Sets of Points Determining Only Acute Angles and Some Related Colouring Problems

David Bevan

Fernwood, Leaford Crescent, Watford, Herts. WD24 5TW England dbevan@emtex.com

Submitted: Jan 20, 2004; Accepted: Feb 7, 2006; Published: Feb 15, 2006 Mathematics Subject Classifications: 05D40, 51M16

Abstract

We present both probabilistic and constructive lower bounds on the maximum size of a set of points $S \subseteq \mathbb{R}^d$ such that every angle determined by three points in S is acute, considering especially the case $S \subseteq \{0,1\}^d$. These results improve upon a probabilistic lower bound of Erdős and Füredi. We also present lower bounds for some generalisations of the acute angles problem, considering especially some problems concerning colourings of sets of integers.

1 Introduction

Let us say that a set of points $S \subseteq \mathbb{R}^d$ is an **acute d-set** if every angle determined by a triple of S is acute $(<\frac{\pi}{2})$. Let us also say that S is a **cubic acute d-set** if S is an acute **d-set** and is also a subset of the unit **d-cube** (i.e. $S \subseteq \{0,1\}^d$).

Let us further say that a triple $u, v, w \in \mathbb{R}^d$ is an **acute triple**, a **right triple**, or an **obtuse triple**, if the angle determined by the triple with apex v is less than $\frac{\pi}{2}$, equal to $\frac{\pi}{2}$, or greater than $\frac{\pi}{2}$, respectively. Note that we consider the triples u, v, w and w, v, u to be the same.

We will denote by $\alpha(d)$ the size of a largest possible acute d-set. Similarly, we will denote by $\kappa(d)$ the size of a largest possible cubic acute d-set. Clearly $\kappa(d) \leq \alpha(d)$, $\kappa(d) \leq \kappa(d+1)$ and $\alpha(d) \leq \alpha(d+1)$ for all d.

In [EF], Paul Erdős and Zoltán Füredi gave a probabilistic proof that $\kappa(d) \geq \left\lfloor \frac{1}{2} \left(\frac{2}{\sqrt{3}} \right)^d \right\rfloor$ (see also [AZ2]). This disproved an earlier conjecture of Ludwig Danzer and Branko Grünbaum [DG] that $\alpha(d) = 2d - 1$.

In the following two sections we give improved probabilistic lower bounds for $\kappa(d)$ and $\alpha(d)$. In section 4 we present a construction that gives further improved lower bounds for $\kappa(d)$ for small d. In section 5, we tabulate the best lower bounds known for $\kappa(d)$ and $\alpha(d)$ for small d. Finally, in sections 6–9, we give probabilistic and constructive lower bounds for some generalisations of $\kappa(d)$, considering especially some problems concerning colourings of sets of integers.

2 A probabilistic lower bound for $\kappa(d)$

Theorem 2.1

$$\kappa(d) \geq 2 \left| \frac{\sqrt{6}}{9} \left(\frac{2}{\sqrt{3}} \right)^d \right| \approx 0.544 \times 1.155^d.$$

For large d, this improves upon the result of Erdős and Füredi by a factor of $\frac{4\sqrt{6}}{9} \approx 1.089$. This is achieved by a slight improvement in the choice of parameters. This proof can also be found in [AZ3].

Proof: Let $m = \left\lfloor \frac{\sqrt{6}}{9} \left(\frac{2}{\sqrt{3}} \right)^d \right\rfloor$ and randomly pick a set \mathcal{S} of 3m point vectors from the vertices of the d-dimensional unit cube $\{0,1\}^d$, choosing the coordinates independently with probability $\Pr[\boldsymbol{v}_i = 0] = \Pr[\boldsymbol{v}_i = 1] = \frac{1}{2}, 1 \leq i \leq d$, for every $\boldsymbol{v} = (\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_d) \in \mathcal{S}$.

Now every angle determined by a triple of points from S is non-obtuse $(\leq \frac{\pi}{2})$, and a triple of vectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ from S is a right triple iff the scalar product $\langle \boldsymbol{u} - \boldsymbol{v}, \boldsymbol{w} - \boldsymbol{v} \rangle$ vanishes, i.e. iff either $\boldsymbol{u}_i - \boldsymbol{v}_i = 0$ or $\boldsymbol{w}_i - \boldsymbol{v}_i = 0$ for each $i, 1 \leq i \leq d$.

Thus $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ is a right triple iff $\boldsymbol{u}_i, \boldsymbol{v}_i, \boldsymbol{w}_i$ is neither 0, 1, 0 nor 1, 0, 1 for any $i, 1 \leq i \leq d$. Since $\boldsymbol{u}_i, \boldsymbol{v}_i, \boldsymbol{w}_i$ can take eight different values, this occurs independently with probability $\frac{3}{4}$ for each i, so the probability that a triple of \mathcal{S} is a right triple is $\left(\frac{3}{4}\right)^d$.

Hence, the expected number of right triples in a set of 3m vectors is $3\binom{3m}{3}\left(\frac{3}{4}\right)^d$. Thus there is *some* set S of 3m vectors with no more than $3\binom{3m}{3}\left(\frac{3}{4}\right)^d$ right triples, where

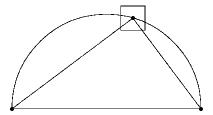
$$3\binom{3m}{3}\left(\frac{3}{4}\right)^d < 3\frac{(3m)^3}{6}\left(\frac{3}{4}\right)^d = m\left(\frac{9m}{\sqrt{6}}\right)^2\left(\frac{3}{4}\right)^d \le m$$

by the choice of m.

If we remove one point of each right triple from S, the remaining set is a cubic acute d-set of cardinality at least 3m - m = 2m.

3 A probabilistic lower bound for $\alpha(d)$

We can improve the lower bound in theorem 2.1 for non-cubic acute d-sets by a factor of $\sqrt{2}$ by slightly perturbing the points chosen away from the vertices of the unit cube. The intuition behind this is that a small random symmetrical perturbation of the points in a right triple is more likely than not to produce an acute triple, as the following diagram suggests.



Theorem 3.1

$$\alpha(d) \ge 2 \left| \frac{1}{3} \left(\frac{2}{\sqrt{3}} \right)^{d+1} \right| \approx 0.770 \times 1.155^d.$$

Before we can prove this theorem, we need some results concerning continuous random variables.

Definition 3.2 If $F(x) = \Pr[X \le x]$ is the cumulative distribution function of a continuous random variable X, let $\overline{F}(x)$ denote $\Pr[X \ge x] = 1 - F(x)$.

Definition 3.3 Let us say that a continuous random variable X has **positive bias** if, for all t, $\Pr[X \ge t] \ge \Pr[X \le -t]$, i.e. $\overline{F}(t) \ge F(-t)$.

Property 3.3.1 If a continuous random variable X has positive bias, it follows that $\Pr[X > 0] \ge \frac{1}{2}$.

Property 3.3.2 To show that a continuous random variable X has positive bias, it suffices to demonstrate that the condition $\overline{F}(t) \geq F(-t)$ holds for all **positive** t.

Lemma 3.4 If X and Y are independent continuous random variables with positive bias, then X + Y also has positive bias.

Proof: Let f, g and h be the probability density functions, and F, G and H the cumulative distribution functions, for X, Y and X + Y respectively. Then,

$$\overline{H}(t) - H(-t) = \iint_{x+y \ge t} f(x)g(y) \, \mathrm{d}y \, \mathrm{d}x - \iint_{x+y \le -t} f(x)g(y) \, \mathrm{d}y \, \mathrm{d}x$$

$$= \iint_{x+y \ge t} f(x)g(y) \, \mathrm{d}y \, \mathrm{d}x - \iint_{y-x \ge t} f(x)g(y) \, \mathrm{d}y \, \mathrm{d}x$$

$$+ \iint_{y-x \ge t} f(x)g(y) \, \mathrm{d}y \, \mathrm{d}x - \iint_{x+y \le -t} f(x)g(y) \, \mathrm{d}y \, \mathrm{d}x$$

$$= \int_{-\infty}^{\infty} g(y) \left[\overline{F}(t-y) - F(y-t) \right] \, \mathrm{d}y$$

$$+ \int_{-\infty}^{\infty} f(x) \left[\overline{G}(x+t) - G(-x-t) \right] \, \mathrm{d}x$$

which is non-negative because f(t), g(t), $\overline{F}(t) - F(-t)$ and $\overline{G}(t) - G(-t)$ are all non-negative for all t.

Definition 3.5 Let us say that a continuous random variable X is ϵ -uniformly distributed for some $\epsilon > 0$ if X is uniformly distributed between $-\epsilon$ and ϵ .

Let us denote by j, the probability density function of an ϵ -uniformly distributed random variable:

$$j(x) = \begin{cases} \frac{1}{2\epsilon} & -\epsilon \le x \le \epsilon \\ 0 & \text{otherwise} \end{cases}$$

and by J, its cumulative distribution function:

$$J(x) = \begin{cases} 0 & x < -\epsilon \\ \frac{1}{2} + \frac{x}{2\epsilon} & -\epsilon \le x \le \epsilon \\ 1 & x > \epsilon \end{cases}$$

Property 3.5.1 If X is an ϵ -uniformly distributed random variable, then so is -X.

Lemma 3.6 If X, Y and Z are independent ϵ -uniformly distributed random variables for some $\epsilon < \frac{1}{2}$, then U = (Y - X)(1 + Z - X) has positive bias.

Proof: Let G be the cumulative distribution function of U. By 3.3.2, it suffices to show that $\overline{G}(u) - G(-u) \ge 0$ for all positive u.

Let u be positive. Because 1+Z-X is always positive, $U\geq u$ iff Y>X and $Z\geq -1+X+\frac{u}{Y-X}$. Similarly, $U\leq -u$ iff X>Y and $Z\geq -1+X+\frac{u}{X-Y}$. So,

$$\overline{G}(u) - G(-u) = \iint_{y>x} j(x)j(y)\overline{J}(-1 + x + \frac{u}{y-x}) \, \mathrm{d}y \, \mathrm{d}x$$

$$- \iint_{x>y} j(x)j(y)\overline{J}(-1 + x + \frac{u}{x-y}) \, \mathrm{d}y \, \mathrm{d}x$$

$$= \iint_{y>x} j(x)j(y) \left[J(1 - x - \frac{u}{y-x}) - J(1 - y - \frac{u}{y-x}) \right] \, \mathrm{d}y \, \mathrm{d}x$$
(because $\overline{J}(x) = J(-x)$, and by variable renaming)

which is non-negative because j is non-negative and J is non-decreasing (so the expression in square brackets is non-negative over the domain of integration).

Corollary 3.6.1 If X, Y and Z are independent ϵ -uniformly distributed random variables for some $\epsilon < \frac{1}{2}$, then (Y - X)(Z - X - 1) has positive bias.

Proof:
$$(Y - X)(Z - X - 1) = ((-Y) - (-X))(1 + (-Z) - (-X))$$
. The result follows from 3.5.1 and lemma 3.6.

Lemma 3.7 If X, Y and Z are independent ϵ -uniformly distributed random variables, then V = (Y - X)(Z - X) has positive bias.

Proof: Let H be the cumulative distribution function of V. By 3.3.2, it suffices to show that $\overline{H}(v) - H(-v) \ge 0$ for all positive v.

Let v be positive. $V \ge v$ iff Y > X and $Z \ge X + \frac{v}{Y - X}$ or Y < X and $Z \le X + \frac{v}{Y - X}$. Similarly, $V \le -v$ iff Y > X and $Z \le X - \frac{v}{Y - X}$ or Y < X and $Z \ge X - \frac{v}{Y - X}$. So,

$$\overline{H}(v) - H(-v) = \iint_{y>x} j(x)j(y)\overline{J}(x + \frac{v}{y-x}) \,\mathrm{d}y \,\mathrm{d}x$$

$$+ \iint_{y

$$- \iint_{y>x} j(x)j(y)\overline{J}(x - \frac{v}{y-x}) \,\mathrm{d}y \,\mathrm{d}x$$

$$- \iint_{y

$$= \iint_{y>x} j(x)j(y) \left[J(-x - \frac{v}{y-x}) - J(-y - \frac{v}{y-x}) \right] \,\mathrm{d}y \,\mathrm{d}x$$

$$+ \iint_{y
(because $\overline{J}(x) = J(-x)$, and by variable renaming)$$$$$$

pages is non-negative and Lignon decreasing (so the suppose

which is non-negative because j is non-negative and J is non-decreasing (so the expressions in square brackets are non-negative over the domains of integration).

We are now in a position to prove the theorem.

Proof of theorem 3.1

Let $m = \left\lfloor \frac{1}{3} \left(\frac{2}{\sqrt{3}} \right)^{d+1} \right\rfloor$, and randomly pick a set S of 3m point vectors, $\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_{3m}$, from the vertices of the d-dimensional unit cube $\{0,1\}^d$, choosing the coordinates independently with probability $\Pr[\boldsymbol{v}_{ki} = 0] = \Pr[\boldsymbol{v}_{ki} = 1] = \frac{1}{2}$ for every $\boldsymbol{v}_k = (\boldsymbol{v}_{k1}, \boldsymbol{v}_{k2}, \dots, \boldsymbol{v}_{kd})$, $1 \le k \le 3m$, $1 \le i \le d$.

Now for some ϵ , $0 < \epsilon < \frac{1}{2(d+1)}$, randomly pick 3m vectors, $\boldsymbol{\delta}_1, \boldsymbol{\delta}_2, \ldots, \boldsymbol{\delta}_{3m}$, from the d-dimensional cube $[-\epsilon, \epsilon]^d$ of side 2ϵ centred on the origin, choosing the coordinates $\boldsymbol{\delta}_{ki}$, $1 \le k \le 3m$, $1 \le i \le d$, independently so that they are ϵ -uniformly distributed, and let $\mathcal{S}' = \{\boldsymbol{v}_1', \boldsymbol{v}_2', \ldots, \boldsymbol{v}_{3m}'\}$ where $\boldsymbol{v}_k' = \boldsymbol{v}_k + \boldsymbol{\delta}_k$ for each k, $1 \le k \le 3m$.

Case 1: Acute triples in S

Because $\epsilon < \frac{1}{2(d+1)}$, if $\boldsymbol{v}_j, \boldsymbol{v}_k, \boldsymbol{v}_l$ is an acute triple in \mathcal{S} , the scalar product $\langle \boldsymbol{v}_j' - \boldsymbol{v}_k', \boldsymbol{v}_l' - \boldsymbol{v}_k' \rangle > \frac{1}{(d+1)^2}$, so $\boldsymbol{v}_j', \boldsymbol{v}_k', \boldsymbol{v}_l'$ is also an acute triple in \mathcal{S}' .

Case 2: Right triples in S

If, $\mathbf{v}_j, \mathbf{v}_k, \mathbf{v}_l$ is a right triple in \mathcal{S} then the scalar product $\langle \mathbf{v}_j - \mathbf{v}_k, \mathbf{v}_l - \mathbf{v}_k \rangle$ vanishes, i.e. either $\mathbf{v}_{j_i} - \mathbf{v}_{ki} = 0$ or $\mathbf{v}_{li} - \mathbf{v}_{ki} = 0$ for each $i, 1 \leq i \leq d$. There are six possibilities for each triple of coordinates:

$oldsymbol{v}_{j_i}, oldsymbol{v}_{ki}, oldsymbol{v}_{li}$	$(oldsymbol{v}'_{j_i} - oldsymbol{v}'_{ki})(oldsymbol{v}'_{li} - oldsymbol{v}'_{ki})$
0, 0, 0	$(oldsymbol{\delta}_{j_i} - oldsymbol{\delta}_{ki}) (oldsymbol{\delta}_{li} - oldsymbol{\delta}_{ki})$
1, 1, 1	$(oldsymbol{\delta_{j}}_i - oldsymbol{\delta_{ki}}) (oldsymbol{\delta_{li}} - oldsymbol{\delta_{ki}})$
0, 0, 1	$(oldsymbol{\delta}_{j_i} - oldsymbol{\delta}_{ki})(1 + oldsymbol{\delta}_{li} - oldsymbol{\delta}_{ki})$
1, 0, 0	$(\boldsymbol{\delta}_{li} - \boldsymbol{\delta}_{ki})(1 + \boldsymbol{\delta}_{j_i} - \boldsymbol{\delta}_{ki})$
0, 1, 1	$(\boldsymbol{\delta}_{li} - \boldsymbol{\delta}_{ki})(\boldsymbol{\delta}_{j_i} - \boldsymbol{\delta}_{ki} - 1)$
1, 1, 0	$(oldsymbol{\delta}_{j_i} - oldsymbol{\delta}_{ki})(oldsymbol{\delta}_{li} - oldsymbol{\delta}_{ki} - 1)$

Now, the values of the $\boldsymbol{\delta}_{ki}$ are independent and ϵ -uniformly distributed, so by lemmas 3.7 and 3.6 and corollary 3.6.1, the distribution of the $(\boldsymbol{v}'_{j_i} - \boldsymbol{v}'_{k_i})(\boldsymbol{v}'_{l_i} - \boldsymbol{v}'_{k_i})$ has positive bias, and by repeated application of lemma 3.4, the distribution of the scalar product $\langle \boldsymbol{v}'_j - \boldsymbol{v}'_k, \boldsymbol{v}'_l - \boldsymbol{v}'_k \rangle = \sum_{i=1}^d (\boldsymbol{v}'_{j_i} - \boldsymbol{v}'_{k_i})(\boldsymbol{v}'_{l_i} - \boldsymbol{v}'_{k_i})$ also has positive bias.

Thus, if v_j, v_k, v_l is a right triple in S, then, by 3.3.1,

$$\Pr\left[\langle oldsymbol{v}_j' - oldsymbol{v}_k', oldsymbol{v}_l' - oldsymbol{v}_k'
angle > 0
ight] \ \geq \ rac{1}{2},$$

so the probability that the triple v'_j, v'_k, v'_l is an acute triple in S' is at least $\frac{1}{2}$.

As in the proof of theorem 2.1, the expected number of right triples in \mathcal{S} is $3\binom{3m}{3}\left(\frac{3}{4}\right)^d$, so the expected number of non-acute triples in \mathcal{S}' is no more than half this value. Thus there is *some* set \mathcal{S}' of 3m vectors with no more than $\frac{3}{2}\binom{3m}{3}\left(\frac{3}{4}\right)^d$ non-acute triples, where

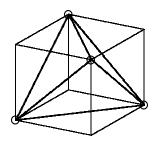
$$\frac{3}{2} {3m \choose 3} \left(\frac{3}{4}\right)^d < \frac{3}{2} \frac{(3m)^3}{6} \left(\frac{3}{4}\right)^d = m(3m)^2 \left(\frac{3}{4}\right)^{d+1} \le m$$

by the choice of m.

If we remove one point of each non-acute triple from S', the remaining set is an acute d-set of cardinality at least 3m - m = 2m.

4 Constructive lower bounds for $\kappa(d)$

In the following proofs, for clarity of exposition, we will represent point vectors in $\{0, 1\}^d$ as binary words of length d, e.g. $S_3 = \{000, 011, 101, 110\}$ represents a cubic acute 3-set.



Concatenation of words (vectors) \boldsymbol{v} and \boldsymbol{v}' will be written $\boldsymbol{v}\boldsymbol{v}'$.

We begin with a simple construction that enables us to extend a cubic acute d-set of cardinality n to a cubic acute (d+2)-set of cardinality n+1.

Theorem 4.1

$$\kappa(d+2) \geq \kappa(d) + 1$$

Proof: Let $S = \{\boldsymbol{v}_0, \boldsymbol{v}_1, \dots, \boldsymbol{v}_{n-1}\}$ be a cubic acute d-set of cardinality $n = \kappa(d)$. Now let $S' = \{\boldsymbol{v}_0', \boldsymbol{v}_1', \dots, \boldsymbol{v}_n'\} \subseteq \{0, 1\}^{d+2}$ where $\boldsymbol{v}_i' = \boldsymbol{v}_i 00$ for $0 \le i \le n-2$, $\boldsymbol{v}_{n-1}' = \boldsymbol{v}_{n-1} 10$ and $\boldsymbol{v}_n' = \boldsymbol{v}_{n-1} 01$.

If $\mathbf{v}_i', \mathbf{v}_j', \mathbf{v}_k'$ is a triple of distinct points in \mathcal{S}' with no more than one of i, j and k greater than n-2, then $\mathbf{v}_i', \mathbf{v}_j', \mathbf{v}_k'$ is an acute triple, because \mathcal{S} is an acute d-set. Also, any triple $\mathbf{v}_k', \mathbf{v}_{n-1}', \mathbf{v}_n'$ or $\mathbf{v}_k', \mathbf{v}_n', \mathbf{v}_{n-1}'$ is an acute triple, because its (d+1)th or (d+2)th coordinates (respectively) are 0, 1, 0. Finally, for any triple $\mathbf{v}_{n-1}', \mathbf{v}_k', \mathbf{v}_n'$, if \mathbf{v}_k and \mathbf{v}_{n-1} differ in the rth coordinate, then the rth coordinates of $\mathbf{v}_{n-1}', \mathbf{v}_k', \mathbf{v}_n'$ are 0, 1, 0 or 1, 0, 1. Thus, \mathcal{S}' is a cubic acute (d+2)-set of cardinality n+1.

Our second construction combines cubic acute d-sets of cardinality n to make a cubic acute 3d-set of cardinality n^2 .

Theorem 4.2

$$\kappa(3d) \geq \kappa(d)^2$$
.

Proof: Let $S = \{v_0, v_1, \dots, v_{n-1}\}$ be a cubic acute d-set of cardinality $n = \kappa(d)$, and let

$$T = \{ w_{ij} = v_i v_j v_{j-i \mod n} : 0 \le i, j \le n-1 \},$$

each w_{ij} being made by concatenating three of the v_i .

Let $\boldsymbol{w}_{ps}, \boldsymbol{w}_{qt}, \boldsymbol{w}_{ru}$ be any triple of distinct points in \mathcal{T} . They constitute an acute triple iff the scalar product $\langle \boldsymbol{w}_{ps} - \boldsymbol{w}_{qt}, \boldsymbol{w}_{ru} - \boldsymbol{w}_{qt} \rangle$ does not vanish (is positive). Now,

$$egin{array}{lll} \left\langle oldsymbol{w}_{ps} - oldsymbol{w}_{qt}, oldsymbol{w}_{ru} - oldsymbol{w}_{qt}
ight
angle & = & \left\langle oldsymbol{v}_{p} oldsymbol{v}_{s-p} - oldsymbol{v}_{q} oldsymbol{v}_{t-q}, oldsymbol{v}_{r} oldsymbol{v}_{u} oldsymbol{v}_{u-r} - oldsymbol{v}_{q} oldsymbol{v}_{t-q}
ight
angle \\ & & + \left\langle oldsymbol{v}_{s} - oldsymbol{v}_{t}, oldsymbol{v}_{u} - oldsymbol{v}_{t}
ight
angle \\ & & + \left\langle oldsymbol{v}_{s-p} - oldsymbol{v}_{t-q}, oldsymbol{v}_{u-r} - oldsymbol{v}_{t-q}
ight
angle \\ & & + \left\langle oldsymbol{v}_{s-p} - oldsymbol{v}_{t-q}, oldsymbol{v}_{u-r} - oldsymbol{v}_{t-q}
ight
angle \end{array}$$

with all the index arithmetic modulo n.

If both $p \neq q$ and $q \neq r$, then the first component of this sum is positive, because \mathcal{S} is an acute d-set. Similarly, if both $s \neq t$ and $t \neq u$, then the second component is positive. Finally, if p = q and t = u, then $q \neq r$ and $s \neq t$ or else the points would not be distinct, so the third component, $\langle \mathbf{v}_{s-p} - \mathbf{v}_{t-q}, \mathbf{v}_{u-r} - \mathbf{v}_{t-q} \rangle$ is positive. Similarly if q = r and s = t.

Thus, all triples in \mathcal{T} are acute triples, so \mathcal{T} is a cubic acute 3d-set of cardinality n^2 . \square

Corollary 4.2.1 $\kappa(3^d) \ge 2^{2^d}$.

Proof: By repeated application of theorem 4.2 starting with S_3 , a cubic acute 3-set of cardinality 4.

Corollary 4.2.2 If $d \geq 3$,

$$\kappa(d) \ge 10^{\frac{(d+1)^{\mu}}{4}} \approx 1.778^{(d+1)^{0.631}} \qquad where \ \mu = \frac{\log 2}{\log 3}.$$

For small d, this is a tighter bound than theorem 2.1.

Proof: By induction on d. For $3 \le d \le 8$, we have the following cubic acute d-sets (S_3, \ldots, S_8) that satisfy this lower bound for $\kappa(d)$ (with equality for d = 8):

$S_3: \kappa(3) \geq 4$	$\mathcal{S}_4: \kappa(4) \geq 5$	$S_5: \kappa(5) \geq 6$		
000	0000	00000		
011	0011	00011		
101	0101	00101		
110	1001	01001		
	1110	10001		
		11110		
$S_6: \kappa(6) \geq 8$	$\mathcal{S}_7: \kappa(7) \ge 9$	$S_8: \kappa(8) \geq 10$		
000000	0000000	00000000		
000111	0000011	00000011		
011001	0001101	00000101		
011110	0110001	00011001		
101010	0111110	01100001		
101101	1010101	01111110		
110011	1011010	10101001		
110100	1100110	10110110		
	1101001	11001110		

If
$$\kappa(d) \geq 10^{\frac{(d+1)^{\mu}}{4}}$$
, then $\kappa(3d) \geq \kappa(d)^2$ by theorem 4.2
$$\geq 10^{\frac{2(d+1)^{\mu}}{4}}$$
 by the induction hypothesis
$$= 10^{\frac{(3d+3)^{\mu}}{4}}$$
 because $3^{\mu} = 2$.

So, since $\kappa(3d+2) \ge \kappa(3d+1) \ge \kappa(3d)$, if the lower bound is satisfied for d, it is also satisfied for 3d, 3d+1 and 3d+2.

11010001

Theorem 4.3 If, for each r, $1 \le r \le m$, we have a cubic acute d_r -set of cardinality n_r , where n_1 is the least of the n_r , and if, for some dimension d_Z , we have a cubic acute d_Z -set of cardinality n_Z , where

$$n_Z \ge \prod_{r=2}^m n_r,$$

then a cubic acute D-set of cardinality N can be constructed, where

$$D = \sum_{r=1}^{m} d_r + d_Z \quad and \quad N = \prod_{r=1}^{m} n_r.$$

This result generalises theorem 4.2, but before we can prove it, we first need some preliminary results.

Definition 4.4 If $n_1 \leq n_2 \leq \ldots \leq n_m$ and $0 \leq k_r < n_r$, for each $r, 1 \leq r \leq m$, then let us denote by $\langle \langle k_1 k_2 \ldots k_m \rangle \rangle_{n_1 n_2 \ldots n_m}$, the number

$$\langle\!\langle k_1 k_2 \dots k_m \rangle\!\rangle_{n_1 n_2 \dots n_m} = \sum_{r=2}^m \left((k_{r-1} - k_r \bmod n_r) \prod_{s=r+1}^m n_s \right).$$

Where the n_r can be inferred from the context, $\langle\langle k_1 k_2 \dots k_m \rangle\rangle$ may be used instead of $\langle\langle k_1 k_2 \dots k_m \rangle\rangle_{n_1 n_2 \dots n_m}$.

The expression $\langle\langle k_1 k_2 \dots k_m \rangle\rangle_{n_1 n_2 \dots n_m}$ can be understood as representing a number in a number system where the radix for each digit is a different n_r — like the old British monetary system of pounds, shillings and pennies — and the digits are the difference of two adjacent $k_r \pmod{n_r}$. For example,

$$\langle \langle 2053 \rangle \rangle_{4668} = [2-0]_6[0-5]_6[5-3]_8 = 2 \times 6 \times 8 + 1 \times 8 + 2 = 106,$$

where $[a_2]_{n_2} \dots [a_m]_{n_m}$ is place notation with the n_r the radix for each place.

By construction, we have the following results:

Property 4.4.1

$$\langle \langle k_1 k_2 \dots k_m \rangle \rangle_{n_1 n_2 \dots n_m} < \prod_{r=2}^m n_r.$$

Property 4.4.2 If $2 \le t \le m$ and $j_{t-1} - j_t \ne k_{t-1} - k_t \pmod{n_t}$, then

$$\langle\langle j_1 j_2 \dots j_m \rangle\rangle_{n_1 n_2 \dots n_m} \neq \langle\langle k_1 k_2 \dots k_m \rangle\rangle_{n_1 n_2 \dots n_m}.$$

Lemma 4.5 If $n_1 \leq n_2 \leq \ldots \leq n_m$ and $0 \leq j_r, k_r < n_r$, for each $r, 1 \leq r \leq m$, and the sequences of j_r and k_r are neither identical nor everywhere different (i.e. there exist both t and u such that $j_t = k_t$ and $j_u \neq k_u$), then

$$\langle\langle j_1 j_2 \dots j_m \rangle\rangle_{n_1 n_2 \dots n_m} \neq \langle\langle k_1 k_2 \dots k_m \rangle\rangle_{n_1 n_2 \dots n_m}$$

Proof: Let u be the greatest integer, $1 \le u < m$, such that $j_u - j_{u+1} \ne k_u - k_{u+1} \pmod{n_{u+1}}$. (If $j_m = k_m$, then u is the greatest integer such that $j_u \ne k_u$. If $j_m \ne k_m$, then u is at least as great as the greatest integer t such that $j_t = k_t$.) The result now follows from 4.4.2.

We are now in a position to prove the theorem.

Proof of Theorem 4.3

Let $n_1 \leq n_2 \leq \ldots \leq n_m$, and, for each r, $1 \leq r \leq m$, let $\mathcal{S}_r = \{\boldsymbol{v}_0^r, \boldsymbol{v}_1^r, \ldots, \boldsymbol{v}_{n_r-1}^r\}$ be a cubic acute d_r -set of cardinality n_r . Let $\mathcal{Z} = \{\boldsymbol{z}_0, \boldsymbol{z}_1, \ldots, \boldsymbol{z}_{n_Z-1}\}$ be a cubic acute d_Z -set of cardinality n_Z , where

$$n_Z \ge \prod_{r=2}^m n_r,$$

and let

$$D = \sum_{r=1}^{m} d_r + d_Z \quad \text{and} \quad N = \prod_{r=1}^{m} n_r.$$

Now let

$$\mathcal{T} = \{ \boldsymbol{w}_{k_1 k_2 \dots k_m} = \boldsymbol{v}_{k_1}^1 \boldsymbol{v}_{k_2}^2 \dots \boldsymbol{v}_{k_m}^m \boldsymbol{z}_{k_Z} : 0 \le k_r < n_r, 1 \le r \le m \},$$

where $k_Z = \langle \langle k_1 k_2 \dots k_m \rangle \rangle_{n_1 n_2 \dots n_m}$, be a point set of dimension D and cardinality N, each element of T being made by concatenating one vector from each of the S_r together with a vector from Z. (In section 5, we will denote this construction by $d_1 \otimes \cdots \otimes d_m \oplus d_Z$.)

By 4.4.1, we know that $k_Z < \prod_{r=2}^m n_r \le n_Z$, so k_Z is a valid index into \mathcal{Z} .

Let $\boldsymbol{w}_{i_1i_2...i_m}, \boldsymbol{w}_{j_1j_2...j_m}, \boldsymbol{w}_{k_1k_2...k_m}$ be any triple of distinct points in \mathcal{T} . They constitute an acute triple iff the scalar product $q = \langle \boldsymbol{w}_{i_1i_2...i_m} - \boldsymbol{w}_{j_1j_2...j_m}, \boldsymbol{w}_{k_1k_2...k_m} - \boldsymbol{w}_{j_1j_2...j_m} \rangle$ does not vanish (is positive). Now,

$$egin{array}{lll} q &=& \langle oldsymbol{v}_{i_1}^1 oldsymbol{v}_{i_2}^2 \dots oldsymbol{v}_{i_m}^m oldsymbol{z}_{i_Z} - oldsymbol{v}_{j_1}^1 oldsymbol{v}_{j_2}^2 \dots oldsymbol{v}_{j_m}^m oldsymbol{z}_{j_Z}, \ oldsymbol{v}_{k_1}^1 oldsymbol{v}_{k_2}^2 \dots oldsymbol{v}_{k_m}^m oldsymbol{z}_{k_Z} - oldsymbol{v}_{j_1}^1 oldsymbol{v}_{j_2}^2 \dots oldsymbol{v}_{j_m}^m oldsymbol{z}_{j_Z}
angle \\ &=& \sum_{r=1}^m \langle oldsymbol{v}_{i_r}^r - oldsymbol{v}_{j_r}^r, oldsymbol{v}_{k_r}^r - oldsymbol{v}_{j_r}^r
angle \ + \ \langle oldsymbol{z}_{i_Z} - oldsymbol{z}_{j_Z}, oldsymbol{z}_{k_Z} - oldsymbol{z}_{j_Z}
angle. \end{array}$$

If, for some r, both $i_r \neq j_r$ and $j_r \neq k_r$, then the first component of this sum is positive, because S_r is an acute set.

If, however, there is no r such that both $i_r \neq j_r$ and $j_r \neq k_r$, then there must be some t for which $i_t \neq j_t$ (or else $\mathbf{w}_{i_1 i_2 \dots i_m}$ and $\mathbf{w}_{j_1 j_2 \dots j_m}$ would not be distinct) and $j_t = k_t$, and

also some u for which $j_u \neq k_u$ (or else $\boldsymbol{w}_{j_1 j_2 \dots j_m}$ and $\boldsymbol{w}_{k_1 k_2 \dots k_m}$ would not be distinct) and $i_u = j_u$. So, by lemma 4.5, $i_Z \neq j_Z$ and $j_Z \neq k_Z$, so the second component of the sum for the scalar product is positive, because \mathcal{Z} is an acute set.

Thus, all triples in \mathcal{T} are acute triples, so \mathcal{T} is a cubic acute D-set of cardinality N. \square

Corollary 4.5.1

If
$$d_1 \leq d_2 \leq \ldots \leq d_m$$
, then $\kappa \left(\sum_{r=1}^m r d_r \right) \geq \prod_{r=1}^m \kappa(d_r)$.

Proof: By induction on m. The bound is trivially true for m = 1.

Assume the bound holds for m-1, and for each r, $1 \le r \le m$, let \mathcal{S}_r be a cubic acute d_r -set of cardinality $n_r = \kappa(d_r)$, with $d_1 \le d_2 \le \ldots \le d_m$ and thus $n_1 \le n_2 \le \ldots \le n_m$. By the induction hypothesis, there exists a cubic acute d_Z -set \mathcal{Z} of cardinality n_Z , where

$$d_Z = \sum_{r=2}^{m} (r-1)d_r$$
 and $n_Z \ge \prod_{r=2}^{m} \kappa(d_r) = \prod_{r=2}^{m} n_r$.

Thus, by theorem 4.3, there exists a cubic acute D-set of cardinality N, where

$$D = \sum_{r=1}^{m} d_r + d_Z = \sum_{r=1}^{m} d_r + \sum_{r=2}^{m} (r-1)d_r = \sum_{r=1}^{m} rd_r,$$

and

$$N = \prod_{r=1}^{m} n_r = \prod_{r=1}^{m} \kappa(d_r).$$

5 Lower bounds for $\kappa(d)$ and $\alpha(d)$ for small d

The following table lists the best lower bounds known for $\kappa(d)$, $0 \le d \le 69$. For $3 \le d \le 9$, an exhaustive computer search shows that $\mathcal{S}_3, \ldots, \mathcal{S}_8$ (corollary 4.2.2), are optimal and also that $\kappa(9) = 16$. For other small values of d, the construction used in theorem 4.3 provides the largest known cubic acute d-set. In the table, these constructions are denoted by $d_1 \otimes d_2 \otimes d_3 \otimes d_2$. For $39 \le d \le 48$, the results of a computer program, based on the 'probabilistic construction' of theorem 2.1, provide the largest known cubic acute d-sets. Finally, for $d \ge 67$, theorem 2.1 provides the best (probabilistic) lower bound. $\kappa(d)$ is sequence A089676 in Sloane [S].

Best Lower Bounds Known for $\kappa(d)$

d		$\kappa(d)$
0	= 1	
1	=2	
2	=2	
3	=4	computer, S_3
4	=5	$computer, S_4$
5	= 6	computer, S_5
6	=8	computer, S_6
7	= 9	computer, S_7
8	= 10	computer, S_8
9	= 16	$computer, 3 \otimes 3 \oplus 3$
10	≥ 16	
11	≥ 20	$3 \otimes 4 \oplus 4$
12		$4 \otimes 4 \oplus 4$
13	≥ 25	
14	≥ 30	$4 \otimes 5 \oplus 5$
15	≥ 36	5⊗5⊕5
16	≥ 40	$4 \otimes 6 \oplus 6$
17	≥ 48	5⊗6⊕6
18	≥ 64	$6 \otimes 6 \oplus 6 \ or \ 3 \otimes 3 \otimes 3 \oplus 9$
19	$ \begin{array}{c} -\\ \geq 48\\ \geq 64\\ \geq 64 \end{array} $	
20	≥ 72	6⊗7⊕7
21	≥ 81	7⊗7⊕7
22		
23	≥ 100	3⊗4⊗4⊕12 4⊗4⊗4⊕12
24		$4 \otimes 4 \otimes 4 \oplus 12$
25	≥ 144	7⊗9⊕9

d		$\kappa(d)$
26	≥ 160	8⊗9⊕9
27	≥ 256	9⊗9⊕9
28	≥ 256	
29	≥ 257	theorem~4.1
30	≥ 257	
31	≥ 320	9⊗11⊕11
32	≥ 320	
33	≥ 400	11⊗11⊕11
34	≥ 400	
35	≥ 500	$11 \otimes 12 \oplus 12$
36	≥ 625	$12 \otimes 12 \oplus 12$
37	≥ 625	
38	≥ 626	theorem 4.1
39	≥ 678	computer
40	≥ 762	computer
41	≥ 871	computer
42	≥ 976	computer
43	≥ 1086	computer
44	≥ 1246	computer
45	≥ 1420	computer
46	≥ 1630	computer
47	≥ 1808	computer
48	≥ 2036	computer
49	≥ 2036	
50	≥ 2037	theorem~4.1
51	≥ 2304	17⊗17⊕17

d		$\kappa(d)$
52	≥ 2560	16⊗18⊕18
53	≥ 3072	17⊗18⊕18
54	≥ 4096	$18 \otimes 18 \oplus 18 \ or \ 9 \otimes 9 \otimes 9 \oplus 27$
55	≥ 4096	
56	≥ 4097	theorem 4.1
57	≥ 4097	
58	≥ 4608	18⊗20⊕20
59	≥ 4608	
60	≥ 5184	20⊗20⊕20

d		$\kappa(d)$
61	≥ 5184	
62	≥ 5832	$20 \otimes 21 \oplus 21$
63	≥ 6561	$21 \otimes 21 \oplus 21$
64	≥ 6561	
65	≥ 6562	theorem~4.1
66	≥ 8000	$11 \otimes 11 \otimes 11 \oplus 33$
67	≥ 8342	theorem~2.1
68	≥ 9632	theorem~2.1
69	≥ 11122	theorem~2.1

The following tables summarise the best lower bounds known for $\alpha(d)$. For $3 \le d \le 6$, the best lower bound is Danzer and Grünbaum's 2d-1 [DG]. For $7 \le d \le 26$, the results of a computer program, based on the 'probabilistic construction' but using sets of points close to the surface of the d-sphere, provide the largest known acute d-sets. An acute 7-set of cardinality 14 and an acute 8-set of cardinality 16 are displayed. For $27 \le d \le 62$, the largest known acute d-set is cubic. Finally, for $d \ge 63$, theorem 3.1 provides the best (probabilistic) lower bound.

Best Lower Bounds Known for $\alpha(d)$

d	α (d)
0	= 1	
1	=2	
2	=3	
3	=5	[DG]
4-6	$\geq 2d-1$	[DG]
7	≥ 14	computer
8	≥ 16	computer
9	≥ 19	computer
10	≥ 23	computer
11	≥ 26	computer
12	≥ 30	computer
13	≥ 36	computer
14	≥ 42	computer
15	≥ 47	computer

d		$\alpha(d)$
16	≥ 54	computer
17	≥ 63	computer
18	≥ 71	computer
19	≥ 76	computer
20	≥ 90	computer
21	≥ 103	computer
22	≥ 118	computer
23	≥ 121	computer
24	≥ 144	computer
25	≥ 155	computer
26	≥ 184	computer
27–62	$\geq \kappa(d)$	
63	≥ 6636	theorem 3.1

$\alpha(7) \ge 14$
(62, 1, 9, 10, 17, 38, 46)
(38, 54, 0, 19, 38, 14, 25)
(60, 33, 42, 9, 48, 3, 12)
(62, 35, 41, 44, 16, 39, 44)
(62, 34, 7, 45, 48, 37, 12)
(28, 33, 42, 8, 49, 39, 45)
(40, 16, 22, 12, 0, 0, 25)
(45, 17, 26, 67, 25, 20, 29)
(38, 6, 35, 0, 32, 18, 0)
(62, 0, 42, 45, 49, 3, 48)
(30, 0, 9, 44, 49, 37, 48)
(0, 20, 31, 27, 34, 21, 28)
(48, 19, 24, 22, 33, 20, 73)
(43, 17, 25, 27, 32, 64, 19)

$\alpha(8) \ge 16$
(34, 49, 14, 51, 0, 36, 46, 0)
(31, 17, 14, 51, 1, 5, 44, 31)
(33, 50, 48, 20, 34, 35, 15, 0)
(0, 16, 16, 52, 32, 36, 45, 0)
(37, 31, 46, 52, 13, 0, 0, 22)
(2,50,13,52,3,3,46,0)
(1,50,48,51,1,5,46,31)
(24, 0, 43, 2, 17, 20, 32, 16)
(11,49, 0,11,19, 8,32,19)
(0,48,48,52,1,34,12,2)
(0,48,47,51,34,37,47,32)
(34, 49, 14, 51, 34, 36, 13, 34)
(0,46,31,0,0,23,29,29)
(16, 40, 29, 23, 54, 3, 17, 16)
(2,15,14,50,2,36,15,33)
(12, 36, 28, 30, 3, 45, 48, 45)

6 Generalising $\kappa(d)$

We can understand $\kappa(d)$ to be the size of the largest possible set \mathcal{S} of binary words such that, for any ordered triple of words $(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})$ in \mathcal{S} , there exists an index i for which $(\boldsymbol{u}_i, \boldsymbol{v}_i, \boldsymbol{w}_i) = (0, 1, 0)$ or $(\boldsymbol{u}_i, \boldsymbol{v}_i, \boldsymbol{w}_i) = (1, 0, 1)$. We can generalise this in the following way:

Definition 6.1 If T_1, \ldots, T_m are ordered k-tuples from $\{0, \ldots, r-1\}^k$ (which we will refer to as the matching k-tuples), then let us define $\kappa[\![r, k, T_1, \ldots, T_m]\!](d)$ to be the size of the largest possible set S of r-ary words of length d such that, for any ordered k-tuple of words $(\boldsymbol{w}_1, \ldots, \boldsymbol{w}_k)$ in S, there exist i and j, $1 \le i \le d$, $1 \le j \le m$, for which $(\boldsymbol{w}_{1i}, \ldots, \boldsymbol{w}_{ki}) = T_j$.

Thus we have $\kappa(d) = \kappa[2, 3, (0, 1, 0), (1, 0, 1)](d)$. If the set of matching k-tuples is closed under permutation, we will abbreviate by writing a list of matching *multisets* of cardinality k, rather than ordered tuples. For example, instead of $\kappa[2, 3, (0, 0, 1), (0, 1, 0), (1, 0, 0)](d)$, we write $\kappa[2, 3, \{0, 0, 1\}](d)$.

We can find probabilistic and, in some cases, constructive lower bounds for general $\kappa[r, k, T_1, \ldots, T_m](d)$ using the approaches we used for cubic acute d-sets. To illustrate this, in the remainder of this paper, we will consider the set of problems in which it is simply required that at some index the k-tuple of words be all different (pairwise distinct). First, we express this in a slightly different form.

Let us say that an r-ary d-colouring is some colouring of the integers $1, \ldots, d$ using r colours. Let us also also say that a set \mathcal{R} of r-ary d-colourings is a k-rainbow set, for some $k \leq r$ if for any set $\{c_1, \ldots, c_k\}$ of k colourings in \mathcal{R} , there exists some integer t, $1 \leq t \leq d$, for which the colours $c_1(t), \ldots, c_k(t)$ are all different, i.e. $c_i(t) \neq c_j(t)$ for any i and j, $1 \leq i, j \leq k$, $i \neq j$. For conciseness, we will denote "a k-rainbow set of r-ary d-colourings" by "a $\mathcal{RSC}[k, r, d]$ ".

Let us further say that a set $\{c_1, \ldots, c_k\}$ of k d-colourings is a **good** k-set if there exists some integer t, $1 \le t \le d$, for which the colours $c_1(t), \ldots, c_k(t)$ are all different, and a **bad** k-set if there exists no such t.

We will denote by $\rho_{r,k}(d)$ the size of the largest possible $\mathcal{RSC}[k,r,d]$, abbreviating $\rho_{k,k}(d)$ by $\rho_k(d)$. Now, $\rho_k(d) = \kappa [\![k,k,\{0,1,\ldots,k-1\}]\!](d)$ and

$$\rho_{r,k}(d) = \kappa[r, k, \{0, \dots, k-1\}, \dots, \{r-k, \dots, r-1\}](d),$$

where the matching multisets are those of cardinality k with k distinct members.

Clearly, $\rho_{r,k}(d) \leq \rho_{r,k}(d+1)$, $\rho_{r,k}(d) \leq \rho_{r+1,k}(d)$ and $\rho_{r,k}(d) \geq \rho_{r,k+1}(d)$. Also, $\rho_{r,1}(d)$ is undefined because any set of colourings is a 1-rainbow, $\rho_{r,k}(1) = r$ if k > 1, and $\rho_{r,2}(d) = r^d$ because any two distinct r-ary d-colourings (or r-ary words of length d) differ somewhere.

In the next two sections we will give a number of probabilistic and constructive lower bounds for $\rho_{r,k}(d)$, for various r and k.

7 A probabilistic lower bound for $\rho_{r,k}(d)$

Theorem 7.1

$$\rho_{r,k}(d) \geq (k-1)m \text{ where } m = \left| \sqrt[k-1]{\frac{k!}{k^k}} \left(\sqrt[k-1]{\frac{(r-k)! \, r^k}{(r-k)! \, r^k - r!}} \right)^d \right|.$$

Proof: This proof is similar that of theorem 2.1.

Randomly pick a set \mathcal{R} of km r-ary d-colourings, choosing the colours from $\{\chi_0, \ldots, \chi_{r-1}\}$ independently with probability $\Pr[c(i) = \chi_j] = 1/r, 1 \le i \le d, 0 \le j < r$ for every $c \in \mathcal{R}$.

Now the probability that a set of k colourings from \mathcal{R} is a bad k-set is

$$(1-p)^d$$
 where $p = \frac{r!/(r-k)!}{r^k}$.

Hence, the expected number of bad k-sets in a set of km d-colourings is $\binom{km}{k}(1-p)^d$. Thus there is *some* set \mathcal{R} of km d-colourings with no more than $\binom{km}{k}(1-p)^d$ bad k-sets, where

$$\binom{km}{k}(1-p)^d < \frac{(km)^k}{k!}(1-p)^d = m\frac{k^k}{k!}m^{k-1}(1-p)^d \le m$$

by the choice of m.

If we remove one colouring of each bad k-set from \mathcal{R} , the remaining set is a $\mathcal{RSC}[k,r,d]$ of cardinality at least km-m=(k-1)m.

The following results follow directly:

$$\rho_3(d) \ge 2 \left| \frac{\sqrt{2}}{3} \left(\frac{3}{\sqrt{7}} \right)^d \right| \approx 0.943 \times 1.134^d.$$

$$\rho_{4,3}(d) \ge 2 \left| \frac{\sqrt{2}}{3} \left(\frac{4}{\sqrt{10}} \right)^d \right| \approx 0.943 \times 1.265^d.$$

$$\rho_4(d) \ge 3 \left[\sqrt[3]{\frac{3}{32}} \sqrt[3]{\frac{32}{29}}^d \right] \approx 1.363 \times 1.033^d.$$

8 Constructive lower bounds for $\rho_{r,k}(d)$

In the following proofs, for clarity of exposition, we will represent r-ary d-colourings as r-ary words of length d, e.g. $\mathcal{R}_{3,3,3} = \{000,011,102,121,212,220\}$ represents a 3-rainbow set of ternary 3-colourings (using the colours χ_0 , χ_1 and χ_2). Concatenation of words (colourings) c and c' will be written c.c'.

We begin with a construction that enables us to extend a $\mathcal{RSC}[k, r, d]$ of cardinality n to one of cardinality n+1 or greater.

Theorem 8.1 If for some $r \geq k \geq 3$, and some d, we have a $\mathcal{RSC}[k, r, d]$ of cardinality n, and for some r', $k-2 \leq r' \leq r-2$, and d', we have a $\mathcal{RSC}[k-2, r', d']$ of cardinality at least n-1, then we can construct a $\mathcal{RSC}[k, r, d+d']$ of cardinality N=n-1+r-r'.

Proof: Let $\mathcal{R} = \{c_0, c_1, \dots, c_{n-1}\}$ be a $\mathcal{RSC}[k, r, d]$ of cardinality n (using colours $\chi_0, \dots, \chi_{r-1}$) and $\mathcal{R}' = \{c'_0, c'_1, \dots, c'_{n'-1}\}$ be a $\mathcal{RSC}[k-2, r', d']$ of cardinality $n' \geq n-1$ (using colours $\chi_0, \dots, \chi_{r'-1}$).

Now let $Q = \{q_0, q_1, \dots, q_{N-1}\}$ be a set of r-ary (d+d')-colourings where $q_i = c_i.c'_i$ for $0 \le i \le n-2$, and $q_{n-1+j} = c_{n-1}.(r'+j)^{d'}$ for $0 \le j < r-r'$, each element of Q being made by concatenating two component colourings, the first from \mathcal{R} and the second being either from \mathcal{R}' or a monochrome colouring.

If $\{q_{i_1}, \ldots, q_{i_k}\}$ is a set of colourings in \mathcal{Q} with no more than one of the i_m greater than n-2, then it is a good k-set because of the first components, since \mathcal{R} is a k-rainbow set.

On the other hand, if $\{q_{i_1}, \ldots, q_{i_k}\}$ is a set of colourings in \mathcal{Q} with no more than k-2 of the i_m less than n-1, then it too is a good k-set because of the second components, since \mathcal{R}' is a (k-2)-rainbow set using colours $\chi_0, \ldots, \chi_{r'-1}$ and the second components of the colourings with indices greater than n-2 are each monochrome of a different colour, drawn from $\chi_{r'}, \ldots, \chi_{r-1}$.

Thus Q is a $\mathcal{RSC}[k, r, d + d']$ of cardinality N.

Corollary 8.1.1 $\rho_{r,3}(d+1) \geq \rho_{r,3}(d) + r - 2$.

Proof: This follows from the theorem due to the fact that there is a 1-rainbow set of 1-ary 1-colourings of any cardinality. \Box

Corollary 8.1.2 $\rho_{r,4}(d + \lceil \log_2(\rho_{r,4}(d) - 1) \rceil) \ge \rho_{r,4}(d) + r - 3.$

Proof: Since $\rho_{r,2}(d) = r^d$, we have $\rho_{2,2}(d') \ge \rho_{r,4}(d) - 1$ iff $d' \ge \log_2(\rho_{r,4}(d) - 1)$.

Theorem 8.2 If, for each s, $1 \le s \le m$, we have a $\mathcal{RSC}[3, r, d_s]$ of cardinality n_s , where n_1 is the least of the n_s , and if, for some d_Z , we have a $\mathcal{RSC}[3, r, d_Z]$ of cardinality n_Z , where

$$n_Z \ge \prod_{s=2}^m (1 + 2 \left\lfloor \frac{n_s}{2} \right\rfloor),$$

then a $\mathcal{RSC}[3, r, D]$ of cardinality N can be constructed, where

$$D = \sum_{s=1}^{m} d_s + 2d_Z \quad and \quad N = \prod_{s=1}^{m} n_s.$$

This result for 3-rainbow sets corresponds to theorem 4.3 for cubic acute d-sets. Before we can prove it, we need some further preliminary results.

Definition 8.3 If $n_1 \leq n_2 \leq \ldots \leq n_m$ and $0 \leq k_r < n_r$, for each $r, 1 \leq r \leq m$, then let us denote by $\langle \langle k_1 k_2 \ldots k_m \rangle \rangle_{n_1 n_2 \ldots n_m}^+$, the number

$$\langle\!\langle k_1 k_2 \dots k_m \rangle\!\rangle_{n_1 n_2 \dots n_m}^+ = \sum_{r=2}^m \left((k_{r-1} + k_r \bmod n_r) \prod_{s=r+1}^m n_s \right).$$

The definition of $\langle \langle k_1 k_2 \dots k_m \rangle \rangle_{n_1 n_2 \dots n_m}^+$ is the same as that for $\langle \langle k_1 k_2 \dots k_m \rangle \rangle_{n_1 n_2 \dots n_m}$ (see 4.4), but with addition replacing subtraction. By construction, we have

$$\langle\langle\langle k_1 k_2 \dots k_m \rangle\rangle\rangle_{n_1 n_2 \dots n_m}^+ < \prod_{r=2}^m n_r,$$

and, if $2 \le t \le m$ and $j_{t-1} + j_t \ne k_{t-1} + k_t \pmod{n_t}$, then

$$\langle\langle\langle j_1 j_2 \dots j_m \rangle\rangle_{n_1 n_2 \dots n_m}^+ \neq \langle\langle\langle k_1 k_2 \dots k_m \rangle\rangle_{n_1 n_2 \dots n_m}^+$$

Lemma 8.4 If $n_1 \leq n_2 \leq \ldots \leq n_m$, with all the n_r odd except perhaps n_1 , and $0 \leq j_r, k_r, l_r < n_r$, for each $r, 1 \leq r \leq m$, and the sequences of j_r, k_r and l_r are neither pairwise identical nor anywhere pairwise distinct, i.e. there is some u, v and w such that $j_u \neq k_u, k_v \neq l_v$ and $l_w \neq j_w$ but no t such that $j_t \neq k_t, k_t \neq l_t$ and $l_t \neq j_t$, then either

$$\langle\langle j_1 \dots j_m \rangle\rangle_{n_1 \dots n_m}$$
, $\langle\langle k_1 \dots k_m \rangle\rangle_{n_1 \dots n_m}$, $\langle\langle l_1 \dots l_m \rangle\rangle_{n_1 \dots n_m}$ are pairwise distinct

or

$$\langle\langle\langle j_1 \dots j_m \rangle\rangle_{n_1 \dots n_m}^+, \langle\langle\langle k_1 \dots k_m \rangle\rangle_{n_1 \dots n_m}^+, \langle\langle\langle l_1 \dots l_m \rangle\rangle_{n_1 \dots n_m}^+ \text{ are pairwise distinct.}$$

Proof: Without loss of generality, we can assume that we have $j_1 = k_1$, that t > 1 is the least integer for which $j_t \neq k_t$, and that $k_t = l_t$. We will consider two cases:

Case 1: $k_{t-1} \neq l_{t-1}$

Since $j_{t-1} = k_{t-1} \neq l_{t-1}$ and $j_t \neq k_t = l_t$, we have $j_{t-1} - j_t \neq k_{t-1} - k_t$ and $k_{t-1} - k_t \neq l_{t-1} - l_t$, and so $\langle\langle\langle j_1 \dots j_m \rangle\rangle\rangle \neq \langle\langle\langle k_1 \dots k_m \rangle\rangle\rangle$ and $\langle\langle\langle k_1 \dots k_m \rangle\rangle\rangle \neq \langle\langle\langle l_1 \dots l_m \rangle\rangle\rangle$. Similarly, $j_{t-1} + j_t \neq k_{t-1} + k_t$ and $k_{t-1} + k_t \neq l_{t-1} + l_t$, and so $\langle\langle\langle j_1 \dots j_m \rangle\rangle\rangle^+ \neq \langle\langle\langle k_1 \dots k_m \rangle\rangle\rangle^+$ and $\langle\langle\langle k_1 \dots k_m \rangle\rangle\rangle^+ \neq \langle\langle\langle l_1 \dots l_m \rangle\rangle\rangle^+$.

If $j_{t-1} - j_t \neq l_{t-1} - l_t$, then $\langle (j_1 \dots j_m) \rangle \neq \langle (l_1 \dots l_m) \rangle$. If $j_{t-1} - j_t = l_{t-1} - l_t$ then $(j_{t-1} + j_t) - (l_{t-1} + l_t) = (j_{t-1} - j_t + 2j_t) - (l_{t-1} - l_t + 2l_t) = 2(j_t - l_t) \neq 0 \pmod{n_t}$ because $j_t \neq l_t$ and n_t is odd, so $j_{t-1} + j_t \neq l_{t-1} + l_t$ and $\langle (j_1 \dots j_m) \rangle^+ \neq \langle (l_1 \dots l_m) \rangle^+$.

Case 2: $k_{t-1} = l_{t-1}$

Since $j_{t-1} = k_{t-1} = l_{t-1}$ and $j_t \neq k_t = l_t$, we have $j_{t-1} - j_t \neq k_{t-1} - k_t$ and $j_{t-1} - j_t \neq l_{t-1} - l_t$, and so $\langle \langle j_1 \dots j_m \rangle \rangle \neq \langle \langle k_1 \dots k_m \rangle \rangle$ and $\langle \langle j_1 \dots j_m \rangle \rangle \neq \langle \langle l_1 \dots l_m \rangle \rangle$.

If $k_1 = l_1$, let u be the least integer such that $k_u \neq l_u$. Since $k_{u-1} = l_{u-1}$, we have $k_{u-1} - k_u \neq l_{u-1} - l_u$. If $k_1 \neq l_1$, let u be the least integer such that $k_u = l_u$. Since $k_{u-1} \neq l_{u-1}$, we still have $k_{u-1} - k_u \neq l_{u-1} - l_u$. Thus, $\langle\langle k_1 \dots k_m \rangle\rangle \neq \langle\langle l_1 \dots l_m \rangle\rangle$.

Proof of Theorem 8.2

Let $n_1 \leq n_2 \leq \ldots \leq n_m$, and, for each $s, 1 \leq s \leq m$, let $\mathcal{R}_s = \{c_0^s, c_1^s, \ldots, c_{n_s-1}^s\}$ be a $\mathcal{RSC}[3, r, d_s]$ of cardinality n_s , and let $n_s' = 1 + 2 \lfloor n_s/2 \rfloor$ be the least odd integer not less than n_s . Let $\mathcal{Z} = \{z_0, z_1, \ldots, z_{n_z-1}\}$ be a $\mathcal{RSC}[3, r, d_z]$ of cardinality n_z , where

$$n_Z \ge \prod_{s=2}^m n_s',$$

and let

$$D = \sum_{s=1}^{m} d_s + 2d_Z \quad \text{and} \quad N = \prod_{s=1}^{m} n_s.$$

Now let

$$Q = \{c_{k_1}^1, c_{k_2}^2 \dots c_{k_m}^m, z_{k_Z}, z_{k_Z}^+ : 0 \le k_s < n_s, 1 \le s \le m\},\$$

where $k_Z = \langle \langle k_1 k_2 \dots k_m \rangle \rangle_{n'_1 n'_2 \dots n'_m}$ and $k_Z^+ = \langle \langle k_1 k_2 \dots k_m \rangle \rangle_{n'_1 n'_2 \dots n'_m}^+$ be a set of *D*-colourings of cardinality *N*, each element of \mathcal{Q} being made by concatenating one colouring from each of the \mathcal{R}_s together with two colourings from \mathcal{Z} . (Below, we will denote this construction by $d_1 \otimes \cdots \otimes d_m \oplus d_Z \oplus d_Z$.)

Let $c_{i_1}^1.c_{i_2}^2\dots c_{i_m}^m.z_{i_Z}.z_{i_Z^+}$, $c_{j_1}^1.c_{j_2}^2\dots c_{j_m}^m.z_{j_Z}.z_{j_Z^+}$ and $c_{k_1}^1.c_{k_2}^2\dots c_{k_m}^m.z_{k_Z}.z_{k_Z^+}$ be any three distinct colourings in \mathcal{Q} . If, for some $s,\ i_s\neq j_s,\ j_s\neq k_s$ and $k_s\neq i_s$, then these three colourings comprise a good 3-set because \mathcal{R}_s is a 3-rainbow set.

If, however, there is no s such that i_s , j_s and k_s are all different, then the condition of lemma 8.4 holds, and so either i_Z , j_Z and k_Z are all different, or i_Z^+ , j_Z^+ and k_Z^+ are all different, and the three colourings comprise a good 3-set because \mathcal{Z} is a 3-rainbow set.

Thus, any three colourings in \mathcal{Q} comprise a good 3-set, so \mathcal{Q} is a $\mathcal{RSC}[3, r, D]$ of cardinality N.

Corollary 8.4.1 If $\rho_{r,3}(d)$ is odd, then $\rho_{r,3}(4d) \ge \rho_{r,3}(d)^2$.

Proof: By theorem 8.2 using the construction $d \otimes d \oplus d \oplus d$.

Corollary 8.4.2 $\rho_{r,3}(4d+2) \geq \rho_{r,3}(d)^2$.

Proof: By 8.1.1, if $n = \rho_{r,3}(d)$, we can construct a $\mathcal{RSC}[3,r,d+1]$ of cardinality $n+1 \ge 1 + 2 \lfloor n/2 \rfloor$. By theorem 8.2, we can then construct a $\mathcal{RSC}[3,r,4d+2]$ of cardinality n^2 using the construction $d \otimes d \oplus (d+1) \oplus (d+1)$.

Corollary 8.4.3 $\rho_3(4^d) \geq 3^{2^d}$.

Proof: By repeated application of 8.4.1 starting with $\rho_{3,3}(1) = 3$.

Our final construction enables us to combine k-rainbow sets of r-ary d-colourings for arbitrary k.

Theorem 8.5 If we have a $\mathcal{RSC}[k,r,d_1]$ of cardinality n_1 , a $\mathcal{RSC}[k,r,d_2]$ of cardinality $n_2 \geq n_1$, and a $\mathcal{RSC}[k,r,d_2]$ of cardinality $n_2 \geq n_2$, with n_2 coprime to each integer in the range $[2,\ldots,h]$ where $h=\binom{k}{2}-1$, then a $\mathcal{RSC}[k,r,D]$ of cardinality N can be constructed, where $D=d_1+d_2+hd_2$ and $N=n_1n_2$.

As before, we first need a preliminary result:

Lemma 8.6 Given distinct pairs of integers (a,b) and (c,d) with $0 \le a,b,c,d < n$ for some n, and given a positive integer h such that n is coprime to each integer in the range $[2,\ldots,h]$, then if we let $b_{-1}=a$ and $d_{-1}=c$, and $b_r=b+ra \pmod n$ and $d_r=d+rc \pmod n$ for $0 \le r \le h$, then if $b_i=d_i$ for some $i,-1 \le i \le h$, we have $b_j \ne d_j$ for all $j \ne i$.

Proof: We consider two cases:

Case 1: i = -1

Since a = c, $(b + ja) - (d + jc) = b - d \neq 0 \pmod{n}$ since (a, b) and (c, d) are distinct, and b and d both less than n.

Case 2: $i \neq -1$

By the reversing the argument in case 1, $a \neq c$, i.e. $b_{-1} \neq d_{-1}$. For $j \geq 0$, since b + ia = d + ic, we have $(b + ja) - (d + jc) = (j - i)a - (j - i)c = (j - i)(a - c) \neq 0 \pmod{n}$ since $a \neq c$ and $|j - i| \leq h$ so j - i is coprime to n.

Proof of Theorem 8.5

Let $\mathcal{R}_1 = \{c_0^1, \dots, c_{n_1-1}^1\}$, $\mathcal{R}_2 = \{c_0^2, \dots, c_{n_2-1}^2\}$ and $\mathcal{Z} = \{z_0, \dots, z_{n_Z-1}\}$ be k-rainbow sets of r-ary d_1 -, d_2 - and d_Z -colourings of cardinality n_1 , n_2 and n_Z , respectively.

Now let

$$Q = \{c_i^1 \cdot c_i^2 \cdot z_{i+1} \cdot z_{i+2i} \dots z_{i+hi} : 0 \le i < n_1, 0 \le j < n_2\},\$$

where $h = \binom{k}{2} - 1$ and the subscript arithmetic is modulo n_Z , be a set of D-colourings of cardinality N, each element of \mathcal{Q} being made by concatenating h+2 component colourings: one from \mathcal{R}_1 , one from \mathcal{R}_2 , and h from \mathcal{Z} .

Let

$$\mathcal{S} = \{c_{i_1}^1.c_{j_1}^2.z_{j_1+i_1}\dots z_{j_1+hi_1}, c_{i_2}^1.c_{j_2}^2.z_{j_2+i_2}\dots z_{j_2+hi_2}, \dots, c_{i_k}^1.c_{i_k}^2.z_{j_k+i_k}\dots z_{j_k+hi_k}\}$$

be any set of k distinct colourings in \mathcal{Q} , and let $b_{s,-1} = i_s$ and $b_{s,t} = j_s + ti_s \pmod{n_Z}$, for each s and t, $1 \le s \le k$, $0 \le t \le h$, so the sth colouring in \mathcal{S} is $c_{b_{s-1}}^1.c_{b_{s-0}}^2.z_{b_{s,1}}...z_{b_{s,h}}$.

Now, for any s, s' and t, $1 \le s$, $s' \le k$, $-1 \le t \le h$, if $b_{s,t} = b_{s',t}$, then by lemma 8.6 we know that for all $u \ne t$, $b_{s,u} \ne b_{s',u}$. So for each pair $\{s,s'\}$, $b_{s,t} = b_{s',t}$ for no more than one value of t. Now there are h+2 possible values of t, but only $\binom{k}{2} = h+1$ different pairs $\{s,s'\}$, so there is some t for which $b_{s,t} \ne b_{s',t}$ for all pairs $\{s,s'\}$ and the $(t+2)^{\text{th}}$ component colourings of the elements in \mathcal{S} are all different. Since \mathcal{R}_1 , \mathcal{R}_2 and \mathcal{Z} are all k-rainbow sets, we know that \mathcal{S} is a good k-set.

Thus, any k colourings from \mathcal{Q} comprise a good k-set, so \mathcal{Q} is a $\mathcal{RSC}[k, r, D]$ of cardinality N.

Corollary 8.6.1 $\rho_4(6.7^d) \geq 7^{2^d}$.

Proof: The following 4-rainbow set of 4-ary 6-colourings of cardinality 8 — a version of $\mathcal{R}_{4.4.6}$ (see below) displayed with different symbols for each colour — shows that $\rho_4(6) \geq 7$.



The result follows by repeated application of theorem 8.5, noting that 7 is coprime to 2, 3, 4 and $5 = \binom{4}{2} - 1$.

9 Lower bounds for $\rho_{r,k}(d)$ for small r, k and d

We conclude with tables of the best lower bounds known for $\rho_3(d)$, $\rho_{4,3}(d)$ and $\rho_4(d)$ for small d. For very small d, exhaustive computer searches have determined the values of $\rho_{r,k}(d)$. For other small values of d, the constructions used in theorems 8.2 and 8.5 provide the largest known rainbow sets. In the tables, these constructions are denoted $d_1 \otimes d_2 \oplus d_Z \oplus d_Z$, etc., with superscript minus signs (d^-) to denote the removal of a single colouring from a largest rainbow set of d-colourings (to satisfy the requirement that the cardinality be odd). For $\rho_3(d)$, the probabilistic lower bound of theorem 7.1 is better than the constructions for $d \geq 71$; for $\rho_{4,3}(d)$, this is the case for $d \geq 26$.

Some k-rainbow sets of r-ary d-colourings, for small k, r and d

$\mathcal{R}_{3,3,3}$
$\rho_3(3) \ge 6$
000
011
102
121
212
220

$\mathcal{R}_{3,3,6}$
$ \rho_3(6) \ge 13 $
000000
000111
000222
011012
022120
101120
112021
112102
112210
120012
202012
210120
221201

$\mathcal{R}_{4,3,3}$
$\rho_{4,3}(3) \ge 9$
000
011
022
103
131
213
232
323
330

$\mathcal{R}_{4,3,4}$
$\rho_{4,3}(4) \ge 16$
0000
0011
0102
0220
1013
1212
1230
1302
2031
2103
2121
2320
3113
3231
3322
3333

$\mathcal{R}_{4,4,6}$
$\rho_4(6) \ge 8$
000000
011111
101222
112033
220312
233103
323230
332321

Best Lower Bounds Known for $\rho_3(d)$ and $\rho_{4,3}(d)$

d		$\rho_3(d)$
1	=3	
2	=4	computer, 8.1.1
3	=6	computer, $\mathcal{R}_{3,3,3}$
4	=9	$computer,\ 1{\otimes}1{\oplus}1{\oplus}1$
5	= 10	computer, 8.1.1
6	= 13	computer, $\mathcal{R}_{3,3,6}$
7	≥ 14	8.1.1
8	≥ 15	8.1.1
9	≥ 16	8.1.1
10	≥ 17	8.1.1
11	≥ 27	$1 \otimes 1 \otimes 1 \oplus 4 \oplus 4$
12	≥ 28	8.1.1
13	≥ 29	8.1.1
14	≥ 36	$2 \otimes 4 \oplus 4 \oplus 4$
15	≥ 54	$3 \otimes 4 \oplus 4 \oplus 4$
16	≥ 81	$4 \otimes 4 \oplus 4 \oplus 4$
• • •	• • •	
70	≥ 6723	$16 \otimes 18 \oplus 18 \oplus 18$
71	≥ 7064	theorem 7.1

d		$ \rho_{4,3}(d) $
1	=4	
2	= 6	computer, 8.1.1
3	=9	computer, $\mathcal{R}_{4,3,3}$
4	= 16	computer, $\mathcal{R}_{4,3,4}$
5	≥ 18	8.1.1
6	≥ 20	8.1.1
7	≥ 22	8.1.1
8	≥ 25	$2^- \otimes 2^- \oplus 2 \oplus 2$
9	≥ 27	8.1.1
10	≥ 36	$1 \otimes 3 \oplus 3 \oplus 3$ or $2 \otimes 2 \oplus 3 \oplus 3$
11	≥ 54	2⊗3⊕3⊕3
12	≥ 81	3⊗3⊕3⊕3
13	≥ 83	8.1.1
14	≥ 90	$2 \otimes 4^- \oplus 4 \oplus 4$
15	≥ 135	$3 \otimes 4^- \oplus 4 \oplus 4$
16	≥ 225	$4^- \otimes 4^- \oplus 4 \oplus 4$
• • •	• • •	
25	≥ 363	8.1.1
26	≥ 424	theorem 7.1

Best Lower Bounds Known for $\rho_4(d)$

d		$ ho_4(d)$
1	=4	
2	=4	computer
3	=5	computer, 8.1.2
4	=5	computer
5	=6	computer, 8.1.2
6	= 8	$computer, \mathcal{R}_{4,4,6}$
	• • •	
42	≥ 49	$6^- \otimes 6^- \oplus 6^- \oplus 6^- \oplus 6^- \oplus 6^- \oplus 6^-$

Acknowledgements

The author would like to thank Günter Ziegler for his encouragement and helpful comments on earlier drafts of this paper.

References

- [AZ2] M. Aigner and G. M. Ziegler, *Proofs from THE BOOK*. 2nd ed. Springer-Verlag (2001) 76-77.
- [AZ3] M. Aigner and G. M. Ziegler, *Proofs from THE BOOK*. 3rd ed. Springer-Verlag (2003) 82-83.
- [DG] L. Danzer and B. Grünbaum, Uber zwei Probleme bezüglich konvexer Körper von P. Erdős und von V. L. Klee, *Math. Zeitschrift* **79** (1962) 95-99.
- [EF] P. Erdős and Z. Füredi, The greatest angle among n points in the d-dimensional Euclidean space, Annals of Discrete Math. 17 (1983) 275-283.
- [S] N. J. A. Sloane, *The On-Line Encyclopedia of Integer Sequences*, published electronically at www.research.att.com/~njas/sequences.