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Abstract

An H-factor of a graph G is a spanning subgraph of G whose connected com-
ponents are isomorphic to H. Given a properly edge-colored graph G, a rainbow
H-subgraph of G is an H-subgraph of G whose edges have distinct colors. A rainbow
H-factor is an H-factor whose components are rainbow H-subgraphs. The follow-
ing result is proved. If H is any fixed graph with h vertices then every properly
edge-colored graph with hn vertices and minimum degree (1 − 1/χ(H))hn + o(n)
has a rainbow H-factor.

1 Introduction

All the graphs considered here are finite, undirected and simple. For a graph G we let
v(G) and e(G) denote the cardinality of the vertex set and edge set of G, respectively.
Given two graphs G and H where v(H) divides v(G), we say that G has an H-factor
if G contains v(G)/v(H) vertex-disjoint subgraphs isomorphic to H . Thus, a K2-factor
is simply a perfect matching. The study of H-factors is a major topic of research in
extremal graph theory. A seminal result of Hajnal and Szemerédi [6] gave a sufficient
condition for the existence of a Kk-factor. They proved that a graph with nk vertices
and minimum degree at least nk(1 − 1/k) has a Kk-factor, and this is best possible.
Later, Alon and Yuster proved [3], using the Regularity Lemma [12], a general result
guaranteeing the existence of H-factors. They showed that for every fixed graph H with
chromatic number χ(H), any graph with v(H)n vertices and minimum degree at least
v(H)n(1 − 1/χ(H)) + o(n) has an H-factor, and this is asymptotically tight in terms of
the chromatic number. Later, it was proved in [10] that the o(n) term can be replaced
with a constant K = K(H).

An edge coloring of a graph is called proper if two edges sharing an endpoint receive
distinct colors. Vizing’s theorem asserts that there exists a proper edge coloring of a
graph G which uses at most ∆(G) + 1 colors. A rainbow subgraph of an edge-colored
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graph is a subgraph all of whose edges receive distinct colors. Many graph theoretic
parameters have corresponding rainbow variants. Erdős and Rado [5] were among the
first to consider problems of this type. Jamison, Jiang and Ling [7], and Chen, Schelp
and Wei [4] considered Ramsey type variants where an arbitrary number of colors can
be used. Alon et. al. [1] studied the function f(H) which is the minimum integer n
such that any proper edge coloring of Kn has a rainbow copy of H . Keevash et. al. [8]
considered the rainbow Turán number ex∗(n, H) which is the largest integer m such that
there exists a properly edge-colored graph with n vertices and m edges and which has no
rainbow copy of H .

A rainbow H-factor of a properly edge-colored graph is an H-factor whose elements
are rainbow copies of H . Our main result provides sufficient conditions for the existence
of a rainbow H-factor. It turns out that the same asymptotic conditions that guarantee
an H-factor also guarantee a rainbow H-factor.

Theorem 1.1 Let H be a graph. There exists K = K(H) such that every proper edge
coloring of a graph with n vertices, where v(H) divides n, and with minimum degree at
least (1 − 1/χ(H))n + K has a rainbow H-factor.

The result might seem a bit surprising as a rainbow version of the theorem of Hajnal and
Szemerédi ceases to hold for small values of n. An example is provided in the final section.
The proof of Theorem 1.1 is a consequence of a lemma that shows that if H is a complete
r-partite graph then any proper edge coloring of some fixed (though much larger) complete
r-partite graph has a rainbow H-factor. This lemma and the proof of Theorem 1.1 appear
in Section 2. In Section 3 we consider the problem of finding an almost rainbow H-factor.
Given ε > 0, an (ε, H)-factor of a graph G is a set of vertex-disjoint copies of H that cover
at least (1 − ε)v(G) vertices. Komlós [9] showed that the chromatic number in the main
result of [2] can be replaced with another parameter, called the critical chromatic number
(which, in many cases, is strictly smaller than the chromatic number) if one settles for an
(ε, H)-factor. We prove a simple rainbow version of a strengthened version of his result
due to Shokoufandeh and Zhao [11] where εv(G) can be replaced by a constant depending
only on H . The final section contains some concluding remarks.

2 Rainbow H-factors

Let Tr(k) denote the complete r-partite graph with k vertices in each vertex class. Let H
be a fixed graph with v(H) = h and χ(H) = r. Clearly, Tr(h) has an H-factor. As Tr(h)
and H have the same chromatic number, this essentially means that it suffices to prove
Theorem 1.1 for complete partite graphs. Now, if we can also show that for k sufficiently
large, any proper edge coloring of Tr(k) has a rainbow Tr(h)-factor, we can use the results
on (usual) H-factors in order to deduce a similar result for the rainbow analogue. We
therefore need to prove the following lemma.

Lemma 2.1 Let h and r be positive integers. There exists k = k(h, r) such that any
proper edge coloring of Tr(k) has a rainbow Tr(h)-factor.
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Proof: We shall prove a slightly stronger statement. For 0 ≤ p ≤ h, Let Tr(h, p) be the
complete r-partite graph with h vertices in each vertex class, except the last vertex class
which has only p vertices. Notice that Tr(h, 0) = Tr−1(h, h). We prove that there exists
k = k(h, r, p) such that any proper edge coloring of Tr(kh, kp) has a rainbow Tr(h, p)-
factor.

We fix h, and prove the result by induction on r, and for each r, by induction on p ≥ 1.
The base case r = 2 and p = 1 is trivial since every star subgraph of a proper edge-colored
graph is rainbow. Given r ≥ 2, assuming the result holds for r and p−1, we prove it for r
and p (if p = 1 then p−1 = 0 so we use the induction on Tr−1(h, h)). Let k = k(h, r, p−1)
and let t be sufficiently large (t will be chosen later). Consider a proper edge-coloring of
T = Tr(kth, ktp). We let c(x, y) denote the color of the edge (x, y). Denote the first r− 1
vertex classes of T by V1, . . . , Vr−1 and denote the last vertex class by Ur. Let Vr ⊂ Ur

be an arbitrary subset of size k(p − 1)t and let W = Ur \ Vr be the remaining set with
|W | = kt. For i = 1, . . . , r, we randomly partition Vi into t subsets Vi(1), . . . , Vi(t), each
of the same size. Each of the r random partitions is performed independently, and each
partition is equally likely.

Let S(j) be the subgraph of T induced by V1(j) ∪ V2(j) ∪ · · · ∪ Vr(j), for j = 1, . . . , t.
Notice that S(j) is a properly edge-colored Tr(kh, k(p − 1)) and hence, by the induction
hypothesis S(j) has a rainbow Tr(h, p − 1)-factor.

Let B = (X ∪W, F ) be a bipartite graph where X = {S(j) : j = 1, . . . , t} and there
exists an edge (S(j), v) ∈ F if for all i = 1, . . . , r − 1 and for all x ∈ Vi(j), the color
c(x, v) does not appear at all in S(j). If we can show that, with positive probability, B
has a 1-to-k assignment in which each S(j) ∈ X is assigned to precisely k elements of W
and each v ∈ W is assigned to a unique S(j) then we can show that T has a rainbow
Tr(h, p)-factor. Indeed, consider S(j) and the unique set Xj of k elements of W that are
matched to S(j). Since S(j) has a rainbow Tr(h, p − 1)-factor, we can arbitrarily assign
a unique element of Xj to each element of this factor and obtain a Tr(h, p) which is also
rainbow because all the edges of this Tr(h, p) incident with the assigned vertex from Xj

have colors that did not appear at all in other edges of this Tr(h, p).
In order to prove that B has the required 1-to-k assignment we shall use the 1-to-

k extension of Hall’s Theorem. Namely, we will show that, with positive probability,
|N(Y )| ≥ k|Y | for each Y ⊂ X. (Hall’s Theorem is simply the case k = 1. The 1-to-k
generalization reduces to the 1-to-1 version by taking k vertex-disjoint copies of X.) To
guarantee this condition, it suffices to prove that, with positive probability, each vertex
of X has degree greater than (k − 1/2)t in B and each vertex of W has degree greater
than t/2 in B.

The second part is easy to guarantee, and randomness plays no role. Consider S(j) ∈
X. Let C(j) be the set of all colors appearing in S(j). As S(j) is a Tr(kh, k(p − 1)) we
have that |C(j)| < k2h2

(
r
2

)
. For each vertex x of S(j), let Wx ⊂ W be the set of vertices

v ∈ W such that c(v, x) ∈ C(j). Clearly, |Wx| < |C(j)| since no color appears more than
once in edges incident with x. Let W (j) be the union of all Wx taken over all vertices of
S(j). Hence, |W (j)| < (khr)(k2h2

(
r
2

)
). Each v ∈ W \ W (j) is a neighbor of S(j) in B.

Thus, if we take t > k3h3r3, we have that each S(j) has more than (k − 1/2)t neighbors
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in B.
For the first part, fix some v ∈ W and let dB(v) denote the degree of v in B. As dB(v)

is a random variable, and since |W | = kt, it suffices to prove that

Pr[dB(v) ≤ t/2] < 1/kt

which implies that
Pr[∃v : dB(v) ≤ t/2] < 1.

To simplify notation we let si be the size of the i’th vertex class of each S(j). Thus
si = kh for i = 1, . . . , r − 1 and sr = k(p − 1). Recall that the i’th vertex class of S(j) is
formed by taking the j’th block of a random partition of Vi into t blocks of equal size si.
Alternatively, one can view the i’th vertex class of S(j) as the elements si(j−1)+1, . . . , sij
of a random permutation of Vi for i = 1, . . . , r. Let, therefore, πi be a random permutation
of Vi. Thus, for i = 1, . . . , r, πi(`) ∈ Vi for ` = 1, . . . , sit. We define the `’th vertex of
vertex class i of S(j) to be πi(si(j − 1) + `) for i = 1, . . . , r and ` = 1, . . . , si.

We define the following events. For three vertex classes Vα, Vβ, Vγ with 1 ≤ α < β ≤ r,
and 1 ≤ γ ≤ r − 1, for a block j where 1 ≤ j ≤ t and for three positive indices `1 ≤ sα,
`2 ≤ sβ, `3 ≤ sγ, let x be the `1’th vertex of vertex class α in S(j), let y be the `2’th
vertex of vertex class β in S(j), and let z be the `3’th vertex of vertex class γ in S(j).
Let A(α, β, γ, j, `1, `2, `3) be the event that c(x, y) = c(v, z). (Notice that if γ = α and
`1 = `3 or γ = β and `2 = `3 then the corresponding event never holds as our coloring is
proper.) We now prove the following claim.

Claim 2.2 If dB(v) ≤ t/2 then there exist α, β, γ, `1, `2, `3 and there exists J ⊂ {1, . . . , t}
with |J | > t/(khr)3 such that for each j ∈ J the event A(α, β, γ, j, `1, `2, `3) holds.

Proof: If dB(v) ≤ t/2 then there exists J ′ ⊂ {1, . . . , t} with |J ′| ≥ t/2 such that for each
j ∈ J some event A(., ., ., j, ., ., .) holds. There are

(
r
2

)
choices for α and β. There are

r− 1 choices for γ. There are at most kh choices for each of `1, `2 and `3. Hence for some
J ⊂ J ′ with

|J | ≥ |J ′|
k3h3

(
r
2

)
(r − 1)

>
t

(khr)3

the 6-tuple (α, β, γ, `1, `2, `3) is the same for all j ∈ J .

For each α, β, γ, `1, `2, `3 where `1 ≤ sα, `2 ≤ sβ and `3 ≤ sγ and for each subset
J ⊂ {1, . . . , t} of cardinality |J | = d t

(khr)3
e, let

A(J, α, β, γ, `1, `2, `3) = ∩j∈JA(α, β, γ, j, `1, `2, `3).

Claim 2.3 If the probability of each of the events A(J, α, β, γ, `1, `2, `3) is smaller than
k−4h−3r−3t−12−t then Pr[dB(v) ≤ t/2] < 1/kt.

Proof: The proof of the claim follows immediately from Claim 2.2 and from the fact
that there are less than 2t possible choices for J and less than k3h3r3 possible choices for
α, β, γ, `1, `2, `3 where `1 ≤ sα, `2 ≤ sβ and `3 ≤ sγ .
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By Claim 2.3, in order to complete the proof of Lemma 2.1 it suffices to prove the
following claim.

Claim 2.4 Let 1 ≤ α < β ≤ r, let 1 ≤ γ ≤ r − 1, let `1 ≤ sα, `2 ≤ sβ, `3 ≤ sγ and let
J ⊂ {1 . . . , t} with |J | = d t

(khr)3
e. Then,

Pr[A(J, α, β, γ, `1, `2, `3)] <
1

k4h3r3t2t
.

Proof: For convenience, let A = A(J, α, β, γ, `1, `2, `3) and let ∆ = d t
(khr)3

e. We may

assume, without loss of generality, that J = {1, . . . , ∆}. For j ∈ J , let xj be the `1’th
vertex of vertex class α in S(j), let yj be the `2’th vertex of vertex class β in S(j),
and let zj be the `3’th vertex of vertex class γ in S(j). Suppose that we are given the
identity of the 3j − 2 vertices x1, y1, z1, . . . , xj−1, yj−1, zj−1 and zj (we assume here that
all vertices are distinct since if zj′ equals either xj′ or yj′ then pr[A] = 0 in this case,
as our coloring is proper). If we can show that given this information, the probability
that c(xj , yj) = c(v, zj) is less than q where q only depends on t, r, h then, by the product
formula of conditional probabilities we have Pr[A] < q∆. Thus, assume that we are given
the identity of the 3j − 2 vertices x1, y1, z1, . . . , xj−1, yj−1, zj−1 and zj . In particular, we
know the color c = c(v, zj). What is the probability that c(xj , yj) = c? If α 6= γ, let
X = Vα \ {x1, . . . , xj−1} and if α = γ let X = Vα \ {x1, . . . , xj−1, z1, . . . , zj}. If β 6= γ, let
Y = Vβ \ {y1, . . . , yj−1} and if β = γ let Y = Vβ \ {y1, . . . , yj−1, z1, . . . , zj}. Each vertex
of X has an equal chance of being xj and each vertex of Y has an equal chance of being
yj. Thus, each edge of X × Y has an equal chance of being the edge (xj , yj). Clearly
|X| ≥ tkh − 2∆ and |Y | ≥ tk(p − 1) − 2∆ (if β 6= r then, in fact, |Y | ≥ tkh − 2∆ and
if p = 1 then, trivially, β 6= r). Since our coloring is proper, the color c appears at most
tkh times in Vα × Vβ. Hence,

Pr[c(xj , yj) = c] ≤ tkh

|X||Y | ≤
tkh

(tk − 2∆)2
<

tkh

(tk − tk/2)2
=

4h

tk
.

It follows that for t sufficiently large as a function of k, h, r we have

Pr[A] <

(
4h

tk

)∆

≤
(

4h

tk

)t/(khr)3

<
1

k4h3r3t2t
.

This completes the induction step and the proof of Lemma 2.1.

Proof of Theorem 1.1: Let H be a graph with χ(H) = r and v(H) = h. By Lemma
2.1 there exists k = k(h, r) such that every proper edge coloring of Tr(k) has a rainbow
K(h, r)-factor, and hence also a rainbow H-factor. By [10], the exists K0 = K0(k, r)
such that every graph with n vertices, where kr divides n, and with minimum degree
at least n(1 − 1/r) + K0 has a Tr(k)-factor. Let K = K0 + kr and let G be a properly
edge-colored graph with n vertices where h divides n, and with minimum degree at least
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n(1 − 1/r) + K. Let n∗ ≤ n be the largest integer which is a multiple of kr. Any graph
obtained from G by deleting n− n∗ vertices has n∗ vertices and minimum degree at least
n(1 − 1/r) + K0 ≥ n∗(1 − 1/r) + K0 and hence has a Tr(k)-factor. In particular, we can
greedily delete from G a set of (n − n∗)/h vertex-disjoint rainbow copies of H , and the
remaining graph has a Tr(k)-factor. As each Tr(k) in this factor is properly colored, each
has a rainbow H-factor. Thus, G has a rainbow H-factor.

3 Rainbow “almost” H-factors

For an r-chromatic graph H on h vertices, let u = u(H) be the smallest possible color-
class size in any r-coloring of H . The critical chromatic number of H is χcr(H) = (r −
1)h/(h − u). It is easy to see that χ(H) − 1 < χcr(H) ≤ χ(H) and χcr(H) = χ(H) if
and only if every r-coloring of H has equal color-class sizes. In [9], Komlós proved the
following result.

Theorem 3.1 [Komlós [9]] Let ε > 0 and let H be a graph. There exists n0 = n0(H, ε)
such that every graph with n > n0 vertices and minimum degree at least (1 − 1/χcr(H))n
has a set of vertex-disjoint copies of H that cover all but at most εn vertices.

Solving a conjecture of Komlós, Shokoufandeh and Zhao proved the following strengthened
version in [11].

Theorem 3.2 [Shokoufandeh and Zhao [11]] For every graph H there exists K0 = K0(H)
such that every graph with n vertices and minimum degree at least (1− 1/χcr(H))n has a
set of vertex-disjoint copies of H that cover all but at most K0 vertices.

Let T be a complete r-partite graph with vertex class sizes u1 ≤ u2 ≤ . . . ≤ ur. For
a positive integer k, let kT denote the complete r-partite graph with vertex class sizes
ku1 ≤ ku2 ≤ . . . ≤ kur. Clearly,

χcr(kT ) = χcr(T ) =
(r − 1)

∑r
i=1 ui∑r

i=2 ui
.

The following is a slight generalization of Lemma 2.1 whose proof is almost identical.

Lemma 3.3 Let T be a complete r-partite graph with vertex class sizes u1 ≤ u2 ≤ . . . ≤
ur. There exists k = k(T ) such that any proper edge coloring of kT has a rainbow T -factor.

Let H be a graph, and consider a coloring of H in which the smallest vertex class has
size u(H). Adding edges between any two vertices in distinct vertex classes we obtain
a complete r-partite graph T with χcr(T ) = χcr(H). Thus, exactly as in the proof of
Theorem 1.1 we can use Lemma 3.3 and Theorem 3.2 to obtain the following.

Proposition 3.4 For every graph H there exists K = K(H) such that every properly
edge-colored graph with n vertices and minimum degree at least (1− 1/χcr(H))n has a set
of vertex-disjoint rainbow copies of H that cover all but at most K vertices.
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4 Concluding remarks

• The proof of Lemma 2.1 yields a huge constant k = k(h, r). It is an interesting com-
binatorial problem to determine the minimum integer k = k(h, r) which guarantees
that a properly edge-colored Tr(k) has a rainbow Tr(h)-factor. Even for the case
h = 1 (the case of complete graphs) we do not know the precise answer. Trivially
k(1, 2) = 1 and k(1, 3) = 1. However, k(1, 4) > 1 since a proper edge coloring of
K4 need no be rainbow. The following example shows that k(1, 4) > 2. Assume the
four vertex classes of T4(2) are Vi = {xi, yi} for i = 1, 2, 3, 4. Color with 1 the edges
x1x2, y1y2, x3x4, y3y4. Color with 2 the edges x1y2, x2y1, x3y4, x4y3. Color with 3 the
edges x2x3, y2y3, x1y4, y1x4. Color with 4 the edges x2y3, y2x3, x1x4, y1y4. Color the
remaining 8 edges in any way as to obtain a proper edge coloring. It is easily verified
that any K4 of this T4(2) is not rainbow. In particular, this example shows that the
rainbow version of the theorem of Hajnal and Szemerédi ceases to hold for small
values of n.

• An edge coloring of a graph is called m-good if each color appears at most m times
at each vertex. A slightly more complicated version of Lemma 2.1 also holds in this
setting. Namely, Let h, r and m be positive integers. There exists k = k(h, r, m)
such that any m-good edge coloring of Tr(k) has a rainbow Tr(h)-factor. We omit
the details. Given this extended version of Lemma 2.1 it is straightforward to show
that Theorem 1.1 also holds for m-good colored graphs.
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