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Abstract
Let ai,...,a, be positive integers, m = Y ;_,(a;—1)+1 and p = max{ai,...,ar}.
For a graph G the symbol G — {ay,...,a,} denotes that in every r-coloring of the
vertices of G there exists a monochromatic a;-clique of color i for some 7 =1,...,7r.

The vertex Folkman numbers F'(ai,...,a,;m — 1) = min{|V(G)| : G — (a1 ...a,)
and K,,—1 € G} are considered. We prove that F(aj,...,a,;m — 1) < m + 3p,
p > 3. This inequality improves the bound for these numbers obtained by Luczak,
Rucinski and Urbanski (2001).

1 Introduction

We consider only finite, non-oriented graphs without loops and multiple edges. We call a
p-clique of the graph G a set of p vertices, each two of which are adjacent. The largest
positive integer p, such that the graph G contains a p-clique is denoted by cl(G). In this
paper we shall also use the following notations:

V(G) - vertex set of the graph G;

E(G) - edge set of the graph G;
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G - the complement of G;

G[V], V C V(G) - the subgraph of G induced by V;

G — V - the subgraph induced by the set V(G)\V;

Ng(v), v € V(G) - the set of all vertices of G adjacent to v;

K, - the complete graph on n vertices;

C,, - simple cycle on n vertices;

P, - path on n vertices;

X(G) - the chromatic number of G;

[x] - the least positive integer greater or equal to z.

Let G; and G5 be two graphs without common vertices. We denote by Gy + G5 the
graph G for which V(G) = V(G1) U V(Gs) and E(G) = E(Gy) U E(Gs) U E', where
E ={[z,y] |z € V(G1), y € V(G2)}.

Definition Let aq,...,a, be positive integers. We say that the r-coloring
V(G =ViUu...UV, VinV; =0, i#j,

of the vertices of the graph G is (aq, ..., a,)-free, if V; does not contain an a;-clique for
eachi € {1,...,r}. The symbol G — (ay,...,a,) means that there is no (ai, ..., a,)-free
coloring of the vertices of G.

We consider for arbitrary natural numbers a4, ..., a, and q
H(ay,...a:59) ={G: G — (ay,...,a,) and cl(G) < q}.

The vertex Folkman numbers are defined by the equalities

F(ay,...,a,;q) =min{|V(G)|: G € H(ay,...,a,;q)}.

It is clear that G — (a4,...,a,) implies cl(G) > max{ay,...,a,}. Folkman [3] proved
that there exists a graph G such that G — (ay,...,q,) and cl(G) = max{ay,...,a,}.
Therefore

F(ay,...,a,;q) exists if and only if ¢ > max{ay,...,a,}. (1)

These numbers are called vertex Folkman numbers. In [5] Luczak and Urbanski defined
for arbitrary positive integers aq, ..., a, the numbers

T

m=m(ay,...,a.) = Z(ai —1)+1and p=play,...,a)=max{ay,...,a}. (2)
i=1

Obviously K,, — (ai,...,a,) and K,,_y - (ai,...,a,). Therefore if ¢ > m + 1 then
F(ay,...,a,;q) =m.

From (1) it follows that the number F(ay,...,a,;q) exists if and only if ¢ > p + 1.
Luczak and Urbanski [5] proved that F(aq,...,a,;m) = m + p. Later, in [6], Luczak,
Ruciriski and Urbanski proved that K, , 1 + Cop,11 is the only graph in H(ay, ..., a,;m)
with m + p vertices.
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From (1) it follows that the number F'(ay, ..., a,;m—1) exists if and only if m > p+2.
An overview of the results about the numbers F(ay,...,a,;m — 1) was given in [1]. Here
we shall note only the general bounds for the numbers F'(ay,...,a,;m — 1). In [8] the
following lower bound was proved

F(ai,...,a;;m—1)>m+p+2, p>2.

In the above inequality an equality occurs in the case when max{aj,...,a,} = 2 and
m > 5 (see [4],[6],[7]). For these reasons we shall further consider only the numbers
F(ay,...,a,;m — 1) when max{as,...,a,} > 3.

In [6] Luczak, Rucinski and Urbariski proved the following upper bound for the num-
bers F(ay,...,a,;m—1):

F(ay,...,a;m—1) <m+p? form >2p+2.
In [6] they also announced without proof the following inequality:
F(ay,...,a;m—1)<3p*+p—mp+2m—3, forp+3<m<2p+1.
In this paper we shall improve these bounds proving the following

Main theorem Let aq,...,a, be positive integers and m and p be defined by (2). Let
m>p+2and p> 3. Then

F(ay,...,a;m—1) <m+ 3p.
Remark This bound is exact for the numbers F(2,2,3;4) and F(3,3;4) because

F(2,2,3;4) = 14 (see [2]) and F(3,3;4) = 14 (see [9]).

2 Main construction

We consider the cycle Cgp,y1. We assume that

V(Copy1) = {v1, -+, Vapia}
and
E(CQIH‘l) - {[Ui7 Ui+1]7i = ]-7 ceey 2p} U {Uh U2p+1}'

Let o denote the cyclic automorphism of Cy,iq, ie. o(v;) = vy for ¢ = 1,...,2p,
0(vap+1) = v1. Using this automorphism and the set My = V(Copi1)\{v1, vop—1, Vop_2} we
define M; = o'"*(M;) for i = 1,...,2p + 1. Let ', denote the extension of the graph
C_'2p+1 obtained by adding the new pairwise independent vertices w1, ..., ugp+1 such that

NFP(UZ):Mz fOI‘Z:1,72p+1 (3)
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We easily see that cl(Copyi) = p.

Now we extend o to an automorphism of I', via the equalities o(u;) = w;qq, for
i=1,...,2p, and o(ugps1) = uy. Now it is clear that
o is an automorphism of I',,. (4)

The graph I', was defined for the first time in [8]. In [8] it is also proved that I', — (3, p)
for p > 3. For the proof of the main theorem we shall also use the following generalisation
of this fact.

Theorem 1 Let p > 3 be a positive integer and m = p + 2. Then for arbitrary positive
integers ay,...,a, (r is not fived) such that

r

m=1+> (a;—1)

i=1
and max{ay,...,a.} < p we have

I, — (a1,...a.).

3 Auxiliary results

The next proposition is well known and easy to prove.

Proposition 1 Let aq, ..., a, be positive integers and n = ay + ...+ a,. Then
3+ 5] 23]
2 21712
If n is even than this inequality is strict unless all the numbers aq,...,a, are even. Ifn
1s odd then this inequality is strict unless exactly one of the numbers ay,. .., a, is odd.

Let P, be the simple path on k vertices. Let us assume that

V(Pk) = {vl,...,vk}

and
E(Py) = {[vi,vip1],i=1,... k= 1}
We shall need the following obvious facts for the complementary graph P of the
graph Pj:

<[4

(5)
cl(Pyy — v) = cl(Pyy,), for each v € V(Py) (6)
cl( Py, — {vop_o,Va_1}) = cl(Poy) for k > 2 (7)

cl(Poyr — va) = cl(Pogy1), i=1,... .k k>1. (8)

The proof of Theorem 1 is based upon three lemmas.

5
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Lemma 1 Let V C V(Cypi1) and |V| = n<2p+1. Let G = Copi1[V] and let Gy, ..., G,
be the connected components of the graph G = Cap1[V]. Then

ae) = 2], (9)

If n is even, then (9) is strict unless all |V(G;)| for i = 1,...,s are even. If n is odd,
then (9) is strict unless exactly one of the numbers |V (G;)| is odd.

Proof Let us observe that B B
G=G+...+G,. (10)

Since V' # V(Cy,41) each of the graphs G; is a path. From (10) and (5) it follows that

0 =313,

i=1

where n; = |[V(G;)|, i = 1,...,s. From this inequality and Proposition 1 we obtain the
inequality (9). From Proposition 1 it also follows that if n is even then there is equality
in (9) if and only if the numbers ny, ..., n, are even, and if n is odd then we have equality
in (9) if and only if exactly one of the numbers n4, ..., ng is odd.

Corollary 1 It is true that cl(I'y) = p.

Proof It is obvious that c/(Cyyy1) = p and hence cl(T',) > p. Let us denote an arbitrary
maximal clique of I', by @. Let us assume that || > p. Then () must contain a vertex u;
for some i =1,...,2p+ 1. As the vertices u; are pairwise independent () must contain at
most one of them. Since ¢ is an automorphism of I', (see (4)) and u; = 0"~ (u1), we may
assume that ) contains u;. Let us assign the subgraph of I', induced by Nr,«,) = M; by
H. The connected components of H are {vg, vs, ..., v 3} and {vay, vopt1} and both of
them contain an even number of vertices. Using Lemma 1 we have c/(H) = p — 1. Hence
|@Q| = p and this contradicts the assumption.

The next two lemmas follow directly from (10), (6), (7), and (8) and need no proof.
Lemma 2 Let V C V(Cypi1) and G = Copi4[V]. Let Py = {v1,v5,. .., vk} be a connected
component of the graph G = Cap1[V]. Then

(a) if k = 2s then
cd(G—v)=c(G), i=1,...,2s,

and
Cl(G - {UQS_Q, Ugs_l}) = CZ(G)

(b) if k =2s+1 then
(G —wvy)=d(G), i=1,...,s.
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Lemma 3 Let V C V(Cyyy1) and Copyy = G. Let
Py, =A{vy,...,v96} and Ps={w,...,ws}

be two connected components of the graph G = Copt1[V]. Then

(a) if s = 2t then
(G — {v,w;}) = cl(G),
forio=1,...,2k, j=1,...,s, and

Cl(G — {ng,Q, ngfl,wj}) = Cl(G),
forj=1,...,s.
(b) If s =2t +1 then

(G — {vap—2, vop—1, wa;}) = cl(G), fori=1,... .1

4 Proof of Theorem 1

We shall prove Theorem 1 by induction on r. As m = > ,(a; —1)+1 = p+2 and
max{ai,...,a,} < p we have r > 2. Therefore the base of the induction is r = 2. We
warn the reader that the proof of the inductive base is much more involved then the proof
of the inductive step. Let r = 2 and (a; — 1) + (ag — 1) + 1 = p+ 2 and max{a;, as} < p.
Then we have

a1+a2:p+3. (11)

Since p > 3 and max{ay, as} < p we have that
a; >3, i=1,2. (12)

We must prove that Iy, — (a1, as). Assume the opposite and let V(I',) = V3 U V5 be a
(a1, az)-free coloring of V(I',). Define the sets

‘/i/ = V; N V(62p+1)7 1= 1727

and the graphs B
Gi = Coypia[V/], i =1,2.

By assumption I',[V;] does not contain an a;-clique and hence I',[V/] does not contain an

a;-clique, too. Therefore from Lemma 1 we have |V/| < 2a; — 2, i = 1,2. From these
inequalities and the equality
VI +1V5] =2p+1=2a; +2ay— 5

(as p = a1 + ay — 3, see (11)) we have two possibilities:

\V{| = 2a; — 2, |V4] = 2ay — 3,
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or
V]| = 2a; — 3, |V4] = 2ay — 2.

Without loss of generality we assume that
|‘/1/| = 2@1 - 2, |‘/2,| == 2(12 - 3. (13)

From (13) and Lemma 1 we obtain c/(G;) > a;—1 and by the assumption that the coloring
ViU Vy is (ag, ag)-free we have

cd(Gy) =a; — 1fori=1,2. (14)

From (13), (14) and Lemma 1 we conclude that

The number of the vertices of each connected (15)
component of G1 is an even number;

and

the number of the vertices of exactly one of the
connected components of Go is an odd number.

(16)

According to (15) there are two possible cases.

Case 1. Some connected component of G; has more then two vertices. Now from (15)
it follows that this component has at least four vertices. Taking into consideration (15)
and (4) we may assume that {v1,...,vs}, 8 > 2, is a connected component of Gy. Since
V{ does not contain an a;-clique we have by Lemma 1 that s < a;. Therefore 2s+2 < 2p
and we can consider the vertex uggyo.

Subcase 1l.a. Assume that ugsio € Vi. Let vo510 € VJ. We have from (3) that

Nr, (u2s42) 2 Vi — {vas—2, V2s_1}. (17)

From (14) and Lemma 2(a) we have that the subgraph induced by V{ — {vos_o,v95 1}
contains an (a; — 1)-clique Q. From (17) it follows that @ U {ugsi2} is an aj-clique in V}
which is a contradiction.

Now let vos12 € V/. From (3) we have

Nr, (ugst2) 2 Vi — {vas5—2, Vas_1, Vasia}. (18)

According to (15) we can apply Lemma 3(a) for the connected component {vy,...,va}
of G and the connected component of G that contains vysio. We see from (14) and
Lemma 3(a) that V) — {vgs_o, Ugs_1, U212} contains an (a; — 1)-clique @ of the graph G;.
Now from (18) it follows that @ U {ugss2} is an aj-clique in V;, which is a contradiction.
Subcase 1.b. Assume that ugsyo € Vo. If w19 ¢ Vi then from (3) it follows

Nr, (t2s42) 2 Vy. (19)
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As V4 contains an (as — 1)-clique Q (see (14)). From (19) it follows that Q U {ugsyo} is
an ao-clique in V5, which is a contradiction.
Now let vgs12 € V5. In this situation we have from (3)

Nr, (usy2) 2 Vi — {vasia}. (20)
We shall prove that
Vi — {9542} contains an (ay — 1)-clique of T',. (21)

As vq4 is the last vertex in the connected component of G, we have vo,; € V. Let L
be the connected component of G containing vyey2. Now we have L = {vggi1, Vagya, ...}
Now (21) follows from Lemma 2 applied to the component L. From (20) and(21) it follows
that V5 contains an as-clique, which is a contradiction.

Case 2. Let all connected components of G have exactly two vertices.

From (12) and (13) it follows that G; has at least two connected components. It is
clear that G5 also has at least two components. From (16) we have that the number of
the vertices of at least one of the components of (G5 is even. From these considerations
and (4) it follows that it is enough to consider the situation when {vy, v} is a connected
component of Gy and {vs, . .., Vs, } is a component of Gy, and {vasy1, Vosy2} is @ component
of G;. We shall consider two subcases.

Subcase 2.a. If uysyo € V.

Let s = 2. We apply Lemma 3(a) to the components {vy,v2} and {vs, vg}. From (14)
we conclude that

V] — {vy,v6} contains an (a; — 1)-clique. (22)

From (3) we have
N, (ug) 2 Vi = {va, v} (23)

Now (22) and (23) give that V; contains an a;-clique.
Let s > 3. From (3) we have

Nr, (ugs42) 2 Vi — {vae12}. (24)

According to Lemma 2(a) V' —{wvas12} contains an (a; —1)-clique. Now using (24) we have
that this (a; — 1)-clique together with the vertex wuss1o gives an a;-clique in V;. Subcase
2.a. is proved.

Subcase 2.b. Let ug, 9 € V5.

Let s = 2. From (3) we have N, (ug) 2 V5 — {vs}. According to Lemma 2(a) and
(14) VJ — {vs3} contains an (ay — 1)-clique. This clique together with ussyo € V5 gives an
as-clique in V5, which is a contradiction.

Let s > 3. Here from (3) we have Np,(ugs2) 2 V5 — {v2s—2,v2s-1}. According to
Lemma 2(a) and (14) we have that Vi — {vgs_9,v95_1} contains an (ay — 1)-clique. This
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clique together with uqs. 9 € V5 gives an as-clique in V5, which is a contradiction. This
completes the proof of case 2 and of the inductive base r = 2.
Now we more easily handle the case r > 3. It is clear that

G = (a1,...,a,) & G = (ap), - -, u())
for any permutation ¢ € S,. That is why we may assume that
ar < ...<a, <p. (25)

We shall prove that a; +a, — 1 < p. If ay < 2 this is trivial: a; +as —1 < 3 < p. Let
as > 3. From (25) we have a; > 3,1 = 2,...,r. From these inequalities and the statement

of the theorem .

Z(ai—l)—l—l:p—I—Q

i=1
we have
p+2>14(aa—1)+ (a1 — 1)+ 2(r — 2).

From this inequality and r > 3 it follows that a; +as — 1 < p. Thus we can now use the
inductive assumption and obtain

Iy, — (a1 +ax—1,as,...,a,). (26)

Consider an arbitrary r-coloring V; U ... UV, of V(I',). Let us assume that V; does not
contain an a;-clique for each ¢ = 3,...,r. Then from (26) we have V; U V5 contains
(a1 + az — 1)-clique. Now from the pigeonhole principle it follows that either V; contains
an aj-clique or V5 contains an as-clique. This completes the proof of Theorem 1.

5 Proof of the Main Theorem

Let m and p be positive integers p > 3 and m > p + 2. We shall first prove that for
arbitrary positive integers aq, ..., a, such that

T

m=1+> (a;—1)
i=1
and max{a,...,a,} < p we have

Kmfpr_‘_Fp — (al,...,ar). (27)

We shall prove (27) by induction on t = m —p —2. As m > p+ 2 the base ist =0
and it follows from Theorem 1. Assume now ¢t > 1. Then obviously

Kppo+1Tp=K+ (Kmfp% + Fp)-
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Let V(K;) = {w}. Consider an arbitrary r-coloring V; U... UV, of V(K,,_p,—2+1T). Let
w € V; and Vj}, j # ¢, does not contain an a;-clique.

In order to prove (27) we need to prove that V; contains an a;-clique. If a; = 1 this is
clear as w € V;. Let a; > 2. According to the inductive hypothesis we have

Km_p_g + Fp — (CLl, ey Q1,0 — 1,CLZ‘+1, ceey CLT). (28)
We consider the coloring
Viu...UV,Uu{V,—w}u...UV,

of V(Ky—p—3+1,). As Vj, j # i, do not contain a;-cliques, from (28) we have that
Vi —{w} contains an (a; —1)-clique. This (a; —1)-clique together with w form an a;-clique
in V;. Thus (27) is proved.

From Corollary 1 obviously follows that cl(K,,—,—2+1',) = m —2. From this and (27)
we have K,,_, o+ 1T, € H(a1,...,a,;m —1). The number of the vertices of the graph
Kyp—o + T, is m + 3p therefore F(ay,...,a,;m —1) < m+ 3p.

The main theorem is proved.
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