Sets of Points Determining Only Acute Angles and Some Related Colouring Problems

David Bevan
Fernwood, Leaford Crescent, Watford, Herts. WD24 5TW England
dbevan@emtex.com

Submitted: Jan 20, 2004; Accepted: Feb 7, 2006; Published: Feb 15, 2006
Mathematics Subject Classifications: 05D40, 51M16

Abstract

We present both probabilistic and constructive lower bounds on the maximum size of a set of points $\mathcal{S} \subseteq \mathbb{R}^{d}$ such that every angle determined by three points in \mathcal{S} is acute, considering especially the case $\mathcal{S} \subseteq\{0,1\}^{d}$. These results improve upon a probabilistic lower bound of Erdős and Füredi. We also present lower bounds for some generalisations of the acute angles problem, considering especially some problems concerning colourings of sets of integers.

1 Introduction

Let us say that a set of points $\mathcal{S} \subseteq \mathbb{R}^{d}$ is an acute \boldsymbol{d}-set if every angle determined by a triple of \mathcal{S} is acute $\left(<\frac{\pi}{2}\right)$. Let us also say that \mathcal{S} is a cubic acute \boldsymbol{d}-set if \mathcal{S} is an acute d-set and is also a subset of the unit d-cube (i.e. $\mathcal{S} \subseteq\{0,1\}^{d}$).

Let us further say that a triple $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^{d}$ is an acute triple, a right triple, or an obtuse triple, if the angle determined by the triple with apex \boldsymbol{v} is less than $\frac{\pi}{2}$, equal to $\frac{\pi}{2}$, or greater than $\frac{\pi}{2}$, respectively. Note that we consider the triples $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ and $\boldsymbol{w}, \boldsymbol{v}, \boldsymbol{u}$ to be the same.

We will denote by $\alpha(d)$ the size of a largest possible acute d-set. Similarly, we will denote by $\kappa(d)$ the size of a largest possible cubic acute d-set. Clearly $\kappa(d) \leq \alpha(d), \kappa(d) \leq \kappa(d+1)$ and $\alpha(d) \leq \alpha(d+1)$ for all d.

In [EF], Paul Erdős and Zoltán Füredi gave a probabilistic proof that $\kappa(d) \geq\left\lfloor\frac{1}{2}\left(\frac{2}{\sqrt{3}}\right)^{d}\right\rfloor$ (see also [AZ2]). This disproved an earlier conjecture of Ludwig Danzer and Branko Grünbaum [DG] that $\alpha(d)=2 d-1$.

In the following two sections we give improved probabilistic lower bounds for $\kappa(d)$ and $\alpha(d)$. In section 4 we present a construction that gives further improved lower bounds for $\kappa(d)$ for small d. In section 5, we tabulate the best lower bounds known for $\kappa(d)$ and $\alpha(d)$ for small d. Finally, in sections 6-9, we give probabilistic and constructive lower bounds for some generalisations of $\kappa(d)$, considering especially some problems concerning colourings of sets of integers.

2 A probabilistic lower bound for $\kappa(d)$

Theorem 2.1

$$
\kappa(d) \geq 2\left[\frac{\sqrt{6}}{9}\left(\frac{2}{\sqrt{3}}\right)^{d}\right\rfloor \approx 0.544 \times 1.155^{d}
$$

For large d, this improves upon the result of Erdős and Füredi by a factor of $\frac{4 \sqrt{6}}{9} \approx 1.089$. This is achieved by a slight improvement in the choice of parameters. This proof can also be found in [AZ3].
Proof: Let $m=\left\lfloor\frac{\sqrt{6}}{9}\left(\frac{2}{\sqrt{3}}\right)^{d}\right\rfloor$ and randomly pick a set \mathcal{S} of $3 m$ point vectors from the vertices of the d-dimensional unit cube $\{0,1\}^{d}$, choosing the coordinates independently with probability $\operatorname{Pr}\left[\boldsymbol{v}_{i}=0\right]=\operatorname{Pr}\left[\boldsymbol{v}_{i}=1\right]=\frac{1}{2}, 1 \leq i \leq d$, for every $\boldsymbol{v}=\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{d}\right) \in$ \mathcal{S}.

Now every angle determined by a triple of points from \mathcal{S} is non-obtuse $\left(\leq \frac{\pi}{2}\right)$, and a triple of vectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ from \mathcal{S} is a right triple iff the scalar product $\langle\boldsymbol{u}-\boldsymbol{v}, \boldsymbol{w}-\boldsymbol{v}\rangle$ vanishes, i.e. iff either $\boldsymbol{u}_{i}-\boldsymbol{v}_{i}=0$ or $\boldsymbol{w}_{i}-\boldsymbol{v}_{i}=0$ for each $i, 1 \leq i \leq d$.

Thus $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ is a right triple iff $\boldsymbol{u}_{i}, \boldsymbol{v}_{i}, \boldsymbol{w}_{i}$ is neither $0,1,0$ nor $1,0,1$ for any $i, 1 \leq i \leq d$. Since $\boldsymbol{u}_{i}, \boldsymbol{v}_{i}, \boldsymbol{w}_{i}$ can take eight different values, this occurs independently with probability $\frac{3}{4}$ for each i, so the probability that a triple of \mathcal{S} is a right triple is $\left(\frac{3}{4}\right)^{d}$.

Hence, the expected number of right triples in a set of $3 m$ vectors is $3\binom{3 m}{3}\left(\frac{3}{4}\right)^{d}$. Thus there is some set \mathcal{S} of $3 m$ vectors with no more than $3\binom{3 m}{3}\left(\begin{array}{l}\left.\frac{3}{4}\right)^{d} \text { right triples, where }\end{array}\right.$

$$
3\binom{3 m}{3}\left(\frac{3}{4}\right)^{d}<3 \frac{(3 m)^{3}}{6}\left(\frac{3}{4}\right)^{d}=m\left(\frac{9 m}{\sqrt{6}}\right)^{2}\left(\frac{3}{4}\right)^{d} \leq m
$$

by the choice of m.

If we remove one point of each right triple from \mathcal{S}, the remaining set is a cubic acute d-set of cardinality at least $3 m-m=2 m$.

3 A probabilistic lower bound for $\alpha(d)$

We can improve the lower bound in theorem 2.1 for non-cubic acute d-sets by a factor of $\sqrt{2}$ by slightly perturbing the points chosen away from the vertices of the unit cube. The intuition behind this is that a small random symmetrical perturbation of the points in a right triple is more likely than not to produce an acute triple, as the following diagram suggests.

Theorem 3.1

$$
\alpha(d) \geq 2\left\lfloor\frac{1}{3}\left(\frac{2}{\sqrt{3}}\right)^{d+1}\right\rfloor \approx 0.770 \times 1.155^{d}
$$

Before we can prove this theorem, we need some results concerning continuous random variables.

Definition 3.2 If $F(x)=\operatorname{Pr}[X \leq x]$ is the cumulative distribution function of a continuous random variable X, let $\bar{F}(x)$ denote $\operatorname{Pr}[X \geq x]=1-F(x)$.

Definition 3.3 Let us say that a continuous random variable X has positive bias if, for all $t, \operatorname{Pr}[X \geq t] \geq \operatorname{Pr}[X \leq-t]$, i.e. $\bar{F}(t) \geq F(-t)$.

Property 3.3.1 If a continuous random variable X has positive bias, it follows that $\operatorname{Pr}[X>0] \geq \frac{1}{2}$.

Property 3.3.2 To show that a continuous random variable X has positive bias, it suffices to demonstrate that the condition $\bar{F}(t) \geq F(-t)$ holds for all positive t.

Lemma 3.4 If X and Y are independent continuous random variables with positive bias, then $X+Y$ also has positive bias.

Proof: Let f, g and h be the probability density functions, and F, G and H the cumulative distribution functions, for X, Y and $X+Y$ respectively. Then,

$$
\begin{aligned}
\bar{H}(t)-H(-t)= & \iint_{x+y \geq t} f(x) g(y) \mathrm{d} y \mathrm{~d} x-\iint_{x+y \leq-t} f(x) g(y) \mathrm{d} y \mathrm{~d} x \\
= & \iint_{x+y \geq t} f(x) g(y) \mathrm{d} y \mathrm{~d} x-\iint_{y-x \geq t} f(x) g(y) \mathrm{d} y \mathrm{~d} x \\
& +\iint_{y-x \geq t} f(x) g(y) \mathrm{d} y \mathrm{~d} x-\iint_{x+y \leq-t} f(x) g(y) \mathrm{d} y \mathrm{~d} x \\
= & \int_{-\infty}^{\infty} g(y)[\bar{F}(t-y)-F(y-t)] \mathrm{d} y \\
& +\int_{-\infty}^{\infty} f(x)[\bar{G}(x+t)-G(-x-t)] \mathrm{d} x
\end{aligned}
$$

which is non-negative because $f(t), g(t), \bar{F}(t)-F(-t)$ and $\bar{G}(t)-G(-t)$ are all nonnegative for all t.

Definition 3.5 Let us say that a continuous random variable X is $\boldsymbol{\epsilon}$-uniformly distributed for some $\epsilon>0$ if X is uniformly distributed between $-\epsilon$ and ϵ.

Let us denote by j, the probability density function of an ϵ-uniformly distributed random variable:

$$
j(x)=\left\{\begin{array}{cl}
\frac{1}{2 \epsilon} & -\epsilon \leq x \leq \epsilon \\
0 & \text { otherwise }
\end{array}\right.
$$

and by J, its cumulative distribution function:

$$
J(x)= \begin{cases}0 & x<-\epsilon \\ \frac{1}{2}+\frac{x}{2 \epsilon} & -\epsilon \leq x \leq \epsilon \\ 1 & x>\epsilon\end{cases}
$$

Property 3.5.1 If X is an ϵ-uniformly distributed random variable, then so is $-X$.

Lemma 3.6 If X, Y and Z are independent ϵ-uniformly distributed random variables for some $\epsilon<\frac{1}{2}$, then $U=(Y-X)(1+Z-X)$ has positive bias.

Proof: Let G be the cumulative distribution function of U. By 3.3.2, it suffices to show that $\bar{G}(u)-G(-u) \geq 0$ for all positive u.

Let u be positive. Because $1+Z-X$ is always positive, $U \geq u$ iff $Y>X$ and $Z \geq$ $-1+X+\frac{u}{Y-X}$. Similarly, $U \leq-u$ iff $X>Y$ and $Z \geq-1+X+\frac{u}{X-Y}$. So,

$$
\begin{aligned}
\bar{G}(u)-G(-u)= & \iint_{y>x} j(x) j(y) \bar{J}\left(-1+x+\frac{u}{y-x}\right) \mathrm{d} y \mathrm{~d} x \\
& -\iint_{x>y} j(x) j(y) \bar{J}\left(-1+x+\frac{u}{x-y}\right) \mathrm{d} y \mathrm{~d} x \\
= & \iint_{y>x} j(x) j(y)\left[J\left(1-x-\frac{u}{y-x}\right)-J\left(1-y-\frac{u}{y-x}\right)\right] \mathrm{d} y \mathrm{~d} x
\end{aligned}
$$

$$
\text { (because } \bar{J}(x)=J(-x) \text {, and by variable renaming) }
$$

which is non-negative because j is non-negative and J is non-decreasing (so the expression in square brackets is non-negative over the domain of integration).

Corollary 3.6.1 If X, Y and Z are independent ϵ-uniformly distributed random variables for some $\epsilon<\frac{1}{2}$, then $(Y-X)(Z-X-1)$ has positive bias.

Proof: $(Y-X)(Z-X-1)=((-Y)-(-X))(1+(-Z)-(-X))$. The result follows from 3.5.1 and lemma 3.6.

Lemma 3.7 If X, Y and Z are independent ϵ-uniformly distributed random variables, then $V=(Y-X)(Z-X)$ has positive bias.

Proof: Let H be the cumulative distribution function of V. By 3.3.2, it suffices to show that $\bar{H}(v)-H(-v) \geq 0$ for all positive v.

Let v be positive. $V \geq v$ iff $Y>X$ and $Z \geq X+\frac{v}{Y-X}$ or $Y<X$ and $Z \leq X+\frac{v}{Y-X}$. Similarly, $V \leq-v$ iff $Y>X$ and $Z \leq X-\frac{v}{Y-X}$ or $Y<X$ and $Z \geq X-\frac{v}{Y-X}$. So,

$$
\begin{aligned}
\bar{H}(v)-H(-v)= & \iint_{y>x} j(x) j(y) \bar{J}\left(x+\frac{v}{y-x}\right) \mathrm{d} y \mathrm{~d} x \\
& +\iint_{y<x} j(x) j(y) J\left(x+\frac{v}{y-x}\right) \mathrm{d} y \mathrm{~d} x \\
- & \iint_{y>x} j(x) j(y) J\left(x-\frac{v}{y-x}\right) \mathrm{d} y \mathrm{~d} x \\
- & \iint_{y<x} j(x) j(y) \bar{J}\left(x-\frac{v}{y-x}\right) \mathrm{d} y \mathrm{~d} x \\
= & \iint_{y>x} j(x) j(y)\left[J\left(-x-\frac{v}{y-x}\right)-J\left(-y-\frac{v}{y-x}\right)\right] \mathrm{d} y \mathrm{~d} x \\
& +\iint_{y<x} j(x) j(y)\left[J\left(x+\frac{v}{y-x}\right)-J\left(y+\frac{v}{y-x}\right)\right] \mathrm{d} y \mathrm{~d} x \\
& \text { (because } \bar{J}(x)=J(-x), \text { and by variable renaming) }
\end{aligned}
$$

which is non-negative because j is non-negative and J is non-decreasing (so the expressions in square brackets are non-negative over the domains of integration).

We are now in a position to prove the theorem.

Proof of theorem 3.1

Let $m=\left\lfloor\frac{1}{3}\left(\frac{2}{\sqrt{3}}\right)^{d+1}\right\rfloor$, and randomly pick a set \mathcal{S} of $3 m$ point vectors, $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{3 m}$, from the vertices of the d-dimensional unit cube $\{0,1\}^{d}$, choosing the coordinates independently with probability $\operatorname{Pr}\left[\boldsymbol{v}_{k i}=0\right]=\operatorname{Pr}\left[\boldsymbol{v}_{k i}=1\right]=\frac{1}{2}$ for every $\boldsymbol{v}_{k}=\left(\boldsymbol{v}_{k 1}, \boldsymbol{v}_{k 2}, \ldots, \boldsymbol{v}_{k d}\right)$, $1 \leq k \leq 3 m, 1 \leq i \leq d$.

Now for some $\epsilon, 0<\epsilon<\frac{1}{2(d+1)}$, randomly pick $3 m$ vectors, $\boldsymbol{\delta}_{1}, \boldsymbol{\delta}_{2}, \ldots, \boldsymbol{\delta}_{3 m}$, from the d-dimensional cube $[-\epsilon, \epsilon]^{d}$ of side 2ϵ centred on the origin, choosing the coordinates $\boldsymbol{\delta}_{k i}$, $1 \leq k \leq 3 m, 1 \leq i \leq d$, independently so that they are ϵ-uniformly distributed, and let $\mathcal{S}^{\prime}=\left\{\boldsymbol{v}_{1}^{\prime}, \boldsymbol{v}_{2}^{\prime}, \ldots, \boldsymbol{v}_{3 m}^{\prime}\right\}$ where $\boldsymbol{v}_{k}^{\prime}=\boldsymbol{v}_{k}+\boldsymbol{\delta}_{k}$ for each $k, 1 \leq k \leq 3 m$.

Case 1: Acute triples in \mathcal{S}

Because $\epsilon<\frac{1}{2(d+1)}$, if $\boldsymbol{v}_{j}, \boldsymbol{v}_{k}, \boldsymbol{v}_{l}$ is an acute triple in \mathcal{S}, the scalar product $\left\langle\boldsymbol{v}_{j}^{\prime}-\boldsymbol{v}_{k}^{\prime}, \boldsymbol{v}_{l}^{\prime}-\boldsymbol{v}_{k}^{\prime}\right\rangle>$ $\frac{1}{(d+1)^{2}}$, so $\boldsymbol{v}_{j}^{\prime}, \boldsymbol{v}_{k}^{\prime}, \boldsymbol{v}_{l}^{\prime}$ is also an acute triple in \mathcal{S}^{\prime}.

Case 2: Right triples in \mathcal{S}

If, $\boldsymbol{v}_{j}, \boldsymbol{v}_{k}, \boldsymbol{v}_{l}$ is a right triple in \mathcal{S} then the scalar product $\left\langle\boldsymbol{v}_{j}-\boldsymbol{v}_{k}, \boldsymbol{v}_{l}-\boldsymbol{v}_{k}\right\rangle$ vanishes, i.e. either $\boldsymbol{v}_{j_{i}}-\boldsymbol{v}_{k i}=0$ or $\boldsymbol{v}_{l i}-\boldsymbol{v}_{k i}=0$ for each $i, 1 \leq i \leq d$. There are six possibilities for each triple of coordinates:

$\boldsymbol{v}_{j_{i}}, \boldsymbol{v}_{k i}, \boldsymbol{v}_{l i}$	$\left(\boldsymbol{v}_{j_{i}}^{\prime}-\boldsymbol{v}_{k i}^{\prime}\right)\left(\boldsymbol{v}_{l i}^{\prime}-\boldsymbol{v}_{k i}^{\prime}\right)$
$0,0,0$	$\left(\boldsymbol{\delta}_{j_{i}}-\boldsymbol{\delta}_{k i}\right)\left(\boldsymbol{\delta}_{l i}-\boldsymbol{\delta}_{k i}\right)$
$1,1,1$	$\left(\boldsymbol{\delta}_{j_{i}}-\boldsymbol{\delta}_{k i}\right)\left(\boldsymbol{\delta}_{l i}-\boldsymbol{\delta}_{k i}\right)$
$0,0,1$	$\left(\boldsymbol{\delta}_{j_{i}}-\boldsymbol{\delta}_{k i}\right)\left(1+\boldsymbol{\delta}_{l i}-\boldsymbol{\delta}_{k i}\right)$
$1,0,0$	$\left(\boldsymbol{\delta}_{l i}-\boldsymbol{\delta}_{k i}\right)\left(1+\boldsymbol{\delta}_{j_{i}}-\boldsymbol{\delta}_{k i}\right)$
$0,1,1$	$\left(\boldsymbol{\delta}_{l i}-\boldsymbol{\delta}_{k i}\right)\left(\boldsymbol{\delta}_{j_{i}}-\boldsymbol{\delta}_{k i}-1\right)$
$1,1,0$	$\left(\boldsymbol{\delta}_{j_{i}}-\boldsymbol{\delta}_{k i}\right)\left(\boldsymbol{\delta}_{l i}-\boldsymbol{\delta}_{k i}-1\right)$

Now, the values of the $\boldsymbol{\delta}_{k i}$ are independent and ϵ-uniformly distributed, so by lemmas 3.7 and 3.6 and corollary 3.6.1, the distribution of the $\left(\boldsymbol{v}_{j_{i}}^{\prime}-\boldsymbol{v}_{k i}^{\prime}\right)\left(\boldsymbol{v}_{l i}^{\prime}-\boldsymbol{v}_{k i}^{\prime}\right)$ has positive bias, and by repeated application of lemma 3.4, the distribution of the scalar product $\left\langle\boldsymbol{v}_{j}^{\prime}-\boldsymbol{v}_{k}^{\prime}, \boldsymbol{v}_{l}^{\prime}-\boldsymbol{v}_{k}^{\prime}\right\rangle=\sum_{i=1}^{d}\left(\boldsymbol{v}_{j_{i}}^{\prime}-\boldsymbol{v}_{k i}^{\prime}\right)\left(\boldsymbol{v}_{l i}^{\prime}-\boldsymbol{v}_{k i}^{\prime}\right)$ also has positive bias.

Thus, if $\boldsymbol{v}_{j}, \boldsymbol{v}_{k}, \boldsymbol{v}_{l}$ is a right triple in \mathcal{S}, then, by 3.3.1,

$$
\operatorname{Pr}\left[\left\langle\boldsymbol{v}_{j}^{\prime}-\boldsymbol{v}_{k}^{\prime}, \boldsymbol{v}_{l}^{\prime}-\boldsymbol{v}_{k}^{\prime}\right\rangle>0\right] \geq \frac{1}{2},
$$

so the probability that the triple $\boldsymbol{v}_{j}^{\prime}, \boldsymbol{v}_{k}^{\prime}, \boldsymbol{v}_{l}^{\prime}$ is an acute triple in \mathcal{S}^{\prime} is at least $\frac{1}{2}$.
As in the proof of theorem 2.1, the expected number of right triples in \mathcal{S} is $3\binom{3 m}{3}\left(\frac{3}{4}\right)^{d}$, so the expected number of non-acute triples in \mathcal{S}^{\prime} is no more than half this value. Thus there is some set \mathcal{S}^{\prime} of $3 m$ vectors with no more than $\frac{3}{2}\binom{3 m}{3}\left(\frac{3}{4}\right)^{d}$ non-acute triples, where

$$
\frac{3}{2}\binom{3 m}{3}\left(\frac{3}{4}\right)^{d}<\frac{3}{2} \frac{(3 m)^{3}}{6}\left(\frac{3}{4}\right)^{d}=m(3 m)^{2}\left(\frac{3}{4}\right)^{d+1} \leq m
$$

by the choice of m.
If we remove one point of each non-acute triple from \mathcal{S}^{\prime}, the remaining set is an acute d-set of cardinality at least $3 m-m=2 m$.

4 Constructive lower bounds for $\kappa(d)$

In the following proofs, for clarity of exposition, we will represent point vectors in $\{0,1\}^{d}$ as binary words of length d, e.g. $\mathcal{S}_{3}=\{000,011,101,110\}$ represents a cubic acute 3 -set.

Concatenation of words (vectors) \boldsymbol{v} and \boldsymbol{v}^{\prime} will be written $\boldsymbol{v} \boldsymbol{v}^{\prime}$.
We begin with a simple construction that enables us to extend a cubic acute d-set of cardinality n to a cubic acute $(d+2)$-set of cardinality $n+1$.

Theorem 4.1

$$
\kappa(d+2) \geq \kappa(d)+1
$$

Proof: Let $\mathcal{S}=\left\{\boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n-1}\right\}$ be a cubic acute d-set of cardinality $n=\kappa(d)$. Now let $\mathcal{S}^{\prime}=\left\{\boldsymbol{v}_{0}^{\prime}, \boldsymbol{v}_{1}^{\prime}, \ldots, \boldsymbol{v}_{n}^{\prime}\right\} \subseteq\{0,1\}^{d+2}$ where $\boldsymbol{v}_{i}^{\prime}=\boldsymbol{v}_{i} 00$ for $0 \leq i \leq n-2, \boldsymbol{v}_{n-1}^{\prime}=\boldsymbol{v}_{n-1} 10$ and $\boldsymbol{v}_{n}^{\prime}=\boldsymbol{v}_{n-1} 01$.

If $\boldsymbol{v}_{i}^{\prime}, \boldsymbol{v}_{j}^{\prime}, \boldsymbol{v}_{k}^{\prime}$ is a triple of distinct points in \mathcal{S}^{\prime} with no more than one of i, j and k greater than $n-2$, then $\boldsymbol{v}_{i}^{\prime}, \boldsymbol{v}_{j}^{\prime}, \boldsymbol{v}_{k}^{\prime}$ is an acute triple, because \mathcal{S} is an acute d-set. Also, any triple $\boldsymbol{v}_{k}^{\prime}, \boldsymbol{v}_{n-1}^{\prime}, \boldsymbol{v}_{n}^{\prime}$ or $\boldsymbol{v}_{k}^{\prime}, \boldsymbol{v}_{n}^{\prime}, \boldsymbol{v}_{n-1}^{\prime}$ is an acute triple, because its $(d+1)$ th or $(d+2)$ th coordinates (respectively) are $0,1,0$. Finally, for any triple $\boldsymbol{v}_{n-1}^{\prime}, \boldsymbol{v}_{k}^{\prime}, \boldsymbol{v}_{n}^{\prime}$, if \boldsymbol{v}_{k} and \boldsymbol{v}_{n-1} differ in the r th coordinate, then the r th coordinates of $\boldsymbol{v}_{n-1}^{\prime}, \boldsymbol{v}_{k}^{\prime}, \boldsymbol{v}_{n}^{\prime}$ are $0,1,0$ or $1,0,1$. Thus, \mathcal{S}^{\prime} is a cubic acute $(d+2)$-set of cardinality $n+1$.

Our second construction combines cubic acute d-sets of cardinality n to make a cubic acute $3 d$-set of cardinality n^{2}.

Theorem 4.2

$$
\kappa(3 d) \geq \kappa(d)^{2}
$$

Proof: Let $\mathcal{S}=\left\{\boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n-1}\right\}$ be a cubic acute d-set of cardinality $n=\kappa(d)$, and let

$$
\mathcal{T}=\left\{\boldsymbol{w}_{i j}=\boldsymbol{v}_{i} \boldsymbol{v}_{j} \boldsymbol{v}_{j-i \bmod n}: 0 \leq i, j \leq n-1\right\},
$$

each $\boldsymbol{w}_{i j}$ being made by concatenating three of the \boldsymbol{v}_{i}.
Let $\boldsymbol{w}_{p s}, \boldsymbol{w}_{q t}, \boldsymbol{w}_{r u}$ be any triple of distinct points in \mathcal{T}. They constitute an acute triple iff the scalar product $\left\langle\boldsymbol{w}_{p s}-\boldsymbol{w}_{q t}, \boldsymbol{w}_{r u}-\boldsymbol{w}_{q t}\right\rangle$ does not vanish (is positive). Now,

$$
\begin{aligned}
\left\langle\boldsymbol{w}_{p s}-\boldsymbol{w}_{q t}, \boldsymbol{w}_{r u}-\boldsymbol{w}_{q t}\right\rangle= & \left\langle\boldsymbol{v}_{p} \boldsymbol{v}_{s} \boldsymbol{v}_{s-p}-\boldsymbol{v}_{q} \boldsymbol{v}_{t} \boldsymbol{v}_{t-q}, \boldsymbol{v}_{r} \boldsymbol{v}_{u} \boldsymbol{v}_{u-r}-\boldsymbol{v}_{q} \boldsymbol{v}_{t} \boldsymbol{v}_{t-q}\right\rangle \\
= & \left\langle\boldsymbol{v}_{p}-\boldsymbol{v}_{q}, \boldsymbol{v}_{r}-\boldsymbol{v}_{q}\right\rangle \\
& +\left\langle\boldsymbol{v}_{s}-\boldsymbol{v}_{t}, \boldsymbol{v}_{u}-\boldsymbol{v}_{t}\right\rangle \\
& +\left\langle\boldsymbol{v}_{s-p}-\boldsymbol{v}_{t-q}, \boldsymbol{v}_{u-r}-\boldsymbol{v}_{t-q}\right\rangle
\end{aligned}
$$

with all the index arithmetic modulo n.
If both $p \neq q$ and $q \neq r$, then the first component of this sum is positive, because \mathcal{S} is an acute d-set. Similarly, if both $s \neq t$ and $t \neq u$, then the second component is positive. Finally, if $p=q$ and $t=u$, then $q \neq r$ and $s \neq t$ or else the points would not be distinct, so the third component, $\left\langle\boldsymbol{v}_{s-p}-\boldsymbol{v}_{t-q}, \boldsymbol{v}_{u-r}-\boldsymbol{v}_{t-q}\right\rangle$ is positive. Similarly if $q=r$ and $s=t$. Thus, all triples in \mathcal{T} are acute triples, so \mathcal{T} is a cubic acute $3 d$-set of cardinality n^{2}.

Corollary $4.2 .1 \kappa\left(3^{d}\right) \geq 2^{2^{d}}$.

Proof: By repeated application of theorem 4.2 starting with \mathcal{S}_{3}, a cubic acute 3 -set of cardinality 4.

Corollary 4.2.2 If $d \geq 3$,

$$
\kappa(d) \geq 10^{\frac{(d+1)^{\mu}}{4}} \approx 1.778^{(d+1)^{0.631}} \quad \text { where } \mu=\frac{\log 2}{\log 3}
$$

For small d, this is a tighter bound than theorem 2.1.
Proof: By induction on d. For $3 \leq d \leq 8$, we have the following cubic acute d-sets $\left(\mathcal{S}_{3}, \ldots, \mathcal{S}_{8}\right)$ that satisfy this lower bound for $\kappa(d)$ (with equality for $d=8$):

$\mathcal{S}_{4}: \kappa(4) \geq 5$
0000
0011
0101
1001
1110

$\mathcal{S}_{5}: \kappa(5) \geq 6$
00000
00011
00101
01001
10001
11110

$\mathcal{S}_{6}: \kappa(6) \geq 8$
000000
000111
011001
011110
101010
101101
110011
110100

$\mathcal{S}_{7}: \kappa(7) \geq 9$
0000000
0000011
0001101
0110001
0111110
1010101
1011010
1100110
1101001

$\mathcal{S}_{8}: \kappa(8) \geq 10$
00000000
00000011
00000101
00011001
01100001
01111110
10101001
10110110
11001110
11010001

If $\kappa(d) \geq 10^{\frac{(d+1)^{\mu}}{4}}$, then $\kappa(3 d) \geq \kappa(d)^{2} \quad$ by theorem 4.2

$$
\begin{array}{ll}
\geq 10^{\frac{2(d+1)^{\mu}}{4}} & \text { by the induction hypothesis } \\
=10^{\frac{(3 d+3)^{\mu}}{4}} & \text { because } 3^{\mu}=2 .
\end{array}
$$

So, since $\kappa(3 d+2) \geq \kappa(3 d+1) \geq \kappa(3 d)$, if the lower bound is satisfied for d, it is also satisfied for $3 d, 3 d+1$ and $3 d+2$.

Theorem 4.3 If, for each $r, 1 \leq r \leq m$, we have a cubic acute d_{r}-set of cardinality n_{r}, where n_{1} is the least of the n_{r}, and if, for some dimension d_{Z}, we have a cubic acute d_{Z}-set of cardinality n_{Z}, where

$$
n_{Z} \geq \prod_{r=2}^{m} n_{r}
$$

then a cubic acute D-set of cardinality N can be constructed, where

$$
D=\sum_{r=1}^{m} d_{r}+d_{Z} \quad \text { and } \quad N=\prod_{r=1}^{m} n_{r} .
$$

This result generalises theorem 4.2, but before we can prove it, we first need some preliminary results.

Definition 4.4 If $n_{1} \leq n_{2} \leq \ldots \leq n_{m}$ and $0 \leq k_{r}<n_{r}$, for each $r, 1 \leq r \leq m$, then let us denote by $\left\langle\left\langle k_{1} k_{2} \ldots k_{m}\right\rangle\right\rangle_{n_{1} n_{2} \ldots n_{m}}$, the number

$$
\left\langle\left\langle k_{1} k_{2} \ldots k_{m}\right\rangle\right\rangle_{n_{1} n_{2} \ldots n_{m}}=\sum_{r=2}^{m}\left(\left(k_{r-1}-k_{r} \bmod n_{r}\right) \prod_{s=r+1}^{m} n_{s}\right) .
$$

Where the n_{r} can be inferred from the context, $\left\langle\left\langle k_{1} k_{2} \ldots k_{m}\right\rangle\right\rangle$ may be used instead of $\left\langle\left\langle k_{1} k_{2} \ldots k_{m}\right\rangle\right\rangle_{n_{1} n_{2} \ldots n_{m}}$.

The expression $\left\langle\left\langle k_{1} k_{2} \ldots k_{m}\right\rangle\right\rangle_{n_{1} n_{2} \ldots n_{m}}$ can be understood as representing a number in a number system where the radix for each digit is a different n_{r} - like the old British monetary system of pounds, shillings and pennies - and the digits are the difference of two adjacent $k_{r}\left(\bmod n_{r}\right)$. For example,

$$
\langle\langle 2053\rangle\rangle_{4668}=[2-0]_{6}[0-5]_{6}[5-3]_{8}=2 \times 6 \times 8+1 \times 8+2=106
$$

where $\left[a_{2}\right]_{n_{2}} \ldots\left[a_{m}\right]_{n_{m}}$ is place notation with the n_{r} the radix for each place.
By construction, we have the following results:

Property 4.4.1

$$
\left\langle\left\langle k_{1} k_{2} \ldots k_{m}\right\rangle\right\rangle_{n_{1} n_{2} \ldots n_{m}}<\prod_{r=2}^{m} n_{r} .
$$

Property 4.4.2 If $2 \leq t \leq m$ and $j_{t-1}-j_{t} \neq k_{t-1}-k_{t}\left(\bmod n_{t}\right)$, then

$$
\left\langle\left\langle j_{1} j_{2} \ldots j_{m}\right\rangle\right\rangle_{n_{1} n_{2} \ldots n_{m}} \neq\left\langle\left\langle k_{1} k_{2} \ldots k_{m}\right\rangle\right\rangle_{n_{1} n_{2} \ldots n_{m}}
$$

Lemma 4.5 If $n_{1} \leq n_{2} \leq \ldots \leq n_{m}$ and $0 \leq j_{r}, k_{r}<n_{r}$, for each $r, 1 \leq r \leq m$, and the sequences of j_{r} and k_{r} are neither identical nor everywhere different (i.e. there exist both t and u such that $j_{t}=k_{t}$ and $j_{u} \neq k_{u}$), then

$$
\left\langle\left\langle j_{1} j_{2} \ldots j_{m}\right\rangle\right\rangle_{n_{1} n_{2} \ldots n_{m}} \neq\left\langle\left\langle k_{1} k_{2} \ldots k_{m}\right\rangle\right\rangle_{n_{1} n_{2} \ldots n_{m}}
$$

Proof: Let u be the greatest integer, $1 \leq u<m$, such that $j_{u}-j_{u+1} \neq k_{u}-k_{u+1}$ $\left(\bmod n_{u+1}\right)$. (If $j_{m}=k_{m}$, then u is the greatest integer such that $j_{u} \neq k_{u}$. If $j_{m} \neq k_{m}$, then u is at least as great as the greatest integer t such that $j_{t}=k_{t}$.) The result now follows from 4.4.2.

We are now in a position to prove the theorem.

Proof of Theorem 4.3

Let $n_{1} \leq n_{2} \leq \ldots \leq n_{m}$, and, for each $r, 1 \leq r \leq m$, let $\mathcal{S}_{r}=\left\{\boldsymbol{v}_{0}^{r}, \boldsymbol{v}_{1}^{r}, \ldots, \boldsymbol{v}_{n_{r}-1}^{r}\right\}$ be a cubic acute d_{r}-set of cardinality n_{r}. Let $\mathcal{Z}=\left\{\boldsymbol{z}_{0}, \boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{n_{Z}-1}\right\}$ be a cubic acute d_{Z}-set of cardinality n_{Z}, where

$$
n_{Z} \geq \prod_{r=2}^{m} n_{r}
$$

and let

$$
D=\sum_{r=1}^{m} d_{r}+d_{Z} \quad \text { and } \quad N=\prod_{r=1}^{m} n_{r} .
$$

Now let

$$
\mathcal{T}=\left\{\boldsymbol{w}_{k_{1} k_{2} \ldots k_{m}}=\boldsymbol{v}_{k_{1}}^{1} \boldsymbol{v}_{k_{2}}^{2} \ldots \boldsymbol{v}_{k_{m}}^{m} \boldsymbol{z}_{k_{Z}}: 0 \leq k_{r}<n_{r}, 1 \leq r \leq m\right\}
$$

where $k_{Z}=\left\langle\left\langle k_{1} k_{2} \ldots k_{m}\right\rangle\right\rangle_{n_{1} n_{2} \ldots n_{m}}$, be a point set of dimension D and cardinality N, each element of \mathcal{T} being made by concatenating one vector from each of the \mathcal{S}_{r} together with a vector from \mathcal{Z}. (In section 5 , we will denote this construction by $d_{1} \otimes \cdots \otimes d_{m} \oplus d_{Z}$.)

By 4.4.1, we know that $k_{Z}<\prod_{r=2}^{m} n_{r} \leq n_{Z}$, so k_{Z} is a valid index into \mathcal{Z}.
Let $\boldsymbol{w}_{i_{1} i_{2} \ldots i_{m}}, \boldsymbol{w}_{j_{1} j_{2} \ldots j_{m}}, \boldsymbol{w}_{k_{1} k_{2} \ldots k_{m}}$ be any triple of distinct points in \mathcal{T}. They constitute an acute triple iff the scalar product $q=\left\langle\boldsymbol{w}_{i_{1} i_{2} \ldots i_{m}}-\boldsymbol{w}_{j_{1} j_{2} \ldots j_{m}}, \boldsymbol{w}_{k_{1} k_{2} \ldots k_{m}}-\boldsymbol{w}_{j_{1} j_{2} \ldots j_{m}}\right\rangle$ does not vanish (is positive). Now,

$$
\begin{aligned}
q & =\left\langle\boldsymbol{v}_{i_{1}}^{1} \boldsymbol{v}_{i_{2}}^{2} \ldots \boldsymbol{v}_{i_{m}}^{m} \boldsymbol{z}_{i_{Z}}-\boldsymbol{v}_{j_{1}}^{1} \boldsymbol{v}_{j_{2}}^{2} \ldots \boldsymbol{v}_{j_{m}}^{m} \boldsymbol{z}_{j_{Z}}, \boldsymbol{v}_{k_{1}}^{1} \boldsymbol{v}_{k_{2}}^{2} \ldots \boldsymbol{v}_{k_{m}}^{m} \boldsymbol{z}_{k_{Z}}-\boldsymbol{v}_{j_{1}}^{1} \boldsymbol{v}_{j_{2}}^{2} \ldots \boldsymbol{v}_{j_{m}}^{m} \boldsymbol{z}_{j_{Z}}\right\rangle \\
& =\sum_{j_{j_{Z}}}^{m}\left\langle\boldsymbol{v}_{i_{r}}^{r}-\boldsymbol{v}_{j_{r}}^{r}, \boldsymbol{v}_{k_{r}}^{r}-\boldsymbol{v}_{j_{r}}^{r}\right\rangle+\left\langle\boldsymbol{z}_{i_{Z}}-\boldsymbol{z}_{j_{Z}}, \boldsymbol{z}_{k_{Z}}-\boldsymbol{z}_{j_{Z}}\right\rangle .
\end{aligned}
$$

If, for some r, both $i_{r} \neq j_{r}$ and $j_{r} \neq k_{r}$, then the first component of this sum is positive, because \mathcal{S}_{r} is an acute set.

If, however, there is no r such that both $i_{r} \neq j_{r}$ and $j_{r} \neq k_{r}$, then there must be some t for which $i_{t} \neq j_{t}$ (or else $\boldsymbol{w}_{i_{1} i_{2} \ldots i_{m}}$ and $\boldsymbol{w}_{j_{1} j_{2} \ldots j_{m}}$ would not be distinct) and $j_{t}=k_{t}$, and
also some u for which $j_{u} \neq k_{u}$ (or else $\boldsymbol{w}_{j_{1} j_{2} \ldots j_{m}}$ and $\boldsymbol{w}_{k_{1} k_{2} \ldots k_{m}}$ would not be distinct) and $i_{u}=j_{u}$. So, by lemma 4.5, $i_{Z} \neq j_{Z}$ and $j_{Z} \neq k_{Z}$, so the second component of the sum for the scalar product is positive, because \mathcal{Z} is an acute set.

Thus, all triples in \mathcal{T} are acute triples, so \mathcal{T} is a cubic acute D-set of cardinality N.

Corollary 4.5.1

$$
\text { If } d_{1} \leq d_{2} \leq \ldots \leq d_{m} \text {, then } \kappa\left(\sum_{r=1}^{m} r d_{r}\right) \geq \prod_{r=1}^{m} \kappa\left(d_{r}\right)
$$

Proof: By induction on m. The bound is trivially true for $m=1$.
Assume the bound holds for $m-1$, and for each $r, 1 \leq r \leq m$, let \mathcal{S}_{r} be a cubic acute d_{r}-set of cardinality $n_{r}=\kappa\left(d_{r}\right)$, with $d_{1} \leq d_{2} \leq \ldots \leq d_{m}$ and thus $n_{1} \leq n_{2} \leq \ldots \leq n_{m}$. By the induction hypothesis, there exists a cubic acute d_{Z}-set \mathcal{Z} of cardinality n_{Z}, where

$$
d_{Z}=\sum_{r=2}^{m}(r-1) d_{r} \quad \text { and } \quad n_{Z} \geq \prod_{r=2}^{m} \kappa\left(d_{r}\right)=\prod_{r=2}^{m} n_{r}
$$

Thus, by theorem 4.3 , there exists a cubic acute D-set of cardinality N, where

$$
D=\sum_{r=1}^{m} d_{r}+d_{Z}=\sum_{r=1}^{m} d_{r}+\sum_{r=2}^{m}(r-1) d_{r}=\sum_{r=1}^{m} r d_{r},
$$

and

$$
N=\prod_{r=1}^{m} n_{r}=\prod_{r=1}^{m} \kappa\left(d_{r}\right)
$$

5 Lower bounds for $\kappa(d)$ and $\alpha(d)$ for small d

The following table lists the best lower bounds known for $\kappa(d), 0 \leq d \leq 69$. For $3 \leq d \leq 9$, an exhaustive computer search shows that $\mathcal{S}_{3}, \ldots, \mathcal{S}_{8}$ (corollary 4.2.2), are optimal and also that $\kappa(9)=16$. For other small values of d, the construction used in theorem 4.3 provides the largest known cubic acute d-set. In the table, these constructions are denoted by $d_{1} \otimes d_{2} \oplus d_{Z}$ or $d_{1} \otimes d_{2} \otimes d_{3} \oplus d_{Z}$. For $39 \leq d \leq 48$, the results of a computer program, based on the 'probabilistic construction' of theorem 2.1, provide the largest known cubic acute d-sets. Finally, for $d \geq 67$, theorem 2.1 provides the best (probabilistic) lower bound. $\kappa(d)$ is sequence A089676 in Sloane [S].

Best Lower Bounds Known for $\kappa(d)$

	$\kappa(d)$	
0	$=1$	
1	$=2$	
2	$=2$	
3	$=4$	computer, \mathcal{S}_{3}
4	$=5$	computer, \mathcal{S}_{4}
5	$=6$	computer, \mathcal{S}_{5}
6	$=8$	computer, \mathcal{S}_{6}
7	$=9$	computer, \mathcal{S}_{7}
8	$=10$	computer, \mathcal{S}_{8}
9	$=16$	computer, $3 \otimes 3 \oplus 3$
10	≥ 16	
11	≥ 20	$3 \otimes 4 \oplus 4$
12	≥ 25	$4 \otimes 4 \oplus 4$
13	≥ 25	
14	≥ 30	$4 \otimes 5 \oplus 5$
15	≥ 36	$5 \otimes 5 \oplus 5$
16	≥ 40	$4 \otimes 6 \oplus 6$
17	≥ 48	$5 \otimes 6 \oplus 6$
18	≥ 64	$6 \otimes 6 \oplus 6$ or $3 \otimes 3 \otimes 3 \oplus 9$
19	≥ 64	
20	≥ 72	$6 \otimes 7 \oplus 7$
21	≥ 81	$7 \otimes 7 \oplus 7$
22	≥ 81	
23	≥ 100	$3 \otimes 4 \otimes 4 \oplus 12$
24	≥ 125	$4 \otimes 4 \otimes 4 \oplus 12$
25	≥ 144	$7 \otimes 9 \oplus 9$

d	$\kappa(d)$	
26	≥ 160	$8 \otimes 9 \oplus 9$
27	≥ 256	$9 \otimes 9 \oplus 9$
28	≥ 256	
29	≥ 257	theorem 4.1
30	≥ 257	
31	≥ 320	$9 \otimes 11 \oplus 11$
32	≥ 320	
33	≥ 400	$11 \otimes 11 \oplus 11$
34	≥ 400	
35	≥ 500	$11 \otimes 12 \oplus 12$
36	≥ 625	$12 \otimes 12 \oplus 12$
37	≥ 625	
38	≥ 626	theorem 4.1
39	≥ 678	computer
40	≥ 762	computer
41	≥ 871	computer
42	≥ 976	computer
43	≥ 1086	computer
44	≥ 1246	computer
45	≥ 1420	computer
46	≥ 1630	computer
47	≥ 1808	computer
48	≥ 2036	computer
49	≥ 2036	
50	≥ 2037	theorem 4.1
51	≥ 2304	17ه17 $\oplus 17$

d	$\kappa(d)$	
52	≥ 2560	$16 \otimes 18 \oplus 18$
53	≥ 3072	$17 \otimes 18 \oplus 18$
54	≥ 4096	$18 \otimes 18 \oplus 18$ or $9 \otimes 9 \otimes 9 \oplus 27$
55	≥ 4096	
56	≥ 4097	theorem 4.1
57	≥ 4097	
58	≥ 4608	$18 \otimes 20 \oplus 20$
59	≥ 4608	
60	≥ 5184	$20 \otimes 20 \oplus 20$

d	$\kappa(d)$	
61	≥ 5184	
62	≥ 5832	$20 \otimes 21 \oplus 21$
63	≥ 6561	$21 \otimes 21 \oplus 21$
64	≥ 6561	
65	≥ 6562	theorem 4.1
66	≥ 8000	$11 \otimes 11 \otimes 11 \oplus 33$
67	≥ 8342	theorem 2.1
68	≥ 9632	theorem 2.1
69	≥ 11122	theorem 2.1

The following tables summarise the best lower bounds known for $\alpha(d)$. For $3 \leq d \leq 6$, the best lower bound is Danzer and Grünbaum's $2 d-1[\mathrm{DG}]$. For $7 \leq d \leq 26$, the results of a computer program, based on the 'probabilistic construction' but using sets of points close to the surface of the d-sphere, provide the largest known acute d-sets. An acute 7 -set of cardinality 14 and an acute 8 -set of cardinality 16 are displayed. For $27 \leq d \leq 62$, the largest known acute d-set is cubic. Finally, for $d \geq 63$, theorem 3.1 provides the best (probabilistic) lower bound.

Best Lower Bounds Known for $\alpha(d)$

d	$\alpha(d)$	
0	$=1$	
1	$=2$	
2	$=3$	
3	$=5$	[DG]
$4-6$	$\geq 2 d-1$	[DG]
7	≥ 14	computer
8	≥ 16	computer
9	≥ 19	computer
10	≥ 23	computer
11	≥ 26	computer
12	≥ 30	computer
13	≥ 36	computer
14	≥ 42	computer
15	≥ 47	computer

d	$\alpha(d)$	
16	≥ 54	computer
17	≥ 63	computer
18	≥ 71	computer
19	≥ 76	computer
20	≥ 90	computer
21	≥ 103	computer
22	≥ 118	computer
23	≥ 121	computer
24	≥ 144	computer
25	≥ 155	computer
26	≥ 184	computer
$27-62$	$\geq \kappa(d)$	
63	≥ 6636	theorem 3.1

$\alpha(7) \geq 14$
$(62, \quad 9,10,17,38,46)$
$(38,54, \quad 0,19,38,14,25)$
$(60,33,42, \quad 9,48,3,12)$
$(62,35,41,44,16,39,44)$
$(62,34, \quad 7,45,48,37,12)$
$(28,33,42,8,49,39,45)$
$(40,16,22,12, \quad 0, \quad 0,25)$
$(45,17,26,67,25,20,29)$
$(38,6,35,0,32,18,0)$
$(62, \quad 0,42,45,49,3,48)$
$(30, \quad 0,9,44,49,37,48)$
$(0,20,31,27,34,21,28)$
$(48,19,24,22,33,20,73)$
$(43,17,25,27,32,64,19)$

$\alpha(8) \geq 16$
$(34,49,14,51,0,36,46,0)$
$(31,17,14,51, \quad 1,5,44,31)$
$(33,50,48,20,34,35,15,0)$
$(0,16,16,52,32,36,45,0)$
$(37,31,46,52,13, \quad 0,0,22)$
$(2,50,13,52,3,3,46,0)$
$(1,50,48,51,1,5,46,31)$
$(24,0,43, \quad 2,17,20,32,16)$
$(11,49,0,11,19,8,32,19)$
$(0,48,48,52,1,34,12,2)$
$(0,48,47,51,34,37,47,32)$
$(34,49,14,51,34,36,13,34)$
$(0,46,31,0,0,23,29,29)$
$(16,40,29,23,54,3,17,16)$
$(2,15,14,50,2,36,15,33)$
$(12,36,28,30,3,45,48,45)$

6 Generalising $\kappa(d)$

We can understand $\kappa(d)$ to be the size of the largest possible set \mathcal{S} of binary words such that, for any ordered triple of words $(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})$ in \mathcal{S}, there exists an index i for which $\left(\boldsymbol{u}_{i}, \boldsymbol{v}_{i}, \boldsymbol{w}_{i}\right)=(0,1,0)$ or $\left(\boldsymbol{u}_{i}, \boldsymbol{v}_{i}, \boldsymbol{w}_{i}\right)=(1,0,1)$. We can generalise this in the following way:

Definition 6.1 If T_{1}, \ldots, T_{m} are ordered k-tuples from $\{0, \ldots, r-1\}^{k}$ (which we will refer to as the matching k-tuples), then let us define $\kappa \llbracket r, k, T_{1}, \ldots, T_{m} \rrbracket(d)$ to be the size of the largest possible set \mathcal{S} of r-ary words of length d such that, for any ordered k-tuple of words $\left(\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{k}\right)$ in \mathcal{S}, there exist i and $j, 1 \leq i \leq d, 1 \leq j \leq m$, for which $\left(\boldsymbol{w}_{1 i}, \ldots, \boldsymbol{w}_{k i}\right)=$ T_{j}.

Thus we have $\kappa(d)=\kappa \llbracket 2,3,(0,1,0),(1,0,1) \rrbracket(d)$. If the set of matching k-tuples is closed under permutation, we will abbreviate by writing a list of matching multisets of cardinality k, rather than ordered tuples. For example, instead of $\kappa \llbracket 2,3,(0,0,1),(0,1,0),(1,0,0) \rrbracket(d)$, we write $\kappa \llbracket 2,3,\{0,0,1\} \rrbracket(d)$.

We can find probabilistic and, in some cases, constructive lower bounds for general $\kappa \llbracket r, k, T_{1}, \ldots, T_{m} \rrbracket(d)$ using the approaches we used for cubic acute d-sets. To illustrate this, in the remainder of this paper, we will consider the set of problems in which it is simply required that at some index the k-tuple of words be all different (pairwise distinct). First, we express this in a slightly different form.

Let us say that an \boldsymbol{r}-ary \boldsymbol{d}-colouring is some colouring of the integers $1, \ldots, d$ using r colours. Let us also also say that a set \mathcal{R} of r-ary d-colourings is a \boldsymbol{k}-rainbow set, for some $k \leq r$ if for any set $\left\{c_{1}, \ldots, c_{k}\right\}$ of k colourings in \mathcal{R}, there exists some integer t, $1 \leq t \leq d$, for which the colours $c_{1}(t), \ldots, c_{k}(t)$ are all different, i.e. $c_{i}(t) \neq c_{j}(t)$ for any i and $j, 1 \leq i, j \leq k, i \neq j$. For conciseness, we will denote "a k-rainbow set of r-ary d-colourings" by "a $\mathcal{R S C}[k, r, d]$ ".

Let us further say that a set $\left\{c_{1}, \ldots, c_{k}\right\}$ of $k d$-colourings is a good \boldsymbol{k}-set if there exists some integer $t, 1 \leq t \leq d$, for which the colours $c_{1}(t), \ldots, c_{k}(t)$ are all different, and a bad \boldsymbol{k}-set if there exists no such t.

We will denote by $\rho_{r, k}(d)$ the size of the largest possible $\mathcal{R S C}[k, r, d]$, abbreviating $\rho_{k, k}(d)$ by $\rho_{k}(d)$. Now, $\rho_{k}(d)=\kappa \llbracket k, k,\{0,1, \ldots, k-1\} \rrbracket(d)$ and

$$
\rho_{r, k}(d)=\kappa \llbracket r, k,\{0, \ldots, k-1\}, \ldots,\{r-k, \ldots, r-1\} \rrbracket(d),
$$

where the matching multisets are those of cardinality k with k distinct members.
Clearly, $\rho_{r, k}(d) \leq \rho_{r, k}(d+1), \rho_{r, k}(d) \leq \rho_{r+1, k}(d)$ and $\rho_{r, k}(d) \geq \rho_{r, k+1}(d)$. Also, $\rho_{r, 1}(d)$ is undefined because any set of colourings is a 1-rainbow, $\rho_{r, k}(1)=r$ if $k>1$, and $\rho_{r, 2}(d)=r^{d}$ because any two distinct r-ary d-colourings (or r-ary words of length d) differ somewhere.

In the next two sections we will give a number of probabilistic and constructive lower bounds for $\rho_{r, k}(d)$, for various r and k.

7 A probabilistic lower bound for $\rho_{r, k}(d)$

Theorem 7.1

$$
\rho_{r, k}(d) \geq(k-1) m \quad \text { where } m=\left\lfloor\sqrt[k-1]{\frac{k!}{k^{k}}}\left(\sqrt[k-1]{\frac{(r-k)!r^{k}}{(r-k)!r^{k}-r!}}\right)^{d}\right]
$$

Proof: This proof is similar that of theorem 2.1.
Randomly pick a set \mathcal{R} of $k m r$-ary d-colourings, choosing the colours from $\left\{\chi_{0}, \ldots, \chi_{r-1}\right\}$ independently with probability $\operatorname{Pr}\left[c(i)=\chi_{j}\right]=1 / r, 1 \leq i \leq d, 0 \leq j<r$ for every $c \in \mathcal{R}$.

Now the probability that a set of k colourings from \mathcal{R} is a bad k-set is

$$
(1-p)^{d} \quad \text { where } \quad p=\frac{r!/(r-k)!}{r^{k}}
$$

Hence, the expected number of bad k-sets in a set of $k m d$-colourings is $\binom{k m}{k}(1-p)^{d}$. Thus there is some set \mathcal{R} of $k m d$-colourings with no more than $\binom{k m}{k}(1-p)^{d}$ bad k-sets, where

$$
\binom{k m}{k}(1-p)^{d}<\frac{(k m)^{k}}{k!}(1-p)^{d}=m \frac{k^{k}}{k!} m^{k-1}(1-p)^{d} \leq m
$$

by the choice of m.
If we remove one colouring of each bad k-set from \mathcal{R}, the remaining set is a $\mathcal{R S C}[k, r, d]$ of cardinality at least $k m-m=(k-1) m$.

The following results follow directly:

$$
\begin{aligned}
\rho_{3}(d) & \geq 2\left\lfloor\frac{\sqrt{2}}{3}\left(\frac{3}{\sqrt{7}}\right)^{d}\right\rfloor \approx 0.943 \times 1.134^{d} \\
\rho_{4,3}(d) & \geq 2\left\lfloor\frac{\sqrt{2}}{3}\left(\frac{4}{\sqrt{10}}\right)^{d}\right\rfloor \approx 0.943 \times 1.265^{d} \\
\rho_{4}(d) & \geq 3\left\lfloor\sqrt[3]{\frac{3}{32}} \sqrt[3]{\frac{32}{29}}^{d}\right\rfloor \approx 1.363 \times 1.033^{d}
\end{aligned}
$$

8 Constructive lower bounds for $\rho_{r, k}(d)$

In the following proofs, for clarity of exposition, we will represent r-ary d-colourings as r-ary words of length d, e.g. $\mathcal{R}_{3,3,3}=\{000,011,102,121,212,220\}$ represents a 3 -rainbow set of ternary 3 -colourings (using the colours χ_{0}, χ_{1} and χ_{2}). Concatenation of words (colourings) c and c^{\prime} will be written $c . c^{\prime}$.

We begin with a construction that enables us to extend a $\mathcal{R S C}[k, r, d]$ of cardinality n to one of cardinality $n+1$ or greater.

Theorem 8.1 If for some $r \geq k \geq 3$, and some d, we have a $\mathcal{R S C}[k, r, d]$ of cardinality n, and for some $r^{\prime}, k-2 \leq r^{\prime} \leq r-2$, and d^{\prime}, we have a $\mathcal{R S C}\left[k-2, r^{\prime}, d^{\prime}\right]$ of cardinality at least $n-1$, then we can construct a $\mathcal{R S C}\left[k, r, d+d^{\prime}\right]$ of cardinality $N=n-1+r-r^{\prime}$.

Proof: Let $\mathcal{R}=\left\{c_{0}, c_{1}, \ldots, c_{n-1}\right\}$ be a $\mathcal{R S C}[k, r, d]$ of cardinality n (using colours $\left.\chi_{0}, \ldots, \chi_{r-1}\right)$ and $\mathcal{R}^{\prime}=\left\{c_{0}^{\prime}, c_{1}^{\prime}, \ldots, c_{n^{\prime}-1}^{\prime}\right\}$ be a $\mathcal{R S C}\left[k-2, r^{\prime}, d^{\prime}\right]$ of cardinality $n^{\prime} \geq n-1$ (using colours $\chi_{0}, \ldots, \chi_{r^{\prime}-1}$).

Now let $\mathcal{Q}=\left\{q_{0}, q_{1}, \ldots, q_{N-1}\right\}$ be a set of r-ary $\left(d+d^{\prime}\right)$-colourings where $q_{i}=c_{i} . c_{i}^{\prime}$ for $0 \leq i \leq n-2$, and $q_{n-1+j}=c_{n-1} \cdot\left(r^{\prime}+j\right)^{d^{\prime}}$ for $0 \leq j<r-r^{\prime}$, each element of \mathcal{Q} being made by concatenating two component colourings, the first from \mathcal{R} and the second being either from \mathcal{R}^{\prime} or a monochrome colouring.

If $\left\{q_{i_{1}}, \ldots, q_{i_{k}}\right\}$ is a set of colourings in \mathcal{Q} with no more than one of the i_{m} greater than $n-2$, then it is a good k-set because of the first components, since \mathcal{R} is a k-rainbow set.

On the other hand, if $\left\{q_{i_{1}}, \ldots, q_{i_{k}}\right\}$ is a set of colourings in \mathcal{Q} with no more than $k-2$ of the i_{m} less than $n-1$, then it too is a good k-set because of the second components, since \mathcal{R}^{\prime} is a $(k-2)$-rainbow set using colours $\chi_{0}, \ldots, \chi_{r^{\prime}-1}$ and the second components of the colourings with indices greater than $n-2$ are each monochrome of a different colour, drawn from $\chi_{r^{\prime}}, \ldots, \chi_{r-1}$.

Thus \mathcal{Q} is a $\mathcal{R S C}\left[k, r, d+d^{\prime}\right]$ of cardinality N.

Corollary 8.1.1 $\rho_{r, 3}(d+1) \geq \rho_{r, 3}(d)+r-2$.

Proof: This follows from the theorem due to the fact that there is a 1-rainbow set of 1-ary 1-colourings of any cardinality.

Corollary 8.1.2 $\rho_{r, 4}\left(d+\left\lceil\log _{2}\left(\rho_{r, 4}(d)-1\right)\right\rceil\right) \geq \rho_{r, 4}(d)+r-3$.

Proof: Since $\rho_{r, 2}(d)=r^{d}$, we have $\rho_{2,2}\left(d^{\prime}\right) \geq \rho_{r, 4}(d)-1$ iff $d^{\prime} \geq \log _{2}\left(\rho_{r, 4}(d)-1\right)$.

Theorem 8.2 If, for each $s, 1 \leq s \leq m$, we have a $\mathcal{R S C}\left[3, r, d_{s}\right]$ of cardinality n_{s}, where n_{1} is the least of the n_{s}, and if, for some d_{Z}, we have a $\mathcal{R S C}\left[3, r, d_{Z}\right]$ of cardinality n_{Z}, where

$$
n_{Z} \geq \prod_{s=2}^{m}\left(1+2\left\lfloor\frac{n_{s}}{2}\right\rfloor\right)
$$

then a $\mathcal{R S C}[3, r, D]$ of cardinality N can be constructed, where

$$
D=\sum_{s=1}^{m} d_{s}+2 d_{Z} \quad \text { and } \quad N=\prod_{s=1}^{m} n_{s}
$$

This result for 3 -rainbow sets corresponds to theorem 4.3 for cubic acute d-sets. Before we can prove it, we need some further preliminary results.

Definition 8.3 If $n_{1} \leq n_{2} \leq \ldots \leq n_{m}$ and $0 \leq k_{r}<n_{r}$, for each $r, 1 \leq r \leq m$, then let us denote by $\left\langle\left\langle k_{1} k_{2} \ldots k_{m}\right\rangle\right\rangle_{n_{1} n_{2} \ldots n_{m}}^{+}$, the number

$$
\left\langle\left\langle k_{1} k_{2} \ldots k_{m}\right\rangle\right\rangle_{n_{1} n_{2} \ldots n_{m}}^{+}=\sum_{r=2}^{m}\left(\left(k_{r-1}+k_{r} \bmod n_{r}\right) \prod_{s=r+1}^{m} n_{s}\right) .
$$

The definition of $\left\langle\left\langle k_{1} k_{2} \ldots k_{m}\right\rangle\right\rangle_{n_{1} n_{2} \ldots n_{m}}^{+}$is the same as that for $\left\langle\left\langle k_{1} k_{2} \ldots k_{m}\right\rangle\right\rangle_{n_{1} n_{2} \ldots n_{m}}$ (see 4.4), but with addition replacing subtraction. By construction, we have

$$
\left\langle\left\langle k_{1} k_{2} \ldots k_{m}\right\rangle\right\rangle_{n_{1} n_{2} \ldots n_{m}}^{+}<\prod_{r=2}^{m} n_{r}
$$

and, if $2 \leq t \leq m$ and $j_{t-1}+j_{t} \neq k_{t-1}+k_{t}\left(\bmod n_{t}\right)$, then

$$
\left\langle\left\langle j_{1} j_{2} \ldots j_{m}\right\rangle\right\rangle_{n_{1} n_{2} \ldots n_{m}}^{+} \neq\left\langle\left\langle k_{1} k_{2} \ldots k_{m}\right\rangle\right\rangle_{n_{1} n_{2} \ldots n_{m}}^{+}
$$

Lemma 8.4 If $n_{1} \leq n_{2} \leq \ldots \leq n_{m}$, with all the n_{r} odd except perhaps n_{1}, and $0 \leq$ $j_{r}, k_{r}, l_{r}<n_{r}$, for each $r, 1 \leq r \leq m$, and the sequences of j_{r}, k_{r} and l_{r} are neither pairwise identical nor anywhere pairwise distinct, i.e. there is some u, v and w such that $j_{u} \neq k_{u}, k_{v} \neq l_{v}$ and $l_{w} \neq j_{w}$ but no t such that $j_{t} \neq k_{t}, k_{t} \neq l_{t}$ and $l_{t} \neq j_{t}$, then either

$$
\left\langle\left\langle j_{1} \ldots j_{m}\right\rangle\right\rangle_{n_{1} \ldots n_{m}},\left\langle\left\langle k_{1} \ldots k_{m}\right\rangle\right\rangle_{n_{1} \ldots n_{m}},\left\langle\left\langle l_{1} \ldots l_{m}\right\rangle\right\rangle_{n_{1} \ldots n_{m}} \text { are pairwise distinct }
$$

or

$$
\left\langle\left\langle j_{1} \ldots j_{m}\right\rangle\right\rangle_{n_{1} \ldots n_{m}}^{+},\left\langle\left\langle k_{1} \ldots k_{m}\right\rangle\right\rangle_{n_{1} \ldots n_{m}}^{+},\left\langle\left\langle l_{1} \ldots l_{m}\right\rangle\right\rangle_{n_{1} \ldots n_{m}}^{+} \text {are pairwise distinct. }
$$

Proof: Without loss of generality, we can assume that we have $j_{1}=k_{1}$, that $t>1$ is the least integer for which $j_{t} \neq k_{t}$, and that $k_{t}=l_{t}$. We will consider two cases:

Case 1: $k_{t-1} \neq l_{t-1}$
Since $j_{t-1}=k_{t-1} \neq l_{t-1}$ and $j_{t} \neq k_{t}=l_{t}$, we have $j_{t-1}-j_{t} \neq k_{t-1}-k_{t}$ and $k_{t-1}-k_{t} \neq$ $l_{t-1}-l_{t}$, and so $\left\langle\left\langle j_{1} \ldots j_{m}\right\rangle\right\rangle \neq\left\langle\left\langle k_{1} \ldots k_{m}\right\rangle\right\rangle$ and $\left\langle\left\langle k_{1} \ldots k_{m}\right\rangle\right\rangle \neq\left\langle\left\langle l_{1} \ldots l_{m}\right\rangle\right\rangle$. Similarly, $j_{t-1}+j_{t} \neq k_{t-1}+k_{t}$ and $k_{t-1}+k_{t} \neq l_{t-1}+l_{t}$, and so $\left\langle\left\langle j_{1} \ldots j_{m}\right\rangle\right\rangle^{+} \neq\left\langle\left\langle k_{1} \ldots k_{m}\right\rangle^{+}\right.$and $\left\langle\left\langle k_{1} \ldots k_{m}\right\rangle\right\rangle^{+} \neq\left\langle\left\langle l_{1} \ldots l_{m}\right\rangle\right\rangle^{+}$.

If $j_{t-1}-j_{t} \neq l_{t-1}-l_{t}$, then $\left\langle\left\langle j_{1} \ldots j_{m}\right\rangle\right\rangle \neq\left\langle\left\langle l_{1} \ldots l_{m}\right\rangle\right\rangle$. If $j_{t-1}-j_{t}=l_{t-1}-l_{t}$ then $\left(j_{t-1}+j_{t}\right)-\left(l_{t-1}+l_{t}\right)=\left(j_{t-1}-j_{t}+2 j_{t}\right)-\left(l_{t-1}-l_{t}+2 l_{t}\right)=2\left(j_{t}-l_{t}\right) \neq 0\left(\bmod n_{t}\right)$ because $j_{t} \neq l_{t}$ and n_{t} is odd, so $j_{t-1}+j_{t} \neq l_{t-1}+l_{t}$ and $\left\langle\left\langle j_{1} \ldots j_{m}\right\rangle\right\rangle^{+} \neq\left\langle\left\langle l_{1} \ldots l_{m}\right\rangle\right\rangle^{+}$.

Case 2: $k_{t-1}=l_{t-1}$
Since $j_{t-1}=k_{t-1}=l_{t-1}$ and $j_{t} \neq k_{t}=l_{t}$, we have $j_{t-1}-j_{t} \neq k_{t-1}-k_{t}$ and $j_{t-1}-j_{t} \neq l_{t-1}-l_{t}$, and so $\left\langle\left\langle j_{1} \ldots j_{m}\right\rangle\right\rangle \neq\left\langle\left\langle k_{1} \ldots k_{m}\right\rangle\right\rangle$ and $\left\langle\left\langle j_{1} \ldots j_{m}\right\rangle\right\rangle \neq\left\langle\left\langle l_{1} \ldots l_{m}\right\rangle\right\rangle$.

If $k_{1}=l_{1}$, let u be the least integer such that $k_{u} \neq l_{u}$. Since $k_{u-1}=l_{u-1}$, we have $k_{u-1}-k_{u} \neq l_{u-1}-l_{u}$. If $k_{1} \neq l_{1}$, let u be the least integer such that $k_{u}=l_{u}$. Since $k_{u-1} \neq l_{u-1}$, we still have $k_{u-1}-k_{u} \neq l_{u-1}-l_{u}$. Thus, $\left\langle\left\langle k_{1} \ldots k_{m}\right\rangle\right\rangle \neq\left\langle\left\langle l_{1} \ldots l_{m}\right\rangle\right\rangle$.

Proof of Theorem 8.2

Let $n_{1} \leq n_{2} \leq \ldots \leq n_{m}$, and, for each $s, 1 \leq s \leq m$, let $\mathcal{R}_{s}=\left\{c_{0}^{s}, c_{1}^{s}, \ldots, c_{n_{s}-1}^{s}\right\}$ be a $\mathcal{R S C}\left[3, r, d_{s}\right]$ of cardinality n_{s}, and let $n_{s}^{\prime}=1+2\left\lfloor n_{s} / 2\right\rfloor$ be the least odd integer not less than n_{s}. Let $\mathcal{Z}=\left\{z_{0}, z_{1}, \ldots, z_{n_{Z}-1}\right\}$ be a $\mathcal{R S C}\left[3, r, d_{Z}\right]$ of cardinality n_{Z}, where

$$
n_{Z} \geq \prod_{s=2}^{m} n_{s}^{\prime}
$$

and let

$$
D=\sum_{s=1}^{m} d_{s}+2 d_{Z} \quad \text { and } \quad N=\prod_{s=1}^{m} n_{s} .
$$

Now let

$$
\mathcal{Q}=\left\{c_{k_{1}}^{1} \cdot c_{k_{2}}^{2} \ldots c_{k_{m}}^{m} \cdot z_{k_{Z}} \cdot z_{k_{Z}^{+}}: 0 \leq k_{s}<n_{s}, 1 \leq s \leq m\right\}
$$

where $k_{Z}=\left\langle\left\langle k_{1} k_{2} \ldots k_{m}\right\rangle\right\rangle_{n_{1}^{\prime} n_{2}^{\prime} \ldots n_{m}^{\prime}}$ and $k_{Z}^{+}=\left\langle\left\langle k_{1} k_{2} \ldots k_{m}\right\rangle\right\rangle_{n_{1}^{\prime} n_{2}^{\prime} \ldots n_{m}^{\prime}}^{+}$be a set of D colourings of cardinality N, each element of \mathcal{Q} being made by concatenating one colouring from each of the \mathcal{R}_{s} together with two colourings from \mathcal{Z}. (Below, we will denote this construction by $d_{1} \otimes \cdots \otimes d_{m} \oplus d_{Z} \oplus d_{Z}$.)

Let $c_{i_{1}}^{1} \cdot c_{i_{2}}^{2} \ldots c_{i_{m}}^{m} \cdot z_{i_{Z}} \cdot z_{i_{Z}^{+}}, \quad c_{j_{1}}^{1} \cdot c_{j_{2}}^{2} \ldots c_{j_{m}}^{m} \cdot z_{j_{Z}} \cdot z_{j_{Z}^{+}}$and $c_{k_{1}}^{1} \cdot c_{k_{2}}^{2} \ldots c_{k_{m}}^{m} \cdot z_{k_{Z}} \cdot z_{k_{Z}^{+}}$be any three distinct colourings in \mathcal{Q}. If, for some $s, i_{s} \neq j_{s}, j_{s} \neq k_{s}$ and $k_{s} \neq i_{s}$, then these three colourings comprise a good 3 -set because \mathcal{R}_{s} is a 3 -rainbow set.

If, however, there is no s such that i_{s}, j_{s} and k_{s} are all different, then the condition of lemma 8.4 holds, and so either i_{Z}, j_{Z} and k_{Z} are all different, or i_{Z}^{+}, j_{Z}^{+}and k_{Z}^{+}are all different, and the three colourings comprise a good 3 -set because \mathcal{Z} is a 3 -rainbow set.

Thus, any three colourings in \mathcal{Q} comprise a good 3 -set, so \mathcal{Q} is a $\mathcal{R S C}[3, r, D]$ of cardinality N.

Corollary 8.4.1 If $\rho_{r, 3}(d)$ is odd, then $\rho_{r, 3}(4 d) \geq \rho_{r, 3}(d)^{2}$.

Proof: By theorem 8.2 using the construction $d \otimes d \oplus d \oplus d$.

Corollary 8.4.2 $\rho_{r, 3}(4 d+2) \geq \rho_{r, 3}(d)^{2}$.

Proof: By 8.1.1, if $n=\rho_{r, 3}(d)$, we can construct a $\mathcal{R S C}[3, r, d+1]$ of cardinality $n+1 \geq$ $1+2\lfloor n / 2\rfloor$. By theorem 8.2 , we can then construct a $\mathcal{R S C}[3, r, 4 d+2]$ of cardinality n^{2} using the construction $d \otimes d \oplus(d+1) \oplus(d+1)$.

Corollary 8.4.3 $\rho_{3}\left(4^{d}\right) \geq 3^{2^{d}}$.

Proof: By repeated application of 8.4.1 starting with $\rho_{3,3}(1)=3$.
Our final construction enables us to combine k-rainbow sets of r-ary d-colourings for arbitrary k.

Theorem 8.5 If we have a $\mathcal{R S C}\left[k, r, d_{1}\right]$ of cardinality n_{1}, a $\mathcal{R S C}\left[k, r, d_{2}\right]$ of cardinality $n_{2} \geq n_{1}$, and a $\mathcal{R S C}\left[k, r, d_{Z}\right]$ of cardinality $n_{Z} \geq n_{2}$, with n_{Z} coprime to each integer in the range $[2, \ldots, h]$ where $h=\binom{k}{2}-1$, then a $\mathcal{R S C}[k, r, D]$ of cardinality N can be constructed, where $D=d_{1}+d_{2}+h d_{Z}$ and $N=n_{1} n_{2}$.

As before, we first need a preliminary result:

Lemma 8.6 Given distinct pairs of integers (a, b) and (c, d) with $0 \leq a, b, c, d<n$ for some n, and given a positive integer h such that n is coprime to each integer in the range $[2, \ldots, h]$, then if we let $b_{-1}=a$ and $d_{-1}=c$, and $b_{r}=b+r a(\bmod n)$ and $d_{r}=d+r c$ $(\bmod n)$ for $0 \leq r \leq h$, then if $b_{i}=d_{i}$ for some $i,-1 \leq i \leq h$, we have $b_{j} \neq d_{j}$ for all $j \neq i$.

Proof: We consider two cases:
Case 1: $i=-1$
Since $a=c,(b+j a)-(d+j c)=b-d \neq 0(\bmod n)$ since (a, b) and (c, d) are distinct, and b and d both less than n.

Case 2: $i \neq-1$
By the reversing the argument in case $1, a \neq c$, i.e. $b_{-1} \neq d_{-1}$. For $j \geq 0$, since $b+i a=$ $d+i c$, we have $(b+j a)-(d+j c)=(j-i) a-(j-i) c=(j-i)(a-c) \neq 0(\bmod n)$ since $a \neq c$ and $|j-i| \leq h$ so $j-i$ is coprime to n.

Proof of Theorem 8.5

Let $\mathcal{R}_{1}=\left\{c_{0}^{1}, \ldots, c_{n_{1}-1}^{1}\right\}, \mathcal{R}_{2}=\left\{c_{0}^{2}, \ldots, c_{n_{2}-1}^{2}\right\}$ and $\mathcal{Z}=\left\{z_{0}, \ldots, z_{n_{Z}-1}\right\}$ be k-rainbow sets of r-ary $d_{1^{-}}, d_{2^{-}}$and $d_{Z^{\prime}}$-colourings of cardinality n_{1}, n_{2} and n_{Z}, respectively.

Now let

$$
\mathcal{Q}=\left\{c_{i}^{1} \cdot c_{j}^{2} \cdot z_{j+i} \cdot z_{j+2 i} \ldots z_{j+h i}: 0 \leq i<n_{1}, 0 \leq j<n_{2}\right\},
$$

where $h=\binom{k}{2}-1$ and the subscript arithmetic is modulo n_{Z}, be a set of D-colourings of cardinality N, each element of \mathcal{Q} being made by concatenating $h+2$ component colourings: one from \mathcal{R}_{1}, one from \mathcal{R}_{2}, and h from \mathcal{Z}.

Let

$$
\mathcal{S}=\left\{c_{i_{1}}^{1} \cdot c_{j_{1}}^{2} \cdot z_{j_{1}+i_{1}} \ldots z_{j_{1}+h i_{1}}, c_{i_{2}}^{1} \cdot c_{j_{2}}^{2} \cdot z_{j_{2}+i_{2}} \ldots z_{j_{2}+h i_{2}}, \ldots, c_{i_{k}}^{1} \cdot c_{j_{k}}^{2} \cdot z_{j_{k}+i_{k}} \ldots z_{j_{k}+h i_{k}}\right\}
$$

be any set of k distinct colourings in \mathcal{Q}, and let $b_{s,-1}=i_{s}$ and $b_{s, t}=j_{s}+t i_{s}\left(\bmod n_{Z}\right)$, for each s and $t, 1 \leq s \leq k, 0 \leq t \leq h$, so the $s^{\text {th }}$ colouring in \mathcal{S} is $c_{b_{s,-1}}^{1} . c_{b_{s, 0}}^{2} . z_{b_{s, 1}} \ldots z_{b_{s, h}}$.

Now, for any s, s^{\prime} and $t, 1 \leq s, s^{\prime} \leq k,-1 \leq t \leq h$, if $b_{s, t}=b_{s^{\prime}, t}$, then by lemma 8.6 we know that for all $u \neq t, b_{s, u} \neq b_{s^{\prime}, u}$. So for each pair $\left\{s, s^{\prime}\right\}, b_{s, t}=b_{s^{\prime}, t}$ for no more than one value of t. Now there are $h+2$ possible values of t, but only $\binom{k}{2}=h+1$ different pairs $\left\{s, s^{\prime}\right\}$, so there is some t for which $b_{s, t} \neq b_{s^{\prime}, t}$ for all pairs $\left\{s, s^{\prime}\right\}$ and the $(t+2)^{\text {th }}$ component colourings of the elements in \mathcal{S} are all different. Since $\mathcal{R}_{1}, \mathcal{R}_{2}$ and \mathcal{Z} are all k-rainbow sets, we know that \mathcal{S} is a good k-set.

Thus, any k colourings from \mathcal{Q} comprise a good k-set, so \mathcal{Q} is a $\mathcal{R S C}[k, r, D]$ of cardinality N.

Corollary 8.6.1 $\rho_{4}\left(6.7^{d}\right) \geq 7^{2^{d}}$.

Proof: The following 4-rainbow set of 4-ary 6-colourings of cardinality 8 - a version of $\mathcal{R}_{4,4,6}$ (see below) displayed with different symbols for each colour - shows that $\rho_{4}(6) \geq 7$.

The result follows by repeated application of theorem 8.5, noting that 7 is coprime to 2 , 3,4 and $5=\binom{4}{2}-1$.

9 Lower bounds for $\rho_{r, k}(d)$ for small r, k and d

We conclude with tables of the best lower bounds known for $\rho_{3}(d), \rho_{4,3}(d)$ and $\rho_{4}(d)$ for small d. For very small d, exhaustive computer searches have determined the values of $\rho_{r, k}(d)$. For other small values of d, the constructions used in theorems 8.2 and 8.5 provide the largest known rainbow sets. In the tables, these constructions are denoted $d_{1} \otimes d_{2} \oplus d_{Z} \oplus d_{Z}$, etc., with superscript minus signs (d^{-}) to denote the removal of a single colouring from a largest rainbow set of d-colourings (to satisfy the requirement that the cardinality be odd). For $\rho_{3}(d)$, the probabilistic lower bound of theorem 7.1 is better than the constructions for $d \geq 71$; for $\rho_{4,3}(d)$, this is the case for $d \geq 26$.

Some k-rainbow sets of r-ary d-colourings, for small k, r and d

$\begin{array}{\|c\|} \hline \mathcal{R}_{3,3,3} \\ \rho_{3}(3) \geq 6 \\ \hline \end{array}$	$\begin{gathered} \mathcal{R}_{3,3,6} \\ \rho_{3}(6) \geq 13 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \mathcal{R}_{4,3,3} \\ \rho_{4,3}(3) \geq 9 \\ \hline \end{array}$	$\begin{gathered} \mathcal{R}_{4,3,4} \\ \rho_{4,3}(4) \geq 16 \\ \hline \end{gathered}$	$\mathcal{R}_{4,4,6}$ $\rho_{4}(6) \geq 8$
000	000000	000	0000	000000
011	000111	011	0011	011111
102	000222	022	0102	101222
121	011012	103	0220	112033
212	022120	131	1013	220312
220	101120	213	1212	233103
	112021	232	1230	323230
	112102	323	1302	332321
	112210	330	2031	
	120012		2103	
	202012		2121	
	210120		2320	
	221201		3113	
			3231	
			3322	
			3333	

Best Lower Bounds Known for $\rho_{3}(d)$ and $\rho_{4,3}(d)$

d		$\rho_{3}(d)$	d		$\rho_{4,3}(d)$
1	$=3$		1	$=4$	
2	$=4$	computer, 8.1.1	2	$=6$	computer, 8.1.1
3	$=6$	computer, $\mathcal{R}_{3,3,3}$	3	$=9$	computer, $\mathcal{R}_{4,3,3}$
4	$=9$	computer, $1 \otimes 1 \oplus 1 \oplus 1$	4	$=16$	computer, $\mathcal{R}_{4,3,4}$
5	$=10$	computer, 8.1.1	5	≥ 18	8.1.1
6	$=13$	computer, $\mathcal{R}_{3,3,6}$	6	≥ 20	8.1.1
7	≥ 14	8.1.1	7	≥ 22	8.1.1
8	≥ 15	8.1.1	8	≥ 25	$2^{-} \otimes 2^{-} \oplus 2 \oplus 2$
9	≥ 16	8.1.1	9	≥ 27	8.1.1
10	≥ 17	8.1.1	10	≥ 36	$1 \otimes 3 \oplus 3 \oplus 3$ or $2 \otimes 2 \oplus 3 \oplus 3$
11	≥ 27	$1 \otimes 1 \otimes 1 \oplus 4 \oplus 4$	11	≥ 54	$2 \otimes 3 \oplus 3 \oplus 3$
12	≥ 28	8.1.1	12	≥ 81	$3 \otimes 3 \oplus 3 \oplus 3$
13	≥ 29	8.1.1	13	≥ 83	8.1.1
14	≥ 36	$2 \otimes 4 \oplus 4 \oplus 4$	14	≥ 90	$2 \otimes 4^{-} \oplus 4 \oplus 4$
15	≥ 54	$3 \otimes 4 \oplus 4 \oplus 4$	15	≥ 135	$3 \otimes 4^{-} \oplus 4 \oplus 4$
16	≥ 81	$4 \otimes 4 \oplus 4 \oplus 4$	16	≥ 225	$4^{-} \otimes 4^{-} \oplus 4 \oplus 4$
\cdots	\cdots		\cdots	\cdots	
70	≥ 6723	$16 \otimes 18 \oplus 18 \oplus 18$	25	≥ 363	8.1.1
71	≥ 7064	theorem 7.1	26	≥ 424	theorem 7.1

Best Lower Bounds Known for $\rho_{4}(d)$

d	$\rho_{4}(d)$	
1	$=4$	
2	$=4$	computer
3	$=5$	computer, 8.1 .2
4	$=5$	computer
5	$=6$	computer, 8.1 .2
6	$=8$	computer, $\mathcal{R}_{4,4,6}$
\cdots	\cdots	
42	≥ 49	$6^{-} \oplus 6^{-} \oplus 6^{-} \oplus 6^{-} \oplus 6^{-} \oplus 6^{-} \oplus 6^{-}$

Acknowledgements

The author would like to thank Günter Ziegler for his encouragement and helpful comments on earlier drafts of this paper.

References

[AZ2] M. Aigner and G. M. Ziegler, Proofs from THE BOOK. 2nd ed. Springer-Verlag (2001) 76-77.
[AZ3] M. Aigner and G. M. Ziegler, Proofs from THE BOOK. 3rd ed. Springer-Verlag (2003) 82-83.
[DG] L. Danzer and B. Grünbaum, Über zwei Probleme bezüglich konvexer Körper von P. Erdős und von V. L. Klee, Math. Zeitschrift 79 (1962) 95-99.
[EF] P. Erdős and Z. Füredi, The greatest angle among n points in the d-dimensional Euclidean space, Annals of Discrete Math. 17 (1983) 275-283.
[S] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at www.research.att.com $/ \sim$ njas/sequences.

