-exclusion principle, since we must have gu ≥ 1 and gv ≥ 1. It will be
convenient to denote this formula by “(4.6)R,u,v” for future use. The sum in (4.6)R,u,v is

1

(R− 2)!

ΣR−2

uv

(

1 +O

(

R

Σu

))

where Σ :=
∑

u≤j≤v

1

j
= log(v/u) +O(1/u)

provided R ≤ 10uΣ. If R > 10uΣ then this is ≤ ΣR/R! � (e/10u)R ≤ 1/(e10uΣuR) �
1/((v/u)10uuR) � 1/(vuR−1).

Substituting this in above (but invalidly taking the first estimate when R > 10uΣ)
gives a main term of

1

(R− 2)!

∑

M≤u≤N

1

u

∑

u≤v≤ueL

(

L− log
(v

u

)) 1

v

(

log
(v

u

))R−2
(

1 +O

(

R

u log(v/u)

))

=
1

(R− 2)!

∑

M≤u≤N

1

u

(
∫ L

t=0

(L− t)tR−2

(

1 +O

(

R

ut

))

dt+O

(

LR−1

u

))

=
LR

R!

(

log(N/M) +O

(

1

M

))

+O

(

LR−1

M(R − 2)!

)

taking v = uet. The error term from when R > 10uΣ is

�
∑

M≤u≤N

∑

u≤v≤ueR/u

L

vuR−1
� LR

∑

M≤u≤N

1

uR
� L

MR−1
.

Thus we get

1

n!

∑

σ∈Sn

AR,L(σ) =
LR

R!

{

log(N/M) +O

(

1

M
+R

(

R

eLM
+

(

R

eLM

)R−1
))}

(4.7)

By the same methods the mean value of BR,L(σ) for σ ∈ Sn is (neglecting the terms
with R > 10v log(v/N))

∑

N<v≤NeL

(

L− log
( v

N

)) 1

R!





(

∑

N<j≤v

1

j

)R

−
(

∑

N<j<v

1

j

)R




=
∑

N<v≤NeL

(

L− log
( v

N

)) 1

v

(log( v
N

) +O( 1
N

))R−1

(R− 1)!

(

1 +O

(

R

v log(v/N)

))

=
LR+1

(R + 1)!

(

1 +O

(

R

LN

))

,

and for the terms when R > 10v log(v/N), which belong to the interval with N < v <
N+R, the error term is ≤ (RL/R!)(R/N)R, which is negligible. As M = o(N) we deduce
that BR,L(σ) = o(LR log(N/M)/R!) for almost all σ ∈ Sn.
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To compute the second moment of AR,L(σ) we proceed analogously to (4.5) to obtain

1

n!

∑

σ∈Sn

AR,L(σ)2 =

′
∑

C1,...,CR disjoint

C′
1,...,C′

R
disjoint

(

L− log

(

d(CR)

d(C1)

))(

L− log

(

d(C ′
R)

d(C ′
1)

))

(n−D)!

n!

(4.8)
where

∑′ denotes that d(CR) ≤ d(C1)e
L, d(C ′

R) ≤ d(C ′
1)e

L, each Ci is either disjoint from
each C ′

j or equal, and D =
∑

C∈B d(C) where B = {C1, C2, . . . , CR, C
′
1, . . . , C

′
R}. In the

sum we fix d(C1) = u, d(CR) = v, d(C ′
1) = u′, d(C ′

R) = v′ for now. Suppose there are gj
cycles of size j in B for each j. We sum over all possible sets B with these parameters,
so that this subsum of the right side of (4.8) becomes

(

L− log
(v

u

))

(

L− log

(

v′

u′

))

∏

j

1

gj!jgj

Therefore the non-zero terms of
∣

∣

∣

∣

∣

∣

1

n!

∑

σ∈Sn

AR,L(σ)2 −
(

1

n!

∑

σ∈Sn

AR,L(σ)

)2
∣

∣

∣

∣

∣

∣

(4.9)

come from
• Those B with 2R distinct elements, with d(Ci) = d(C ′

j) for some i and j.
• Those B with less than 2R distinct elements (so that Ci = C ′

j for some i and j).

Either way u ≤ d(Ci) = d(C ′
j) ≤ u′eL so that v ≤ u′e2L, and similarly v′ ≤ ue2L. We now

determine the contribution of such terms:
If B is a given set of (R+i) disjoint cycles in Sn, with 0 ≤ i ≤ R−1, then C1, . . . , CR ⊆

B can be selected in
(

R+i
R

)

ways. Therefore B \ {C1, . . . , CR} ⊆ {C ′
1, . . . , C

′
R}; that

is, i elements of this set are predetermined, and thus the final R − i elements may be
chosen from {C1, . . . , CR}, so in

(

R
R−i

)

ways. Taking u = minC∈B d(C), so that v =

maxC∈B d(C) ≤ ue2L, the total contribution of such sets to (4.9) is

≤ L
∑

M≤u≤N

∑

u<v<ue2L

(

R + i

R

)(

R

i

)

(

L− log
(v

u

))

(4.6)R+i,u,v

= L
(2L)R+i

i!2(R− i)!

{

log(N/M) +O

(

1

M
+R

(

R

eLM
+

(

R

eLM

)R+i−1
))}

� (2R)R
(

LR

R!

)2
{

log(N/M) +O

(

1

M
+R

(

R

eLM
+

(

R

eLM

)2R−2
))}

proceeding as in the proof of (4.7).
We now bound the contribution of sets B, with 2R distinct elements and d(Ci) = d(C ′

j)
for some i and j, to (4.9). Note that if u′ ≥ u then u′ ≤ d(C ′

j) = d(Ci) ≤ ueL. In the first
line below we have u ≤ j ≤ ueL in the first sum and u′ ≤ j ≤ u′eL in the second sum;
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which means that u ≤ j ≤ ue2L in either case, which is the range on j that we will use in
subsequent lines.

5 2L2
∑

M≤u≤N

∑

u≤u′≤ue2L

∑

P

j hj=R

∏

j

1

hj!jhj

∑

hi,h′
i
≥1 for some i
P

j h′
j
=R

∏

j

1

h′j!j
h′j

5 2L2
∑

1≤u≤N

∑

P

gj=2R

∏

j

1

jgjgj!

∑

hj+h′
j
=gj for each j

hi,h′
i
≥1 for some i

∏

i

(

gj
hj

)

≤ 2L2
∑

M≤u≤N

∑

P

gj=2R

some gi≥2

∏

j

2gj

jgjgj!

≤ 22R+1L2
∑

M≤u≤N

∑

u≤i≤ue2L

1

i22!

1

(2R− 2)!





∑

u≤j≤ue2L

1

j





2R−2

� 22RL2
∑

M≤u≤N

1

u

1

(2R− 2)!
(2L+O(1/u))2R−2

�
(

LR

R!

)2

log(N/M) · 22RR5/2

since R ≤ m�ML and L/R ≤ L� logN .
Combining the above we have proved (4.4) in our range. We deduce that the contri-

bution of the AR,L(σ) terms in (4.3) with r ≤ R ≤ m can be bounded as follows:

1

n!

∑

σ∈Sn

(

∑

r≤R≤m

(

R

r

) ∣

∣

∣

∣

AR,L(σ)

logN/M
− LR

R!

∣

∣

∣

∣

)

5

(

1

n!

∑

σ∈Sn

∑

r≤R≤m

1

)1/2(

1

n!

∑

σ∈Sn

∑

r≤R≤m

(

R

r

)2 ∣
∣

∣

∣

AR,L(σ)

logN/M
− LR

R!

∣

∣

∣

∣

2
)1/2

≤
(

m
L2r

r!2

∑

r≤R≤m

L2(R−r)

(R− r)!2
1

(logN/M)1−o(1)

)1/2

=

(

meO(L)

(logN/M)1−o(1)

)1/2

=
1

(logN/M)1/2−o(1)

by Cauchy-Schwarz and then (4.4). Note also that

1

n!

∑

σ∈Sn

∑

r≤R≤m

(

R

r

)

BR,L(σ)

logN/M
� 1

logN/M

∑

r≤R≤m

(

R

r

)

LR+1

(R + 1)!
≤ 1

(logN/M)1−o(1)
.

To get an upper bound in (4.5) (even adding in the BR,L(σ) terms) for terms with
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R ≥ m we modify the above argument to obtain (since L− log(v/u) ≤ L):

≤ L
∑

M≤u≤N

1

R!











∑

u≤j≤ueL

1

j





R

−





∑

u<j≤ueL

1

j





R





The internal term = RLR−1/u(1 + O(R/uL)) when R ≤ uL, and is O((L + O(1/u))R)
otherwise, So the sum is

�











R · LR

R!
(log(N/M) + 1) if R ≤ML

R · LR

R!
(log(N/(R/L)) + (1 +O(1/ML))R) if ML < R ≤ NL

LN · LR

R!
(1 +O(1/ML))R if NL < R

Therefore the terms with R ≥ m in (4.3) sum up to

�
∑

R≥m

(

R

r

)

R · L
R

R!
+
∑

R≥ML

LR

R!
min{R,NL} exp(O(R/ML))

� Lr

r!

∑

R≥m

R
LR−r

(R − r)!
+

L[ML]

([ML] − 1)!
≤ Lr

r!

1

em−r

by suitably modifying Lemma 1 since m − r > 9m/10 > 9L (if L < m/10). Combining
the above gives (4.1) in the range (4.2).

5 Permutations with a given number of cycles

Assuming k → ∞ with k ≤ n1/2−ε, let M = k(log log n)2 and N = n/(2k + log2 n), and
take λ := kL/v. We will show that

1

|Sn,k|
∑

σ∈Sn,k

∣

∣

∣

∣

µr,L(σ) − e−λλr

r!

∣

∣

∣

∣

� e−λ
λr

r!

1

2m
. (5.1)

holds in the range

r, λ, 1/λ ≤ min

{

log log n

(log log logn)2
,

log k

log log k

}

.

This, together with Proposition 1, implies Theorem 3.
To prove this we essentially follow the calculation of section 4, with minor modifica-

tions: We let m := min{[k1/4], [log logN/(log log logN)2]} and assume below that R ≤ m.
Throughout that argument we have

∑

i

d(Ci) ≤ 2RN ≤ Rn/k = o(n) and � nv/k.
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Instead of (4.5) we consider
1

|Sn,k|
∑

σ∈Sn,k

AR,L(σ) (5.2)

replacing (n−
∑R

i=1 d(Ci))!/n! there by

S

(

n−
R
∑

i=1

d(Ci), k −R

)

/

S(n, k).

This ratio of Stirling numbers of the first kind gives, by (3.2) the analogy to the right side
of (4.5) times a factor

(

k

ν

)R
{

1 +O

(

R2

k
+

RN
n
k

log
(

n
k

) +
1

log
(

n
k

)

)}

. (5.3)

We can then follow through the same argument to get the following right side for the
analogy to (4.7):

λR

R!

{

log(N/M)

{

1 +O

(

R2

k
+
R

v

)}

+O

(

1

M
+R

(

R

eLM
+

(

R

eLM

)R−1
))}

. (5.4)

To determine the mean square we similarly multiply each term of the right side of
(4.8) through by the relevant factor, analogous to (5.3). Thus we obtain the analogy to
(4.4) though with new error terms arising from (5.3); namely

� λ2R

R!2

{

1

(logN)1/2
+
R2

k

}

,

which holds for λ/k � R � λv. Therefore, by the same method,

∑

r≤R≤m

(

R

r

)

1

|Sn,k|
∑

σ∈Sn,k

∣

∣

∣

∣

AR,L(σ)

log(N/M)
− λR

R!

∣

∣

∣

∣

� m1/2eO(λ)

(

1

(logN)1/2
+

1

k1/2

)1/2

� 1

(logN)1/4−o(1)
+

1

k1/2−o(1)
.

assuming λ = o(log k). For those terms with R > m, we use (3.4) and the argument of
just above (4.1) to get an analogous bound: The term given by (3.4) is < (k/v)R times
what we have just above (4.1) if R > ML (which happens so long as k = o(MLv)). For
smaller R the term given by (3.4) is < (keo(1)/v)R times what we have just above (4.1)
which will lead to a similar bound (though in terms of λ) using Lemma 1.

Combining the above, in analogy to the argument of section 4, implies (5.1).
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6 Orders

A classical theorem of Erdős and Turán [5] states that the order O(σ) is given by exp({ 1
2
+

o(1)} log2 n) for almost all σ ∈ Sn. Note that O(σ) = lcm[d1(σ), d2(σ), . . . , d`(σ)]. We will
give a simple proof of this by comparing O(σ) to Py(σ) =

∏

di>y
di(σ) where y = no(1).

By the results of section 2, the expected size of logPy(σ) is

∑

y<m≤n

logm

m
∼ 1

2
log2 n.

Moreover the expected size of (logPy(σ))2 is

∑

y<m≤n

log2m

m
+
∑

y<r,s
r+s≤n

log r log s

rs
=

(

∑

y<m≤n

logm

m

)2

+O(log3 n);

and so logPy(σ) ∼ 1
2
log2 n for almost all σ ∈ Sn.

Define Oy(σ) to be the product of the prime powers pe dividing O(σ) with p > y.
Since each pe ≤ di ≤ n for some i, thus 1 ≤ O(σ)/Oy(σ) ≤ nπ(y). Define gy(di, dj) to be
the product of the prime powers pe dividing (di, dj) with p > y, so that

1 ≤ Py(σ)/Oy(σ) ≤ nπ(y)
∏

y<di<dj

gy(di, dj).

Now, since either gy = 1 or gy > y thus the expected size of
∑

y<di, i<j
log(gy(di, dj))

≤
∑

p>y

log p
∑

a≥1

∑

r+s≤n
pa|(r,s)

1

rs
≤

∑

p>y, a≥1
pa≤n

log p

p2a

(

∑

R≤n

1

R

)2

� log2 n

y
.

Selecting y = (log n log log n)1/2 we deduce that the expected value of | log(O(σ)/Py(σ))| is
� (log n)3/2/(log log n)1/2, and therefore | logO(σ)− logPy(σ)| = o((logn)3/2) for almost
all σ ∈ Sn. Thus we deduce the result of Erdős and Turan.

6.2. And now for Sn,k.

We shall prove that almost all σ ∈ Sn,k have order

exp

({

1

2
+ o(1)

}

k
log n log(n/k2)

log(n/k)

)

proceeding much as above, where k → ∞ and log(n/k2)/ log log n → ∞ as n → ∞. It
would be interesting to get results for larger k; evidently the result must then take a
different form and require a somewhat different method.

Let ψ(k) = log k/ log log k. The number of cycles in Sn,k of length > nψ(k)/k is
≤ k/ψ(k) and so their total contribution to O(σ) is ≤ (k/ψ(k)) logn = o(k log(n/k2)).
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Therefore we now define Py(σ) =
∏

nψ(k)/k≥di>y
di(σ), so that the expected size of logPy(σ)

is

∑

y<m≤nψ(k)/k

logm

m

S(n−m, k − 1)/(n−m)!

S(n, k)/n!
∼ k

ν

∑

y<m≤nψ(k)/k

logm

m
∼ k logn log(n/k2)

2 log(n/k)
,

by (3.2). Similarly the expected size of (logPy(σ))2 is

∼ k

ν

∑

y<m≤nψ(k)/k

log2m

m
+

(

k

ν

)2
∑

y<r,s≤nψ(k)/k

log r log s

rs
∼
(

k log n log(n/k2)

2 log(n/k)

)2

by (3.2), and so logPy(σ) ∼ k log n log(n/k2)/(2 log(n/k)) for almost all σ ∈ Sn,k.
We modify the definitions of Oy(σ) to avoid the cycles of length > nψ(k)/k. We again

have 1 ≤ O(σ)/Oy(σ) ≤ nπ(y); and the expected size of
∑

y<di≤nψ(k)/k, i<j log(gy(di, dj))

is � (k/ν)2(1/y)(log(n/k))2 � k2/y. Taking y = 1 + k(log logn/ logn)1/2 we deduce
that the expected value of | log(O(σ)/Py(σ))| is � k(log n/ log logn)1/2, and therefore
| logO(σ) − logPy(σ)| = o(k(log n)1/2) for almost all σ ∈ Sn,k. We therefore deduce the
claimed result.

6.3. Large k – a reasoned guess.

Suppose that k >
√
n(log n)A for some large A. By Proposition 1 we see that if

m� (n/k) log(n/k) then almost all σ ∈ Sn,k have � logn cycles of length m. For larger
m recall that the expected number of cycles of length m in σ ∈ Sn,k is

1

m

S(n−m, k − 1)/(n−m)!

S(n, k)/n!

(as in the proof of Proposition 1). To estimate this in the range ev < m = o(e2v) we follow
through the proof of (3.2) to obtain

∼ k

mv

τ−1
∏

j=1

(

n−m + j

n+ j

)

∼ k

mv
exp(−mk/vn),

which is negligible once m ≥ (1 + ε)(n/k) log(n/k) log(k/m). Since this ratio is even
smaller for larger m, almost all σ ∈ Sn,k have order

exp
(

{1 + o(1)}n
k

log(n/k) log(k2/n)
)

,

at least if k � n/(logn)A.

6.4. Summary.

Pushing the above methods to the edge of their range of validity (and involving quite
a bit more number theory), one can show that
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• if (k/v)/
√
n→ 0 then almost all σ ∈ Sn,k have order

exp

(

{1 + o(1)} k
2v

log n log

(

n

(k/v)2

))

;

• if (k/v)/
√
n→ ∞ then almost all σ ∈ Sn,k have order

exp

(

{1 + o(1)} n

k/v
log

(

(k/v)2

n

))

.

If k/v � √
n then there is some interesting transition function (for the size of the normal

order) which needs to be determined.
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prime factorizations, Notices Amer. Math. Soc. 44 (1997), 903–910.

[2] P. Billingsley, On the distribution of large prime divisors, Period. Math. Hungar. 2

(1972), 283–289.

[3] E. Rodney Canfield, Central and local limit theorems for the coefficients of polyno-
mials of binomial type, J. Comb. Theory, A 23 (1977), 275–290.

[4] J.M. DeLaurentis and B.G. Pittel, Random permutations and Brownian motion,
Pac. J. Math. 119 (1985), 287–301.
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