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Abstract

We show that matchings avoiding a certain partial pattern are counted by the 3-
Catalan numbers. We give a characterization of 12312-avoiding matchings in terms
of restrictions on the corresponding oscillating tableaux. We also find a bijection
between matchings avoiding both patterns 12312 and 121323 and Schröder paths
without peaks at level one, which are counted by the super-Catalan numbers or the
little Schröder numbers. A refinement of the super-Catalan numbers is derived by
fixing the number of crossings in the matchings. In the sense of Wilf-equivalence, we
use the method of generating trees to show that the patterns 12132, 12123, 12321,
12231, 12213 are all equivalent to the pattern 12312.

1 Introduction

A matching on a set [2n] = {1, 2, . . . , 2n} is a partition of [2n] in which every block
contains exactly two elements, or equivalently, a graph on [2n] in which every vertex
has degree one. There are many ways to represent a matching. It can be displayed by
drawing the 2n points on a horizontal line in the increasing order. This is called the linear

representation of a matching [5]. An edge e = (i, j) in a matching is always written in
such a way that i < j, where the vertices i and j are called the initial point and the
endpoint, respectively. We assume that every edge (i, j) is drawn as an arc between the
nodes i and j above the horizontal line. Let e = (i, j) and e′ = (i′, j ′) be two edges of a
matching M , we say that e crosses e′ if they intersect with each other, in other words, if
i < i′ < j < j ′. In this case, the pair of edges e and e′ is called a crossing of the matching.
Otherwise, e and e′ are said to be noncrossing. The set of matchings on [2n] is denoted
by Mn.
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In this paper, we also use the representation of a matching M with n edges by a
sequence of length 2n on the set {1, 2, . . . , n} such that each element i (1 ≤ i ≤ n)
appears exactly twice, and the first occurrence of the element i precedes that of j if i < j.
Such a representation is called the Davenport-Schinzel sequence [9, 24] or the canonical

sequential form [21]. In fact, the canonical sequential form of a matching is the sequence
obtained from its linear representation by labeling the endpoints in accordance with the
order of the appearances of the initial points. For example, the matching in Figure 1 can
be represented by 123123 in the canonical sequential form.

321 4 5 6

Figure 1: The matching 123123.

Given a sequence a1a2 · · ·am of integers, we define its pattern as a sequence obtained
by replacing the minimum element (which may have repeated occurrences) by 1, and
replacing the second minimum element by 2, and so on. For example, the pattern of the
sequence 322962538256 is 211641325134. In this paper, we are mainly concerned with
the partial pattern 12312 in the sense that it does not form a complete matching. In the
terminology of canonical sequential form, we say that a matching π avoids a pattern τ ,
or π is τ -avoiding, if there is no subsequence of the pattern τ in π. The set of τ -avoiding
matchings on [2n] is denoted by Mn(τ). Similarly, we use Mn(τ1, τ2, . . . , τk) to denote the
set of matchings on [2n] which avoid patterns τ1, τ2, . . . , τk. Pattern avoiding matchings
have been studied by de Médicis and Viennot [25], de Sainte-Catherine [28], Gessel and
Viennot [16], Gouyou-Beauchamps [18, 19], Stein [33], Touchard [36], and recently by
Klazar [21, 22, 23], Chen, Deng, Du, Stanley and Yan [6].

The k-Catalan numbers, or generalized Catalan numbers are defined by

Cn,k =
1

(k − 1)n + 1

(

kn

n

)

for n ≥ 1 (see [20]). For k = 2, the 2-Catalan numbers are the usual Catalan numbers.

The main objective of this paper is to show that 12312-avoiding matchings on [2n] are
counted by the 3-Catalan numbers, namely,

|Mn(12312)| =
1

2n + 1

(

3n

n

)

.

We note that the following objects are also counted by the 3-Catalan numbers:

• complete ternary trees with n internal vertices, or 3n edges [26],

• even trees with 2n edges [4, 12],

• noncrossing trees with n edges [13, 26],
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• the set of lattice paths from (0, 0) to (2n, n) using steps E = (1, 0) and N = (0, 1)
and never lying above the line y = x/2 [20],

• dissections of a convex (2n+2)-gon into n quadrilaterals by drawing n−1 diagonals,
no two of which intersect in its interior [20],

• two line arrays
(

α

β

)

, where α = {a1, a2, . . . , an} and β = {b1, b2, . . . , bn} such that

1 = b1 = a1 ≤ b2 ≤ a2 . . . ≤ bn ≤ an and ai ≤ i [3].

The relations among ternary trees, even trees, and noncrossing trees have been studied
by Chen [4], Feretic and Svrtan [14], Noy [15], and Panholzer and Prodinger [26]. Stanley
discussed several of these families in [32, Problems 5.45 − 5.47].

By using generating functions, we derive a formula for the number of matchings in
Mn(12312) having exactly m crossings. We also show that the cardinality of Mn−1(12312,
121323) is the n-th super-Catalan number or the little Schröder number for n ≥ 1 (see [29,
Sequence A001003]). By considering the number of matchings in Mn−1(12312, 121323)
having exactly m crossings we obtain a closed expression as a refinement of the super-
Catalan numbers. The n-th super-Catalan number also equals the number of Schröder
paths of semilength n−1 (i.e. lattice paths from (0, 0) to (2n−2, 0), with steps H = (2, 0),
U = (1, 1), and D = (1,−1) and not going below the x-axis) without peaks at level one,
as well as certain Dyck paths (see [29, Sequence A001003] and references therein). We
find a bijection between Schröder paths of semilength n without peaks at level one and
matchings on [2n] avoiding both patterns 12312 and 121323.

Following the approach of Chen, Deng, Du, Stanley and Yan [6], we use oscillating
tableaux to study 12312-avoiding matchings. The notion of oscillating tableaux first ap-
peared in the study of the decomposition formula for powers of defining representations of
the complex symplectic groups by Berele [2]. We will use the bijection between matchings
and oscillating tableaux originally due to Stanley [32, Exercise 7.24] and later extended
by Sundaram [34, 35] (see also [10, 27]). Recall that an oscillating tableau of shape λ is
a sequence of Young diagrams (or partitions) ∅ = λ0, λ1, . . . λk−1, λk = λ such that the
diagram λi is obtained from λi−1 by either adding one square or removing one square.
An oscillating tableau can be equivalently formulated as a sequence of standard Young
tableaux (often abbreviated as SYT). The number k in the above definition is called the
length of the oscillating tableau. We denote by T λ

k the set of oscillating tableaux of shape
λ and length k.

For 12312-avoiding matchings we obtain the corresponding oscillating tableaux and
closed lattice walks. We further provide a one-to-one correspondence between the set of
closed lattice walks and the set of lattice paths from (0, 0) to (2n, n) using steps E = (1, 0)
and N = (0, 1) without crossing the line y = x/2, see [17]. From this perspective, we see
that Mn(12312) is counted by the 3-Catalan number Cn,3.

In addition to the pattern 12312, we find other patterns that are equivalent to 12312
in the sense of Wilf-equivalence. To be more specific, we show that for any pattern
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τ ∈ {12312, 12132, 12123, 12321, 12231, 12213}, we have |Mn(τ)| = Cn,3. We use the
technique of generating trees to reach this conclusion. A generating tree is a rooted tree
in which each vertex is associated with a label, and the labels of the children of any vertex
are determined by certain succession rules. The idea of generating trees was introduced
by Chung, Graham, Hoggat and Kleiman [8] in their study of Baxter permutations, and
it has become an efficient method for many enumeration problems, see, for example,
Barcucci, del Lungo, Pergola, and Pinzani [1], Stankova [30, 31], and West [37, 38].

2 Matchings and Ternary Trees

In this section, we use the linear representation of a matching as described in the intro-
duction. Our goal is to show that the cardinality of Mn(12312) is equal to Cn,3. The
definition of a 12312-avoiding matching M implies that there are no two crossing edges
e = (i, j) and e′ = (i′, j ′) with i < i′ < j < j ′ such that there is an initial point of a third
edge between the nodes i′ and j. Our first approach is to decompose a 12312-avoiding
matching into smaller 12312-avoiding matchings. For notational convenience, we denote
by Ej the edge (i, j) with i < j.

Lemma 2.1 Let M be a 12312-avoiding matching on [2n] with E2n = (j, 2n). Suppose

that there are m edges crossing E2n. Let v0 = 0 and vs be the rightmost end point of

an edge crossing Ej+m+1−s. If no such an edge exists, we define vs as the initial point

of Ej+m+1−s. Then M can be decomposed into m + 2 smaller 12312-avoiding matchings

θ1, θ2, . . . , θm, α, β such that

• θs is the induced subgraph of M on the nodes vs−1 + 1, vs−1 + 2, . . . , vs,
j + m + 1 − s for s ≥ 1;

• α is the induced subgraph of M on the nodes vm+1, vm+2, . . . , j−1 when vm+1 < j;
otherwise it is empty;

• β is the induced subgraph of M on the nodes j + m + 1, j + m + 2, . . . , 2n− 1 when

j + m + 1 < 2n; otherwise it is empty.

Proof. If there is no edge crossing (j, 2n), then it is clear that M can be decomposed into
two smaller matchings α and β such that α is a 12312-avoiding matching on the nodes
1, 2, . . . , j − 1 when j > 1 and β is a 12312-avoiding matching on the nodes j + 1, j +
2, . . . , 2n − 1 when j + 1 < 2n.

If there is at least one edge crossing (j, 2n), then let j + m be the rightmost end point
of an edge crossing (j, 2n). Thus the nodes j +1, j +2, . . . , j +m− 1 cannot be the initial
points, which implies that Ej+1, Ej+2, . . . , Ej+m are the m edges crossing E2n. Therefore,
the induced subgraph on the nodes j + m + 1, j + m + 2, . . . , 2n − 1 is a 12312-avoiding
matching when j + m + 1 < 2n, which we denote by β.
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Since M is a 12312-avoiding matching, we have v0 < v1 < . . . < vm. Note that there
is no initial point between the initial point of Ej+m+1−k and the node vk for 1 ≤ k ≤ m.
It follows that the induced subgraph on the nodes vs−1 + 1, . . . , vs, j + m + 1 − s is a
12312-avoiding matching for 1 ≤ s ≤ m. Let us denote this matching by θs. Hence the
induced subgraph on the nodes vm + 1, vm + 2, . . . , j − 1 is a 12312-avoiding matching
when vm + 1 < j, which we denote by α. So we can decompose the matching M into
m + 2 smaller 12312-avoiding matchings.

Figure 2 is an illustration of Lemma 2.1.

. . . . . .
�
θ1

�
θm−1

�
θm

��
α

��
βj + 1 j + 2 j + mj 2n

Figure 2: The decomposition

As a corollary of Lemma 2.1, we obtain a formula for the number of 12312-avoiding
matchings on [2n] with exactly m crossings.

Theorem 2.2 The number of 12312-avoiding matchings on [2n] with exactly m crossings

is given by
1

n

(

n − 1 + m

n − 1

)(

2n − m

n + 1

)

.

Proof. Let

G(x, y) =
∑

n≥0

∑

θ∈Mn(12312)

xnyχ(θ),

where χ(θ) is the number of crossings of θ. Let

B(x, y) =
∑

n≥1

∑

θ

xnyχ(θ),

where the second summation ranges over matchings θs as in Lemma 2.1. It follows from
Lemma 2.1 that the ordinary generating function for the number of 12312-avoiding match-
ings with exactly m edges crossing E2n is given by xymG2(x, y)Bm(x, y). Summing over
all the possibilities for m ≥ 0 we arrive at

G(x, y) = 1 +
xG2(x, y)

1 − yB(x, y)
. (2.1)

Applying Lemma 2.1 for matchings of the form θs, it follows that that the ordinary gener-
ating function for the number of 12312-avoiding matchings θs with exactly k edges crossing
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Ej+m+1−s is given by xykG(x, y)Bk(x, y). Therefore, summing over all the possibilities
for k ≥ 0 we get

B(x, y) =
xG(x, y)

1 − yB(x, y)
. (2.2)

Combining (2.1) and (2.2) we obtain

B(x, y) =
G(x, y) − 1

G(x, y)
. (2.3)

It follows from (2.1) and (2.3) that G(x, y) satisfies the following recurrence relation

xG(x, y)3 + G(x, y) − G(x, y)2 + y(G(x, y) − 1)2 = 0. (2.4)

Substituting xy by x and y + 1 by y, we get

G(xy, y + 1) = 1 + y
(

xG3(xy, y + 1) + (G(xy, y + 1) − 1)2
)

. (2.5)

Using the Lagrange inversion formula we obtain

G(xy, y + 1) = 1 +
∑

i≥1

1

i

i
∑

j=0

(

i

j

)(

3j

i + 1 + j

)

xjyi,

which implies that

G(x, y) = 1 +
∑

i≥1

1

i

i
∑

j=0

(

i

j

)(

3j

i + 1 + j

)

xj(y − 1)i−j. (2.6)

Then [xnym]G(x, y) gives the number of 12312-avoiding matchings on [2n] with exactly
m crossings. Applying an identity given in [7], we get

2n−1
∑

i=n

(−1)i−n−m

(

3n

n + 1 + i

)(

i − 1

n − 1

)(

i − n

m

)

=

(

n − 1 + m

n − 1

)(

2n − m

n + 1

)

.

This completes the proof.

Setting y = 1 in (2.6), we obtain the following conclusion.

Theorem 2.3 The number of 12312-avoiding matchings on [2n] equals the 3-Catalan

number Cn,3.

In principle, we may use the recursive structure of 12312-avoiding matchings to con-
struct a bijection with ternary trees. However, as we will see it is more convenient to
construct a direct bijection between 12312-avoiding matchings and oscillating tableaux.
Then we can establish a correspondence between oscillating tableaux and lattice paths
which are counted by the 3-Catalan numbers.
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3 Mn(12312, 121323) and Schröder Paths

In this section, we show that matchings avoiding both patterns 12312 and 121323 are in
one-to-one correspondence with Schröder paths without peaks at level one. Such paths
are counted by the super-Catalan numbers or the little Schröder numbers. We need a
refinement of Lemma 2.1.

Lemma 3.1 Let M be a matching on [2n] with E2n = (j, 2n) that avoids both patterns

12312 and 121323. Suppose that there are m edges crossing E2n. Let v0 = 0, vm+1 = j,
and vs be the initial point of the edge Ej+m+1−s. Then M can be decomposed into m + 2
smaller matchings θ1, . . . , θm+1, β avoiding both patterns 12312 and 121323 such that

1. θs is the induced subgraph of M on the nodes vs−1 + 1, vs−1 + 2, . . . , vs − 1 when

vs−1 + 1 < vs; otherwise it is empty;

2. β is the induced subgraph of M on the nodes j + m + 1,j + m + 2, . . . , 2n− 1 when

j + m + 1 < 2n; otherwise it is empty.

Figure 3 is an illustration of Lemma 3.1.

. . . . . .�
θ1

�
θm−1

�
θm

��
θm+1

��
βj + 1 j + 2 j + mj 2n

Figure 3: The refined decomposition

Let
F (x) =

∑

n≥0

fnxn

be the ordinary generating function of the number of matchings on [2n] which avoid both
patterns 12312 and 121323. Lemma 3.1 leads to the following recurrence relation

F (x) = 1 +
xF 2(x)

1 − xF (x)
.

So we have

F (x) =
1 + x −

√
1 − 6x + x2

4x
= 1 +

∑

n≥1

1

n

n
∑

j=1

2j−1

(

n

j

)(

n

j − 1

)

xn.

Now we see that for n ≥ 1, fn−1 equals the n-th super-Catalan number which counts
Schröder paths of semilength n − 1 without peaks at level one.
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We proceed to give a bijection φ between the set of Schröder paths of semilength n
without peaks at level one and the set of matchings on [2n] which avoid both patterns
12312 and 121323. Note that any nonempty Schröder path P has the following unique
decomposition:

P = HP ′ or P = UP ′DP ′′,

where P ′ and P ′′ are possibly empty Schröder paths. This is called the first return

decomposition by Deutsch [11].

Given a Schröder path P of semilength n without peaks at level one, if it is empty, then
φ(P ) is the empty matching. Otherwise, we may decompose it by using the first return
decomposition. Moreover, we may use this decomposition recursively to get a matching
φ(P ) on [2n] avoiding both patterns 12312 and 121323. We have two cases.

(1) If P = HP ′, we have the structure as shown in Figure 4.

φ(P ) =
φ(P ′)

Figure 4: Case 1

(2) If P = UP ′DP ′′ and P ′ = P1UDP2UD . . . PkUDPk+1, where for any 1 ≤ i ≤ k + 1,
Pi is a Schröder path without peaks at level one, then we have the structure as
shown in Figure 5.

φ(P ) =
φ(P1)φ(P2)

. . .
φ(Pk+1)

. . .
φ(P ′′)

Figure 5: Case 2

Conversely, given a matching M on [2n] which avoids both patterns 12312 and 121323,
we can construct a Schröder path P of semilength n without peaks at level one. Suppose
that M can be decomposed into smaller matchings θ1, . . . , θk+1, β avoiding both patterns
12312 and 121323 as described in Lemma 3.1. If k = 0 and θ1 = ∅, then we have

φ−1(M) = Hφ−1(β).

Otherwise, we get

φ−1(M) = Uφ−1(θ1)UDφ−1(θ2)UD . . . φ−1(θk)UDφ−1(θk+1)Dφ−1(β),

which is a Schröder path of semilength n without peaks at level one. Thus, we have
obtained the desired bijection.
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1 32 124 65 97 8 10 11
⇐⇒

UUDDUUUDDHD

Figure 6: The bijection φ

Example 3.2 As illustrated in Figure 6, the Schröder path UUDDUUUDDHD corre-

sponds to the matching {(1, 3), (2, 12), (4, 6), (5, 9), (7, 8), (10, 11)}.

In view of the bijection φ, we see that a peak in a Schröder path corresponds to a
crossing of the corresponding matching. Let us use Mn,m(12312, 121323) to denote the set
of the matchings in Mn(12312, 121323) with exactly m crossings. We have the following
formula which can be regarded as a refinement of the super-Catalan numbers, or the little
Schröder numbers.

Theorem 3.3 For n, m ≥ 0, we have

|Mn,m(12312, 121323)| = 1

n

(

n

m

)(

2n − m

n + 1

)

.

Proof. It is well known that a Schröder path of semilength n can be obtained from a Dyck
path of semilength n by turning some peaks of the Dyck path into H steps. A peak is
called a low peak if it is at level one; otherwise, it is called a high peak. It has been shown
by Deutsch [11] that the number of Dyck paths of semilength n with exactly k high peaks
is given by the Narayana number

N(n, k) =
1

n

(

n

k

)(

n

k + 1

)

.

Thus the number of Schröder paths of semilength n that contain exactly m high peaks
but no peaks at level one equals

n−1
∑

k=0

1

n

(

n

k

)(

n

k + 1

)(

k

m

)

=
n−1
∑

k=0

1

n

(

n

m

)(

n − m

k − m

)(

n

k + 1

)

=
n

∑

k=1

1

n

(

n

m

)(

n − m

n − k + 1

)(

n

k

)

=
1

n

(

n

m

)(

2n − m

n + 1

)

.

This completes the proof.
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4 Matchings and Oscillating Tableaux

In this section, we apply Stanley’s bijection between oscillating tableaux and matchings to
derive a characterization of the oscillating tableaux for 12312-avoiding matchings. From
the oscillating tableaux, we may construct closed lattice walks and lattice paths that are
counted by the 3-Catalan numbers.

Let us review the bijection of Stanley. Given an oscillating tableau ∅ = λ0, λ1, . . . ,
λ2n−1, λ2n = ∅, we may recursively define a sequence (π0, T0), (π1, T1), . . . , (π2n, T2n), where
πi is a matching and Ti is a standard Young tableau (SYT). Let π0 be the empty matching
and T0 be the empty SYT. The tableau Ti is obtained from Ti−1 and the matching πi is
obtained from πi−1 by the following rules:

1. If λi ⊃ λi−1, then πi = πi+1 and Ti is obtained from Ti−1 by adding the entry i in
the square λi \ λi−1.

2. If λi ⊂ λi−1, then let Ti be the unique SYT of shape λi such that Ti−1 is obtained
from Ti by row-inserting some number j by the RSK (Robinson-Schensted-Knuth)
algorithm. In this case, let πi = πi−1 ∪ (j, i).

If the entry i is added to Ti−1 to obtain Ti, then we say that i is added at step i. If i
is removed from Tj−1 to obtain Tj, then we say that i leaves at step j. In this bijection,
(i, j) is an edge of the corresponding matching if and only if i is added at step i and leaves
at step j.

Example 4.1 For the oscillating tableau

∅, (1), (2), (2, 1), (1, 1), (1), ∅,

we get the following sequence of SY Ts:

∅ 1 12 12 1 3 ∅,
3 3

and the corresponding matching {(1, 5), (2, 4), (3, 6)}.

The following theorem gives a characterization of oscillating tableaux corresponding
to 12312-avoiding matchings.

Theorem 4.2 There exists a bijection ρ between the set of 12312-avoiding matchings on

[2n] and the set of oscillating tableaux T ∅
2n, in which each partition is of shape (k) or (k, 1)

such that a partition (k, 1) is not followed immediately by the partition (k + 1, 1).

Proof. Let M be a 12312-avoiding matching. By definition, there do not exist three
edges (i1, j1), (i2, j2) and (i3, j3) such that i1 < i2 < i3 < j1 < j2. Suppose that under
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Stanley’s bijection, the sequence of SYTs corresponding to M is T0, T1, . . . , T2n and the
corresponding oscillating tableau is λ0, λ1, λ2, . . . , λ2n.

If λp−1 is of shape (k) for some 1 ≤ p ≤ 2n, then it is possible that λp−1 ⊂ λp. We
claim that all the entries in Tp−1 must leave the tableau in deceasing order. Note that the
entries in the first row of a SYT are strictly increasing. Suppose that i2 is to the right of
i1 in Tp−1 and i1 leaves the tableau before i2. Assume that i1 leaves at step j1, namely,
there exists an entry h ≥ p in the first row of Tj1 such that Tj1−1 is obtained from Tj1 by
inserting i1. According to the RSK algorithm, the insertion of i1 pushes h up and i1 takes
the place of h. Hence in Tj1 , h is to the left of i2 in the first row, which contradicts the
fact that Tj1 is a SYT. So there do not exist two crossing edges (i1, j1) and (i2, j2) such
that i1 < i2 < p < j1 < j2. Hence Tp can be obtained from Tp−1 by adding an entry p.

Suppose that λi−1 is of shape (k) and λi is of shape (k, 1). According to the bijection
ρ, i is added to λi \ λi−1 to obtain Ti. It follows that the entry i can only leave the SYT
when it is moved to the first row. Suppose that i is moved to the first row in Tj1. Then
there exists a unique entry j such that Tj1−1 is obtained from Tj1 by row-inserting the
entry j by the RSK algorithm. Hence j < i and j leaves before i. Suppose that i leaves
the tableau at step i1 with j < i < j1 < i1, which implies that (j, j1) and (i, i1) are two
crossing edges of the matching M . For any i+1 ≤ p ≤ j1, we have λp ⊂ λp−1. Otherwise,
Tp is obtained from Tp−1 by inserting the entry p in λp \ λp−1. It is clear that p is the
initial point of an edge of M . Let (p, p1) be an edge of M . Then (j, j1), (i, i1) and (p, p1)
are three edges of M such that j < i < p < j1 < i1, which contradicts the fact that M is a
12312-avoiding matching. Furthermore, λj1 is of shape (h) for some integer h. Therefore,
if λp−1 is of shape (k, 1), then no square is added to obtain λp for any 1 ≤ p ≤ 2n. This
completes the proof.

Given a matching π ∈ Mn(12312), we can define a closed lattice walk

(x0, y0) = (0, 0), (x1, y1), (x2, y2), . . . , (x2n, y2n) = (0, 0)

such that xi ≥ yi, where xi (resp. yi) is the number of squares in the first (resp. second)
row of the partition λi of the corresponding oscillating tableau. Because of Theorem 4.2,
if (xi+1, yi+1)− (xi, yi) = (0, 1), then the size of the next partition does not increase. Thus
we have the following corollary.

Corollary 4.3 There is a one-to-one correspondence between 12312-avoiding matchings

on [2n] and closed lattice walks of length 2n in the (x, y) plane from the origin to itself

consisting of the steps E = (1, 0), W = (−1, 0), N = (0, 1) and S = (0,−1) such that a

step N is followed immediately by some consecutive W steps and one S step and no step

crosses the line y = x.

Example 4.4 The closed lattice walk in the (x, y) plain corresponding to the matching

{(1, 5), (2, 4), (3, 6)} is

EENWSW

starting from the origin and ending with the origin as well.
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Denote by Pn the set of lattice paths from (0, 0) to (2n, n) consisting of steps E = (1, 0)
and N = (0, 1) that never cross the line y = x/2. Hilton and Pedersen [20] showed that
the cardinality of Pn is equal to Cn,3. Let us use Ln to denote the set of closed lattice
walks specified in the above corollary.

We now give a one-to-one correspondence between the set Ln and the set Pn. Given
a closed lattice walk p ∈ Ln, we define a path τ(p) derived from p by the following rule:

E → EE,
W → N,
N → EN,
S → E.

Denote by |p|E the number of E steps in the path p. We may similarly define |p|W , |p|N
and |p|S. Since p is a lattice path going from the origin to itself with 2n steps, we have
|p|E = |p|W , |p|N = |p|S and |p|E + |p|N = n. From the map τ , we have

|τ(p)|E = 2|p|E + |p|N + |p|S = 2n

and
|τ(p)|N = |p|N + |p|W = n.

Hence τ(p) goes from (0, 0) to (2n, n). We claim that τ(p) would never cross the line
y = x/2. Otherwise, let τ(p) = p1p2 . . . p3n such that pk = N is the first step going above
the line y = x/2. Let q = p1p2 . . . pk and τ(p′) = q. We have

|q|E = 2|p′|E + |p′|N + |p′|S < 2|q|N = 2|p′|N + 2|p′|W ,

which implies that either |p′|E − |p′|W < |p′|N − |p′|S or |p′|E < |p′|W . This contradicts
the fact that p never goes above the line y = x. Thus we have τ(p) ∈ Pn.

Conversely, given a lattice path p ∈ Pn, let Ei be its i-th E step from left to right. If
E2k−1 and E2k are consecutive steps in p, then E2k−1 together with E2k corresponds to
one E step. Otherwise, E2k corresponds to one S step and E2k−1 together with its next
step N corresponds to one N step. For the remaining N steps, each N step corresponds
to one W step. Suppose that we have obtained a path p′. Then each N step in p′ is
followed by some W steps and one S step and we have |p′|N = |p′|S. Moreover, we have
the relations |p|E = 2|p′|E + |p′|N + |p′|S = 2n and |p|N = |p′|N + |p′|W = n. It follows
that |p′|E + |p′|N = n and |p′|E = |p′|W . Therefore, p′ is a path from the origin to itself
with 2n steps. We claim that p′ is a path never crossing the line y = x. Otherwise, let
p′ = p1p2 . . . p2n, q = p1p2 . . . pk and τ−1(w) = q. From the map we have

|w|E = 2|q|E + |q|N + |q|S ≥ 2|w|N = 2|q|N + 2|q|W ,

and either |q|N = |q|S or |q|N − |q|S = 1. Thus we have the inequality |q|E − |q|W ≥
|q|N − |q|S, which implies that p′ is a path never crossing the line y = x. It follows that
p′ ∈ Ln. Thus we have reached the following conclusion.
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Theorem 4.5 The map τ is a bijection between Ln and Pn. Moreover, we have

|Mn(12312)| = |Ln| = |Pn| =
1

2n + 1

(

3n

n

)

.

Example 4.6 For n = 2, we have

L2 : EEWW, ENSW, EWEW,
↓ ↓ ↓

P2 : EEEENN, EEENEN, EENEEN.

5 Matchings and Generating Trees

In this section, we use the methodology of generating trees to count matchings avoiding
partial patterns. A generating tree is an infinite rooted tree which is essentially a process
to generate labels from a single label of the root by successively applying certain rules.
Formally speaking, a generating tree consists of the label of the root and the succession
rules.

To make this paper self-contained, we use an example to explain the idea of generating
trees. Let Sn(τ) be the set of τ -avoiding permutations with n elements. West [37] showed
that |Sn(123)| = |Sn(132)| = cn = 1

n+1

(

2n

n

)

by using generating trees. The idea is to
define a statistic on a permutation in Sn(123) so that we can count the permutations in
Sn+1(123) by inserting n+1 into permutations in Sn(123). For the purpose of enumeration,
we may only keep track of the statistics of the permutations in the process of generating
the permutations in Sn(123) starting from the permutation (1) ∈ S1(123).

In general, to generate permutations in Sn(τ) we need the concepts of active and
inactive sites. Given a permutation π = π1π2 · · ·πn ∈ Sn(τ), we say that the element πi

is in site i. Moreover, a site i is called an active site if the insertion of n + 1 into the
site i produces a permutation π′ ∈ Sn+1(τ); otherwise the site i is said to be inactive.
West showed that the generating trees for 123-avoiding permutations and 132-avoiding
permutations correspond to the same root label and the same succession rules:

{

Root : (2)

Rule : (t) (2)(3)(4) . . . (t + 1).

One may check that for both Sn(123) and Sn(132) the label (i) comes from the number
of active sites of a permutation. For the above generating tree, the label of the root is
(2); the labels at level two are (2)(3); the labels at level three are (2)(3)(2)(3)(4); and the
labels at level four are

(2)(3)(2)(3)(4)(2)(3)(2)(3)(4)(2)(3)(4)(5).
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It is not difficult to verify that the number of labels at level n equals the Catalan number
cn.

We now consider matchings avoiding certain patterns by using the technique of gen-
erating trees. Given a matching π on [2n], a position s of π is meant to be the position
between the nodes s and s + 1 if 1 ≤ s ≤ 2n − 1, and the position 2n is meant to be
the position to the right of the node 2n. For the purpose of generating matchings with
n+1 edges from a matching with n edges, we always consider the edge with the rightmost
initial point. Let π be a matching on [2n]. We can obtain a matching π ′ on [2n + 2] by
adding an edge from position s to position t with 1 ≤ s ≤ t ≤ 2n of the matching π, such
that the inserted edge has the rightmost initial point in π′. Conversely, we can reach a
unique matching with n edges from a matching π with n + 1 edges by deleting the edge
of π with the rightmost initial point.

Definition 5.1 Let τ be a pattern on [k] and π be a τ -avoiding matching on [2n]. The

position s of π is an active site if there exists a position t, 1 ≤ s ≤ t ≤ 2n, such that

inserting an edge from position s to position t gives a τ -avoiding matching on [2n+2], in

which the inserted edge has the rightmost initial point. Otherwise, it is called an inactive

site.

In the following structural lemma, we aim to characterize the generating tree T (τ) for
any τ ∈ {12312, 12132, 12123, 12321, 12231, 12213}. We will recursively define a rooted
tree T (τ) in which the vertices on the n-th level correspond to τ -avoiding matchings with
n edges. We start with the matching with only one edge, and let π ∈ Mn(τ) be a child
of π′ ∈ Mn−1(τ) obtained from π by deleting the edge with the rightmost initial point.
It will be convenient to label each vertex of the generating tree T (τ) with the number of
active sites of the associated matching minus 2. Let π be a matching with n edges and k
active sites, then we can get

(

k+1
2

)

different matchings with n + 1 edges by inserting an
edge into any two of its active sites. Hence, in the generating tree T (τ), if a vertex has
label (k), then it has

(

k+3
2

)

children. As usual, we use (k)s to denote s occurrences of a
label (k).

Lemma 5.2 For any τ ∈ {12312, 12132, 12123, 12321, 12231, 12213}, T (τ) can be char-

acterized by the following succession rules:

{

Root : (0)

Rule : (k) (k + 1)1 (k)2 (k − 1)3 . . . (0)k+2.
(5.1)

Proof. We only consider three cases τ = 12312, τ = 12123 and τ = 12321. The other
cases are similar.

The case τ = 12312: The matching π on [2] has two active sites which gives the root (0).
Let π be a 12312-avoiding matching on [2n] labeled by (k) with active sites i1, i2, . . . , ik+2.
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Let π′ be a matching in Mn+1(12312) obtained from π by inserting an edge from position
is to position it with is ≤ it. Hence the active sites of π′ are it+1, it+2, it+1+2, . . . , ik+2+2
so that there are k + 4 − t active sites. Therefore, the children of a node (k) are exactly
the nodes (k′) where k′ = k + 2 − t. If s ranges over 1, 2, . . . , k + 2 and t ranges over
s, s + 1, . . . , k + 2, we get the rules 5.1.

The case τ = 12123: The matching π on [2] has two active sites, which gives the
root (0). Let π be a 12123-avoiding matching on [2n] labeled by (k) with active sites
i1, i2, . . . , ik+2. Let π′ be a matching in Mn+1(12123) obtained from π by inserting an
edge from position is to position it. Then the active sites of π′ are is +1, is+1+1, . . . , it +1
when is 6= it and is+1, is+2, is+1+2, . . . , ik+2+2 when is = it. Hence the label of π′ is (k′)
where k′ = t− s− 1 if is 6= it and k′ = k− s+2, otherwise. If s ranges over 1, 2, . . . , k +1
and t ranges over s+1, . . . , k +2 for the first case and s ranges over 1, 2, . . . , k +2 for the
second case, we get the rules 5.1.

The case τ = 12321: The matching π on [2] has two active sites, which gives the
root (0). Let π be a 12321-avoiding matching on [2n] labeled by (k) with active sites
i1, i2, . . . , ik+2. It is clear that ik+2 = 2n. Let π′ be a matching obtained from π by inserting
an edge from site is and to site it. Then the active sites of π′ are it +2, it+1 +2, . . . , ik+2+2
when t < k + 2 and is + 1, is+1 + 1 . . . , ik+2 + 1, ik+2 + 2 when t = k + 2. It follows that
the label of π′ is (k′) where k′ = k − t + 1 when t < k + 2 and k′ = k + 2 − s, otherwise.
If s ranges over 1, 2, . . . , k + 1 and t ranges over s, s + 1, . . . , k + 1 for the first case and s
ranges over 1, 2, . . . , k + 2 and t = k + 2 for the second case, we get the rules 5.1.

Applying Theorem 2.3 and Lemma 5.2, we reach the following conclusion.

Theorem 5.3 For τ ∈ {12312, 12132, 12123, 12321, 12231, 12213}, we have |Mn(τ)| =
Cn,3.
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