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Abstract

Beauquier and Nivat introduced and gave a characterization of the class of
pseudo-square polyominoes, i.e. those polyominoes that tile the plane by trans-
lation: a polyomino tiles the plane by translation if and only if its boundary word
W may be factorized as W = XY X Y . In this paper we consider the subclass PSP
of pseudo-square polyominoes which are also parallelogram. By using the Beauquier-
Nivat characterization we provide by means of a rational language the enumeration
of the subclass of psp-polyominoes with a fixed planar basis according to the semi-
perimeter. The case of pseudo-square convex polyominoes is also analyzed.

1 Introduction

The way of tiling planar surfaces has always been a fascinating problem, and it has
been widely studied also in ancient times for its beautiful decorative implications.

Recently this problem has shown interesting mathematical aspects connected with
computational theory, mathematical logic and discrete geometry, and tilings are often
regarded as basic objects for proving undecidability results for planar problems. Fur-
thermore, they have been used in physics, as powerful tools for studying quasi-crystal
structures: in particular these structures can be better understood by representing them
as rigid tilings decorated by atoms in a uniform fashion. Their long-range order can suc-
cessively be investigated in a purely tiling framework, after assigning to every tiling a
structural energy.
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It seems that a so wide usage of tilings (also in different disciplines) can be imputed to
their capability to generate very complex configurations. These words find a confirmation
in a classical result of Berger [2]: given a set of tiles, it is not decidable whether there
exists a tiling of the plane which involves all its elements. This result has been achieved
by constructing an aperiodic set of tiles, and successively it has been strengthened by
Gurevich and Koriakov [11] to the periodic case.

Further interesting results have been achieved by restricting the class of sets of tiles
only to those having one single element. In particular Wijshoff and Van Leeuwen [24]
considered the exact polyominoes (i.e. polyominoes which tile the plane by translation)
and proved that the problem of recognizing them is decidable. In [8], Beauquier and
Nivat studied the same problem from a purely geometrical point of view and they found
a characterization of all the exact polyominoes by using properties of the words which
describe their boundaries. In particular they stated that the boundary word coding these
polyominoes shows a pattern XY ZX Y Z, called a pseudo hexagon, where one of the
variable may be empty in which case the pattern XY X Y is called a pseudo-square.
However, in their work, the authors do not study the combinatorial properties of these
structures.

Invented by Golomb [10] who coined the term polyomino, these well-known combina-
torial objects are related to many challenging problems, such as tilings [8, 9], games [7]
among many others.

The enumeration problem for general polyominoes is difficult to solve and still open.
The number an of polyominoes with n cells is known up to n = 56 [14] and the asymptotic
behavior of the sequence {an}n≥0 is partially known by the relation

limn→∞ {an}
1
n = µ, 3.98 < µ < 4.64,

where the lower bound is a recent improvement [1]. Nevertheless, several subclasses were
enumerated by putting on polyominoes constraints. For instance, it is known [17, 22] that
the number of parallelogram polyominoes having semi-perimeter n+1 is the n-th Catalan
number (sequence M1459 in [21]),

1

n + 1

(
2n

n

)
.

We refer the reader to the surveys [23, 3] for the exact enumeration of various classes of
polyominoes.

In this paper we study the class of convex polyominoes that also tile the plane by
translation.

First we consider pseudo-square parallelogram polyominoes, and in this case it turns
out that, by constraining the bottom (i.e. the component Y in the decomposition XY X Y )
to be fixed, these psp-polyominoes are described by a rational language, whose enumera-
tion is straightforward.

Then we study the case of pseudo-square convex polyominoes which are not parallel-
ogram. In this class, we can prove that a polyomino has either a unique pseudo-square
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decomposition and then an easy enumeration by a rational generating function, or two
decompositions and then an enumeration by an infinite summation of rational generating
functions.

While the convexity constraint leads to algebraic generating functions [3], it seems that
the property of being pseudo-square, which is a “global” property of the boundary, gives
some more complex kind of generating functions. Since we have not been able to determine
an explicit expression for them, we investigate their nature according to a hierarchy which
has been formalized in some recent works (see [12, 18]). The generating functions of
the most common solved models in mathematical physics are differentiably finite (or D-
finite), and such functions have a rather simple behavior (for instance, the coefficients
can be computed quickly in a simple way; they have a nice asymptotic expansion; they
can be handled using computer algebra). On the contrary, models leading to non D-finite
functions are usually considered “unsolvable”.

Recently many authors have applied different techniques to prove the non D-finiteness
of models arising from physics or statistics [4, 5, 18, 19, 20]. By the way, A. Guttmann
and I. Enting [12, 13] developed a numerical method for testing the “solvability” of lattice
models, based on the study of the singularities of their anisotropic generating functions.
Concerning the case of pseudo-squares, the test helps us to formulate the conjecture that
the generating functions of the studied classes are not differentiably finite.

2 Pseudo-square parallelogram polyominoes

In the plane Z×Z a cell is a unit square, and a polyomino is a finite connected union
of cells having no cut point (see Figure 1). Polyominoes are defined up to translations. A

(b)(a)

Figure 1: A polyomino (a) and a non polyomino (b).

column (row) of a polyomino is the intersection between the polyomino and an infinite strip
of cells whose centers lie on a vertical (horizontal) line. A polyomino is said to be column-
convex (resp. row-convex) when its intersection with any vertical (resp. horizontal) line
is convex. A polyomino is convex if it is both column and row convex (Figure 2). In a
convex polyomino, the perimeter is the length of its boundary and the area is the number
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(a) (b)

Figure 2: (a) convex polyomino; (b) a column-convex polyomino.

of its cells. Note that the semi-perimeter is equal to the sum of the numbers of its rows
and columns.

A particular subclass of the class of convex polyominoes consists of the parallelogram
polyominoes, defined by two lattice paths that use north (vertical) and east (horizontal)
unitary steps, and intersect only at their origin and extremity. These paths are commonly
called the upper and the lower path. Without loss of generality we assume that the upper
and lower path of the polyomino start in (0, 0). Figure 3 depicts a parallelogram polyomino
having area 14 and semi-perimeter 10. The boundary of a parallelogram polyomino is

Figure 3: A parallelogram polyomino, its upper and lower paths.

conveniently represented by a boundary word defined on the alphabet {0, 1}, where 0
and 1 stand for the horizontal and vertical step, respectively. The coding follows the
boundary of the polyomino starting from (0, 0) in a clockwise orientation. For instance,
the polyomino in Figure 3 is represented by the word

11011010001011100010.

Borrowing from [15] the basic terminology on words, if X = u1 . . . uk is a binary word,
we indicate by X the mirror image of X, i.e. the word uk . . . u1, and the length of X is
|X| = k. Moreover |Y |0, (resp. |Y |1) indicates the number of occurrences of 0s (resp. 1s)
in Y .

Beauquier and Nivat [8] introduced the class of pseudo-square polyominoes, and proved
that each polyomino of this class may be used to tile the plane by translation. Indeed,
let A and B be two discrete points on the boundary of a polyomino P . Then [A, B] and
[A, B]) denote respectively the paths from A to B on the boundary of P traversed in a
clockwise and counterclockwise way. The point A′ is the opposite of A on the boundary
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of P and s satisfies |[A, A′]| = |[A′, A]|. A polyomino P is said to be pseudo-square if there
are four points A, B, A′, B′ on its boundary such that B ∈ [A, A′], [A, B] = [B′, A′], and
[B, A′] = [A, B′] (see Figure 4).

A’

A

B

B’

Figure 4: A pseudo-square polyomino, its decomposition and a tiling.

In this paper we tackle the problem of enumerating pseudo-square convex polyominoes
according to the semi-perimeter.

3 Pseudo-square parallelogram polyominoes

In this section we consider the class PSP of parallelogram polyominoes which are
also pseudo-square (briefly, psp-polyominoes). The following properties of the class of
psp-polyominoes are useful for their characterization.

Proposition 3.1 If X Y X Y is a decomposition of the boundary word of a psp-
polyomino, then XY encodes its upper path, and Y X its lower path.

Proof. The boundary word of P is decomposed as X Y X Y . By definition of pseudo-
square polyomino, we can identify [A, B] = X and [B, A′] = Y . Thus we find X =
[A, B] = [B′, A′] = X and Y = [B, A′] = [A, B′] = Y . The upper and the lower paths

can be written by concatenation of paths and using that Z = Z as U = [A, A′] =
[A, B].[B, A′] = XY and L = [A, A′] = [A, B′].[B′, A′] = Y X. �

Proposition 3.2 Let P be psp-polyomino, whose boundary word is decomposed as
X Y X Y . It holds that X starts and ends with a 1, and Y starts and ends with a 0.

Proof. By Proposition 3.1 the upper and the lower paths of P can be decomposed as
U = XY , and L = Y X, respectively. Since P is a parallelogram polyomino the starting
point is (0, 0) and the paths U and L are only constituted by north and east steps. Thus
the upper path begins with 1, and then X = 1X ′, and analogously the lower path begins
with 0, hence Y = 0Y ′. The same reasoning applied to the endpoint gives that Y = Y ′′0
and X = X ′′1. To summarize, X begins and ends with a 1, and Y begins and ends with
a 0. �

the electronic journal of combinatorics 13 (2006), #R15 5



Proposition 3.3 A parallelogram polyomino is a psp-polyomino if and only if its bound-
ary word has unique decomposition as X Y X Y .

Proof. We only have to prove that a psp-polyomino has a unique decomposition. Let
us proceed by contradiction. Suppose that the boundary of P has at least two de-
compositions. Thus the upper path is U = XY = X ′Y ′ and the lower path is
L = Y X = Y ′X ′. Without loss of generality, we suppose that |X| < |X ′|, and conse-
quently that |Y ′| < |Y |. Moreover, let M to be the common part of X ′ and Y , thus
U = XY = X ′Y ′ = XMY ′ with X ′ = XM and Y = MY ′. Now the lower path can
be written as L = Y X = MY ′X = Y ′X ′ = Y ′XM. We pose W = Y ′X and then we
find MW = WM. By a classical lemma of combinatorics on words (see [15]) it exists a
finite word w and two non zero integers k, ` such that M = wk and M = w`. Using these
equations on words we have that the lower path is periodic, i.e. L = MY ′X = wk+`, and
also the upper path is periodic as U = XMY ′ is a conjugate (circular permutation of
letters) of L, and we find L = w′k+l. Since w and w′ are conjugated and |w| = |w′| is the
period, then |w|0 = |w′|0 and |w|1 = |w′|1.

In conclusion we have that the upper and the lower paths of P meet in the point
(|w|0, |w|1), which is different from the origin and the ending point of the paths, in con-
tradiction with the fact that P is a polyomino. �

X

Y

B

X

A’

B’
A Y

Figure 5: A psp-polyomino, and its unique decomposition.

For instance, the unique decomposition of the polyomino in Figure 5 is

W = 111101 · 0100 · 101111 · 0010

where X = 111101, Y = 0100. We remark that the statement of Proposition 3.3 does not
prevent the existence of different psp-polyominoes having the same upper path, as shown
in Figure 6.

3.1 psp-polyominoes with flat bottom

We consider now the psp-polyominoes with flat bottom, denoted by PSP−, i.e. those
polyominoes such that the word Y (called the bottom) is made only of zeroes (see Figure 7).
In this section the enumeration problem for this class is solved, while the next section
shows the case of psp-polyominoes with a generic bottom.
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Figure 6: Three psp-polyominoes having the same upper path.

Let us denote by PSPk the class of psp-polyominoes with flat bottom of length k ≥ 1.

If P is a polyomino in PSPk, then the word representing the upper path is:

X Y = 1 X ′ 1 0k,

for some X ′. The following immediate property characterizes the elements of PSPk.

Proposition 3.4 The word U = 1 X ′ 1 0k, with k ≥ 1 represents the upper path of a

polyomino in PSPk if and only if X ′ does not contain any factor 0j, with j ≥ k.

Proof.
(⇒ ) Suppose by contradiction that U = 1 X ′ 1 0k encodes the upper path of a parallel-
ogram polyomino P , and X ′ contains a factor 0k, so that we can write U as

U = 1 X ′′0kX ′′′ 1 0k, X ′′, X ′′′ ∈ {0, 1}∗.
The lower path of P can thus be encoded as

L = 0k 1 X ′′0kX ′′′ 1.

It follows that the upper and lower path meet in ( k + |X ′′|0 , 1 + |X ′′|1 ), so P is not
a polyomino, which contradicts our initial hypothesis.

(⇐ ) It can be proved in an analogous way. �

Example 3.1 The word 110010001110100110001 represents the upper path of a poly-
omino in PSP4, as shown in Figure 7 (a), while the word 101100000101 does not encode

a polyomino in PSP4 since it contains the factor 00000 (Figure 7 (b)).

In Table 1 are displayed the numbers pk
n of psp-polyominoes with flat bottom of length

k having semi-perimeter equal to n ≥ 2, for k = 1, . . . , 9.
Clearly, the number p−n of psp-polyominoes of PSP− having semi-perimeter equal to

n, reported in the first column of Table 1, is given by the sum:

p−n =
∑
k≥1

pk
n.
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Y

(a) (b)

Y

XX

Y

Y

X
X

Figure 7: The two objects associated with the paths given in Example 3.1.

fn k = 1 2 3 4 5 6 7 8 9
1 1
2 1 1
3 1 1 1
5 1 2 1 1
8 1 3 2 1 1
14 1 5 4 2 1 1
24 1 8 7 4 2 1 1
43 1 13 13 8 4 2 1 1
77 1 21 24 15 8 4 2 1 1
...

...
...

...
...

...
...

...
...

...

Table 1: the number pk
n of psp-polyominoes with flat bottom of length k ≥ 1 .

Using the result in Proposition 3.4 we observe that each word W representing a polyomino

of PSPk can be uniquely decomposed as:

W = 1 p1 . . . ps 0k,

where,
pj ∈

(
1 ∪ 01 ∪ 001 ∪ . . . ∪ 0k−11

)
, j = 1, . . . , s, (1)

thus W is a word of the regular language defined by the unambiguous regular expression:

1
(
1 ∪ 01 ∪ 001 ∪ . . . ∪ 0k−11

)∗
0k.

For example, the word representing the upper path of the polyomino in PSP4 depicted
in Figure 7 (a) has a unique decomposition as

1 1 001 0001 1 1 01 001 1 0001 0000.
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Translating this argument into generating functions, we have that, for any fixed k ≥ 1

the generating function of the class PSPk is given by:

fk(x) =
xk+1

1 − x − x2 − x3 − . . . − xk
. (2)

Finally, the generating function of the class PSP− is given by the sum:

f(x) =
∑
k≥1

fk(x) = x(1−x)
∑
i≥1

xi

1 − 2x + xi+1
= x2+2x3+3x4+5x5+8x6+14x7+24x7+. . . ,

(3)
defining the sequence A079500 in [21].

In [16] A. Knopfmacher and N. Robbins proved that the coefficient fn+1 is the number
of compositions of the integer n for which the largest summand occurs in the first position,
and that, as n → ∞

fn+1 ∼ 2n

n log2
(1 + δ( log2n) ),

where δ(x) is a continuous periodic function of period 1, mean zero, and small amplitude.
We are not able to find a closed expression for f(x), free from summation symbols, but
we can state something about its nature. In [6], page 298, P. Flajolet studies the function:

x(1 − x)

1 − 2x

∑
i≥0

x2i

1 − 2x + xi+1
, (4)

and in particular he proves that it is not differentiably finite. We recall that a formal power
series in u(x) with coefficients in C is said to be differentiably finite (briefly, D-finite) if it
satisfies a (non-trivial) polynomial equation:

qm(x)u(m) + qm−1(x)u(m−1) + . . . + q1(x)u′ + q0(x)u = q(x),

with q0(x), . . . , qm(x) ∈ C[x], and qm(x) 6= 0 ([22]).
Flajolet’s proof bases on the very simple argument, arising from the classical theory

of linear differential equations, that a D-finite power series of a single variable has only
a finite number of singularities. Thus non D-finiteness follows from the proof that the
function has infinitely many zeros.

The same reasoning can be applied in order to state that the generating function f(x)
of psp-polyominoes with flat bottom is not D-finite.

3.2 Enumeration of psp-polyominoes with fixed bottom

In this section we consider the enumeration of psp-polyominoes with a generic fixed
bottom Y = 0 Y ′ 0, Y ′ ∈ {0, 1}∗.

We say that a binary word X is compatible with Y if the word X Y X Y represents
the boundary of a psp-polyomino. We will prove that the set LY of words XY such that
X is compatible with Y is a regular language, and determine the associated automaton.
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Let us start by giving some definitions. Let F(Y ) (briefly F) be the (finite) set

F = { W ∈ {0, 1}∗ : |W | = |Y | ∧ |W |0 ≥ |Y |0 } ,

and, let LF be the regular language consisting of all the words that do not contain any
element of F as factor:

LF = {0, 1}∗ \ {0, 1}∗ F {0, 1}∗.
Moreover, let us consider the (finite) set of paths starting from (0, 0), ending to the line
y = |Y |1 + 1, using north and east unitary steps and never touching the path defined by
the bottom Y , and let I be the set of words encoding these paths. Roughly speaking, the
words in I are all the possible prefixes for XY , being X compatible with Y . The words
of I can be determined graphically, as shown in the next example.

Example 3.2 Given the bottom Y = 001010, we have that F is made of all the binary
words of length 6 having more than three 0’s, and I = {111, 1101, 1011, 11001, 10101}
(see Figure 8).

  

|   | + 11height = 

 = 001010Y

Y

Figure 8: The initial language I.

Now we have set all the definitions necessary to construct the (regular) language:

LY = ( I {0, 1}∗ ∩ {0, 1}∗0Y ′ ∩ LF ) · 0.

Proposition 3.5 A binary word XY represents the upper path of a psp-polyomino with
bottom Y if and only if XY ∈ LY .

Proof. (⇒ ) Let XY represent the upper path of a psp-polyomino P with bottom Y .
We want to prove that XY ∈ LY . Since it can be easily checked that XY begins with
a word in I, and ends with 0Y ′0 = Y , it remains only to show that XY ∈ LF 0, i.e.
X0Y ′ ∈ LF .

Let us assume, by contradiction, that X 0 Y ′ 6∈ LF , i.e. there is at least a factor Z of
X 0 Y ′, such that |Z| = |Y |, and |Z|0 = |Y |0. Accordingly, the boundary word encoding
the upper path of P may be decomposed as:

X Y = S Z T 0, with S, T ∈ {0, 1}∗.
Naturally, Z cannot be a factor of Y , since they have the same length, thus we must have:
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X = S ZX , Y = ZY T 0, Z = ZX ZY , with ZX 6= ∅.
Thus the lower path can be represented by Y X = ZY T 0 S ZX . Now we observe

that the paths encoded by S ZX ZY = S Z (which is a proper prefix of the upper path),
and by ZY T 0 S = Y S (which is a proper prefix of the lower path) meet at their end
point, since they have the same length and the same number of 0’s by hypothesis. This
means that the upper and the lower path just meet before their endpoints, and it is a
contradiction.

(⇐ ) It can be proved in a completely analogous way. �

YY

X
X

Y

(a) (b)

X

XY

Figure 9: (a) The polyomino of Example 3.3. (b) A polyomino where the initial factor I
overlaps Y : X = 11, Y = 0010010, and I = 11001.

Example 3.3 Referring to Example 3.2, let us consider the psp-polyomino shown in
Figure 9 (a), with bottom Y = 001010. We observe that the word representing its upper
path is an element of LY , since it can be decomposed as

10101 · 11001011 · 00101 · 0,
and 101011100101100101 ∈ LF , 10101 ∈ I, 00101 = 0Y ′.

Remark. Note that, based on the definition of LY , a word W = XY ∈ LY may be
decomposed also as W = I · E, with I ∈ I, and E ∈ {0, 1}∗, thus the factor I may
overlap Y , as shown in Figure 9 (b), where we have XY = 11 · 0010010, and I = 11001.

Thanks to the result of Proposition 3.5, one can easily build the automaton asso-
ciated with the regular language LY , for any given Y . Then it is easy to obtain the
generating function for the class of psp-polyominoes having bottom Y , by applying the
Schützenberger methodology to the automaton associated with LY . A final significative
example is now provided.
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Example 3.4 We determine the generating function of the set of psp-polyominoes having
bottom Y = 0010 according to the semi-perimeter. The sets F and I turn to be

F = { 0000, 1000, 0100, 0010, 0001 }, and I = { 11, 101 }.

From Proposition 3.5 we obtain the language:

LY = ( {11, 101} · {0, 1}∗ ∩ {0, 1}∗ \ {0, 1}∗ · F · {0, 1}∗ ∩ {0, 1}∗ 001 ) · 0.

A deterministic and minimal automaton recognizing LY can easily be built, see for in-
stance that depicted in Figure 10. On the left of the dashed vertical line are placed the
initial states, necessary to impose that all the words of the language begin with 11 or 101.
For sake of simplicity, the states on the right of the vertical line have been labelled with a

001

010

1

1

1 1 1

1

0

0

0 0 1

1

0 1

101

110111

1

011

100

Figure 10: The automaton recognizing the language LY of Example 3.4.

word of length three (having at least one 1); each label on a state indicates the last three
letters of the word that is examined when the state is reached (with the only exception
of the state 111 which can initially be reached when examining the word 11). Thus we
have: (

3

0

)
+

(
3

1

)
+

(
3

2

)
= 7

labelled states. The strong component of the automaton is nothing but the DeBruijn
graph of factors of length three having at least one 1. Passing to the system of functional
equations associated with the automaton, we finally calculate the generating function of
the language LY , i.e.

fY =
x5

1 − x − x2 − x4 + x6
.
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We remark that the denominator of the generating function is completely determined
by the number of 1’s and 0’s in Y , and not by their positions; for instance, the generating
function of L0100,

x5(1 − x2)

1 − x − x2 − x4 + x6
,

has the same denominator as that determined in Example 3.4. This simple observation
suggests the problem of determining a general expression for Q(r, s), i.e. the denominator
of the generating function associated with any bottom Y having r 0’s and l 1’s (r ≥ 2,
l ≥ 1). Below we give some partial results:

- Q(2, s) = 1 − x − x3, for any s ≥ 1;

- Q(3, 1) = 1 − x − x2 − x4 + x6;

- Q(3, 2) = 1 − x − x3 − 2x5 + x8 + x10;

- Q(4, 1) = 1 − 2x − 2x3 + x7 + x8.

3.3 On the generating function of psp-polyominoes

By the results in the previous section, we have that the generating function q(x) of psp-
polyominoes according to the semi-perimeter can be obtained as the sum of the (rational)
generating functions associated with all possible bottoms Y , i.e.

q(x) =
∑

Y ∈0{0,1}∗0

fY (x).

We have not been able to determine a closed formula for this expression. The first terms
of the sequence {qn}n≥2 defined by q(x) (not in [21]) are:

1, 2, 3, 6, 11, 22, 45, 90, 184, 370, 751, 1516, 3053, 6172, 12405, 25042, 50323, 101424,
203880, 410296, 824871, 1658338, 3333405, 6696814, 13457112, 27021758, 54278993, . . .

Figure 11 depicts the 11 psp-polyominoes having semi-perimeter equal to 7. Moreover,
Table 2 reports the numbers of psp-polyominoes having semi-perimeter n ≥ 2 and k ≥ 1
rows.

Figure 11: The 11 psp-polyominoes having semi-perimeter equal to 7.
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qn\k 1 2 3 4 5 6 7 8 9
1 1
2 1 1
3 1 1 1
6 1 2 2 1
11 1 2 5 2 1
22 1 3 7 7 3 1
45 1 3 11 15 11 3 1
90 1 4 15 25 25 15 4 1
184 1 4 20 41 52 41 20 4 1
...

...
...

...
...

...
...

...
...

...

Table 2: The numbers of psp-polyominoes of PSP having k columns, k = 1, . . . , 9.

In this paragraph we investigate the nature of the generating function q(x). Recently,
Tony Guttmann [12] suggested a numerical procedure for testing the solvability of lattice
models based on the study of the singularities of their anisotropic generating functions.
In practice, we consider the anisotropic generating function q(x, y) of psp-polyominoes by
counting polyominoes according to the number of rows and columns,

q(x, y) =
∑
m,n

qm,nx
myn,

where qm,n is the number of psp-polyominoes with m rows and n columns. Hence we may
rewrite the generating functions as:

q(x, y) =
∑
n≥1

(∑
m≥1

qm,nxm

)
yn =

∑
n≥1

Hn(x)yn.

The series q(x, y) is said to be differentiably finite (briefly, D-finite) if there is a (non-
trivial) differential equation:

pm(x, y)
∂m

∂ym
u(x, y) + . . . + p1(x, y)

∂

∂y
u(x, y) + p0(x, y) u(x, y) = 0,

with pj a polynomial in x and y, with complex coefficients. Guttmann’s test of solvability
aims at arguing whether the function q(x, y) is or not D-finite, and essentially bases on
the observation of first values of Hn(x). Concerning our series q(x, y) of psp-polyominoes
we have:

1. Hn(x) is a rational function;

2. the degree of the numerator of Hn(x) is smaller than the degree of the denominator;
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3. the first terms of the denominators of Hn(x) (denoted by Dn(x)) are product of
cyclotomic polynomials1, and the nth cyclotomic polynomial appears for the first
time in the term Dn(x):

D1(x) = (1 − x)

D2(x) = (1 − x)2(1 + x)

D3(x) = (1 − x)3(1 + x)(1 + x + x2)

D4(x) = (1 − x)4(1 + x)2(1 + x + x2)(1 + x2)

D5(x) = (1 − x)5(1 + x)3(1 + x + x2)2(1 + x2)(1 + x + x2 + x3 + x4)

D6(x) = (1 − x)6(1 + x)3(1 + x + x2)2(1 + x2)(1 + x + x2 + x3 + x4)(1 − x + x2).

A. Guttmann observed that for a large number of unsolved models (leading to non D-
finite generating functions) the number of different factors in the denominators increases
with n, and suggested that this property could be used as a test of solvability. This test
has been considered successfully by A. Rechnitzer for conjecturing (and then proving)
the non D-finiteness of self-avoiding polygons [19], of directed bond animals [20], and of
bargraphs according to the site perimeter [5]. Motivated by Guttmann’s test we make
the following conjecture:

Conjecture 1. The anisotropic generating function of psp polyominoes is not D-finite.

How is it now possible to prove Conjecture 1? We cannot use the same criterion
used for the generating function of psp-polyominoes with flat bottom. Indeed, while a
D-finite power series of a single variable has only a finite number of singularities, there
are examples of two variables series having infinitely many singularities. Then we need
to use the following:

Theorem 3.1 ([18]) Let f(x, y) =
∑

n≥0 Hn(x)yn be a D-finite series in y with coeffi-
cients Hn(x) that are rational functions of x. For n ≥ 0 let Sn be the set of poles of
Hn(x), and let S =

⋃
n Sn. Then S has only a finite number of accumulation points.

Thus, if the set of singularities of the denominators of the anisotropic generating
function has an infinite set of accumulation points, the anisotropic generating function is
not D-finite. Referring to case of psp-polyominoes, if properties 1., 2. and 3. (which have
been verified for small n) are proved, then we have that the singularities of Hn(x) are
dense on the unit circle |x| = 1, hence, by Theorem 3.1, the series q(x, y) is not D-finite.
Some helpful discussion with A. Rechnitzer suggested that, while determining the exact
form for the denominator Dn(x) may be a very hard task, in order to prove Conjecture 1
it is sufficient to show the following weaker statement:

Conjecture 2. Hk(x) is a rational generating function, and its denominator contains a
factor Ψk(x) which does not cancel with the numerator.

1We remind that the cyclotomic polynomials are the factor of 1 − xn, and in particular
∏

k|n Ψk(x),
where Ψk(x) is the kth cyclotomic polynomial.
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We are also convinced that for such a proof it is convenient to use haruspicy techniques,
as those developed in [18, 19, 20].

4 Pseudo-square convex polyominoes.

In this section we will treat the case of pseudo-square convex polyominoes, denoted
by C. In particular we are interested in those polyominoes in C which are not parallelogram
ones, nor are the reflection of a parallelogram polyomino with respect to the y-axis. So,
let PSP∗ be the class of polyominoes obtained by reflecting psp-polyominoes with respect
to the y-axis. Moreover, let H = C − (PSP ∪ PSP∗). Let cn (resp. q∗n, hn) denote the
number of polyominoes in C (resp. PSP∗, H) having semi-perimeter equal to n ≥ 2.

First we observe that q∗n = qn. Moreover PSPn ∩PSP ∗
n is constituted only by rectan-

gles, hence |PSPn ∩ PSP∗
n| is equal to the number of integer partitions of n into exactly

two summands, that is:
|PSPn ∩ PSP∗

n| = n − 1. (5)

Thus, for all sizes n ≥ 2, we have :

cn = hn + |PSPn ∪ PSP∗
n|

= hn + |PSPn| + |PSP∗
n| − |PSPn ∩ PSP∗

n|
= hn + 2qn − (n − 1). (6)

In a polyomino P ∈ H, let us indicate, using the letters from A to H in a clockwise
orientation, the extremal points where the minimal bounding rectangle meets with P (see
Figure 12). We observe that under our assumptions, the paths [B, C], [D, E], [B, C], and
[B, C] need not be empty.

From now on, we will describe the boundary of a polyomino by means of a word
over the alphabet {N, E, S, W}, where N (resp. E, S, W ) stands for the north (resp.
east, south, west) unit step. The word representing a polyomino is obtained simply by
following its boundary from a starting point in a clockwise orientation. Moreover, if
X = x1x2 · · ·xr where xi ∈ {N, E, S, W} then X = xr · · ·x2 x1 with the property that
N = S, S = N, W = E, E = W.

Using this notation, a polyomino is a pseudo-square if there is at least one starting
point on its boundary such that the boundary word can be decomposed in X Y X Y where
X and Y are non empty words on the alphabet {N, E, S, W}.
Proposition 4.1 If P is a polyomino of H, then it can have the following two decompo-
sitions:

(α) starting from A:
X = [A, C] Y = [C, E]

X = [E, G] Y = [G, A].
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(β) starting from B:
X = [B, D] Y = [D, F ]

X = [F, H] Y = [H, B].

Proof. Let P be a polyomino of H, and XY X Y a decomposition of its boundary.
We prove that the only discrete points which can be the first point of a component in a
decomposition are A, B, C, D, E, F , G, and H .

We start considering the path running from A to C in a clockwise sense. We first
observe that no point between B and C, except B and C themselves, can be the first
point of a component (say the component X, without loss of generality), due to the
convexity of P . So let us assume by that there is a point O between A and B (and
O 6= A, B) which is the first point of X. Thus X begins with an N step, and Y ends with
an N step, which means that Y begins with an S step. For this reason, and because of
the convexity of P , X must end with an E step, and thus X begins with an O step, and
ends with a S one. Since X meets with Y , and for convexity reasons, we have that the
first step of Y must be an S step. Accordingly we have that Y final step is an E, which
contradicts the fact that the first step of X is an O.

Analogously we prove that the other points in the boundary that can be the first
points of a component in a decomposition XY X Y of the boundary of P are D, F , G,
and H . If the first point of X is A, then X begins with an N , hence Y ends with an O
step, and Y begins with an E step. Thus X must end in C, i.e. X = [A, C], and then
Y = [C, E]. Similarly, if the first point of X is B we have X = [B, D], and Y = [D, F ]. �

According to Proposition 4.1 we can distinguish among three types of polyominoes
of H:

i) polyominoes which have one decomposition of type (α), belonging to the class Hα (see
Figure 12 (a));

ii) polyominoes which have one decomposition of type (β), belonging to the class Hβ

(see Figure 12 (b));

iii) polyominoes which have two different possible decompositions, one of type (α), and
one of type (β), belonging to the class Hα ∩Hβ , denoted by Hα∧β (see Figure 13).

As usual, for any n ≥ 6, Hn (resp. Hα
n , Hβ

n, Hα∧β
n ) denotes the set of polyominoes

of H (resp. Hα, Hβ, Hα∧β) having semi-perimeter equal to n. For symmetry reasons,
|Hα

n| =
∣∣Hβ

n

∣∣, thus:

|Hn| = |Hα
n| +

∣∣Hβ
n

∣∣− ∣∣Hα∧β
n

∣∣ = 2 |Hα
n| −

∣∣Hα∧β
n

∣∣ .
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Figure 12: (a) A pseudo-square convex polyomino not parallelogram having a decompo-
sition of type (α); the components are: [A, C],[C, E], [E, G], and [G, A]. (b) A pseudo-
square convex polyomino not parallelogram having a decomposition of type β; in this case
the components are: [B, D], [D, F ], [F, H], and [H, B]. Observe that the path from B to
F is the same in the two polyominoes.

4.1 The generating function of Hα

Since each polyomino of Hα is convex and pseudo-square, and its boundary has a
unique decomposition such that X = [A, C], and Y = [C, E], it is trivial that the path
[A, B] uses only north unitary steps, the path [B, C] uses only north and east steps, begins
with an east and ends with a north one, the path [C, D] uses only east steps, and the path
[D, E] uses only south and east steps, begins with a south step and ends with an east
one. Moreover, by definition of the class H, [B, C] and [D, E] cannot be empty paths,
and consequently also [A, B] and [C, D] contain at least one step.

These properties easily lead to the solution of the enumeration problem for Hα; indeed,
the generating function hα(x) for the class Hα can be obtained as the product of the
generating functions for the paths [A, B], [B, C], [C, D], and [D, E]:

h(x)α = hα
[A,B](x) · hα

[B,C](x) · hα
[C,D](x) · hα

[D,E](x).

Simple combinatorial arguments now yield to the computation of the generating functions:

hα
[A,B](x) = hα

[C,D](x) =
x

1 − x
hα

[B,C](x) = hα
[D,E](x) =

x2

1 − 2x
,

and finally, we have:

hα(x) =
x6

(1 − x)2(1 − 2x)2
. (7)
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Figure 13: A polyomino in Hα∧β
n and its two different decompositions.

The first terms of the sequence hα
n are 1, 6, 23, 72, 201, 522, . . ., with n ≥ 6 (sequence

A045618 in [21]). For instance Figure 14 shows the 6 polyominoes in Hα having semi-
perimeter equal to 7.

Figure 14: The 6 polyominoes in Hα having semi-perimeter equal to 7.

4.2 The generating function of Hα∧β

We start giving a property which characterizes the polyominoes in H having two
different decompositions:

Proposition 4.2 If P is a polyomino of Hα∧β, then the two decompositions are given by:

(α) :
X = (N sEr)kN s Y = (ErSs)k′

Er

X = (SsW r)kSs Y = (W rN s)k′
W r,

(β) :

X ′ = (ErN s)kEr Y ′ = (SsEr)k′
Ss

X
′
= (W rSs)kW r Y

′
= (N sW r)k′

N s,

with r, s ≥ 1, k, k′ ≥ 1, where N, W, S, E denote, as usual, the north, west, south, and
east unitary steps, respectively.
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Proof. As usual, it is assumed that the decomposition (α) starts from the point A of P ,
and the decomposition (β) starts from the point B. The boundary word of P , starting
from A, can be written as

N s T Er U Ss R W r V,

where T ∈ {E, N}∗, U ∈ {E, S}∗, R ∈ {S, W}∗ and W ∈ {W, N}∗. Let us assume that
the boundary has two decompositions, according to Proposition 4.1, of types (α) and (β):

X = N sT, Y = ErU, X = SsR, Y = W rV,

X ′ = TEr, Y ′ = USs, X ′ = RW r, Y ′ = V N s.

Thus X = N sT and X = SsR implies that X = N sT = X = RN s. In the same way,
X ′ = TEr = ErR. Then T begins by Er and ends by N s. We can write T = ErT ′N s and
by substitution

X = N sErT ′N s X ′ = ErT ′N sEr.

Using the operator, we find

X = SsT ′W rSs X ′ = W rSsT ′W r.

As X ′ = RW r then R = W rSsT ′ and as X = RN s then X = SsR and R = T ′W rSs.
By these equalities,

R = W rSsT ′ = T ′W rSs

and by solving this equation on words we obtain that T ′ = (W rSs)k, with k ≥ 0.
Substituting

T ′ = T ′ = (N sEr)k

in T = ErT ′N s, we obtain that

T = Er(N sEr)kN s = (ErN s)k+1, with k ≥ 0,

and consequently that

X = N s(ErN s)k+1 = (N sEr)k+1N s with k ≥ 0.

Thus X = (N sEr)kN s with k ≥ 1.
The same reasoning on Y and Y ′ leads to Y = (ErSs)k′

Er, and Y ′ = (SsEr)k′
Ss. �

Remark. By Proposition 4.2, the smallest polyomino in Hα∧β is obtained when
r = s = k = k′ = 1, and it is the “cross” having the two possible decompositions
NEN ESE SWS WNW , and ENE SES WSW NWN .
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For any fixed s, r ≥ 1, then the generating function of the polyominoes of Hα∧β having
X = (N sEr)kN s, Y = (ErSs)k′

Er, according to the semi-perimeter is given by:

fr,s(x) =
x3(r+s)

(1 − xr+s)2
.

Now to obtain the generating function of Hα∧β we must sum fr,s(x) over all possible
r, s ≥ 1, i.e.

hα∧β(x) =
∑
r,s≥1

fr,s(x). (8)

We observe that for any r, s, r′, s′ ≥ 1 such that r+s = r′+s′ we have fr,s(x) = fr′,s′(x);
moreover, the number of pairs (r, s), r, s ≥ 1, such that r+s = k ≥ 2 is given by r+s−1.
Hence the expression (8) can be re-written as:

∑
k≥1

k fk,1(x) =
∑
k≥1

k x3(k+1)

(1 − xk+1)2
. (9)

Using the same argument as in Section 3, we can state that such a generating function
is not D-finite. The first terms of the generating function hα∧β(x) are:

x6 + 2 x8 + 2 x9 + 3 x10 + 11 x12 + 5 x14 + 10 x15 + 12 x16 + 20 x18 + 25 x20 + 16 x21 + 9 x22 +
51 x24 + 12 x25 + 11 x26 + 22 x27 + 39 x28 + 69 x30 + 46 x32 + . . .

Figure 15: The 3 polyominoes in Hα∧β having semi-perimeter equal to 10.

According to the statement of Proposition 4.2, a polyomino in Hα∧β has semi-perimeter
equal to k(r+s)+s+k′(r+s)+r = (k+k′)(r+s+1), with r, s, k, k′ ≥ 1. As a consequence
we have that, for n ≥ 6, [xn] hα∧β(x) = 0 if and only if n is a prime number.

Finally, the generating function of H according to the semi-perimeter is given by:

2 x6

(1 − x)2(1 − 2x)2
−
∑
k≥1

k x3(k+1)

(1 − xk+1)2
,

giving the sequence 1, 12, 44, 142, 399, 1044, 2571, 6168, 14357, 32786, . . . (not in [21]). By
simple combinatorial arguments we obtain the following asymptotic expansion for hn:

hn = 2hα
n − hα∧β

n ∼ n2n

[
1

8
+ O

(
1

n

)]
. (10)
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5 Conclusion and further work

In this article, we studied the enumeration of two classes of pseudo-square polyominoes.
The first class we have considered consists of parallelogram polyominoes. The unicity

of the decomposition of a parallelogram polyomino on pseudo-square leads to an interest-
ing structural property, and then to the enumeration of the pseudo-square parallelogram
polyominoes with flat bottom. The generating function (3) of this class is obtained as an
infinite summation of rational functions for which we were not able to determine a closed
form. We considered then the problem of enumerating psp-polyominoes with fixed bottom
Y ; by representing polyominoes as words of a regular language LY , we gave an explicit
construction of the automaton recognizing LY , obtaining easily its generating function.

Our approach is a first step for understanding the general enumeration problem. How-
ever, this approach is not successful in determining a closed form of the generating func-
tion, neither in proving the (rather predictable) fact that this generating function is not
differentiably finite (briefly, D-finite).

The second class we have treated consists of the pseudo-square convex polyominoes
which are not parallelogram ones. We observe that there are two kinds of such polyomi-
noes: those having one only decomposition, for which the enumeration is easy and gives a
rational generating function, and those having two distinct decompositions, for which the
enumeration, as in the case of psp-polyominoes, leads to an infinite summation of rational
generating functions.

Many questions remain open concerning the enumeration of pseudo-square polyomi-
noes, and furthermore concerning the enumeration of pseudo-hexagon polyominoes.

Figure 16: A pseudo hexagon and a corresponding tiling.

Another interesting problem related to the previous ones is to determine the number
of the lattice periodic tilings which can be obtained by translation of one polyomino. We
remark that the enumeration of exact polyominoes (i.e. polyominoes that tile the plane
by translation) is closely related to the enumeration of lattice periodic tilings. Indeed
an exact polyomino determines at least one (but possibly more) lattice periodic tilings:
for example, the L − shaped triomino (which is a pseudo-hexagon polyomino) generates
only one lattice periodic tiling, the domino (which has two decompositions, one in pseudo-
square and one in pseudo-hexagon) generates two lattice periodic tilings and the rectangle
m×n generates one exact tiling by pseudo-squares and m+n−2 exact tilings with pseudo-
hexagons (see Figure 17).
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(a) (b) (c)

Figure 17: Periodic tilings associated to the decompositions of a triomino in a pseudo-
square (a), and in two pseudo-hexagons (b) and (c).

In fact, a one-to-one correspondence can be established between the number of decom-
positions (in pseudo-square and pseudo-hexagons) of a given polyomino and the number
of lattice tilings by this polyomino.

For instance, each psp-polyomino gives exactly one lattice tiling, whereas, for any
n ≥ 0 the number of different lattice tilings given by the polyominoes of Hn is equal to

|Hα
n| +

∣∣Hβ
n

∣∣ = 2 |Hα
n| .

Thus the next goal will be to find a closed formula for the number of lattice tilings by
exact polyominoes, i.e. ∑

P∈E
µ(P ),

where E is the set of exact polyominoes of given size, and µ(P ) is the number of possible
decompositions (in pseudo-squares and in pseudo-hexagons) of an exact polyomino P .
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