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Abstract

We consider a popular game puzzle, called Hats-on-a-line, wherein a warden has
n prisoners, each one wearing a randomly assigned black or white hat, stand in a
line. Thus each prisoner can see the colors of all hats before him, but not his or
of those behind him. Everyone can hear the answer called out by each prisoner.
Based on this information and without any further communication, each prisoner
has to call out his hat color starting from the back of the line. If he gets it right,
he is released from the prison, otherwise he remains incarcerated forever. The goal
of the team is to devise a strategy that maximizes the number of correct answers.
A variation of this problem asks for the solution for an arbitrary number of colors.

In this paper, we study the standard Hats-on-a-line problem and its natural
extensions. We demonstrate an optimal strategy when the seeing radius and/or
the hearing radius are limited. We show for certain orderings that arise from a
(simulated) game between the warden and prisoners, how this problem relates to
the theory of covering codes.

Our investigations lead to two optimization problems related to covering codes
in which one leads to an exact solution (for binary codes). For instance, we show
that for 0 < k < n, (n − k − d) ≤ αmn where d = t(n − k,mk,m) is the minimum
covering radius of an m-ary code of length (n − k) and size mk and

αm =
log m

log(m2 − m + 1)
.

∗Both ATC and TRDDC are research units of Tata Consultancy Services Limited.
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1 Introduction

In the Hats-on-a-line game puzzle, a warden has n prisoners stand in a line and places
a hat of color black or white on each of their heads. Starting from the back of the line,
each prisoner has to call out his hat color. If he gets it right, he is released from prison,
otherwise he remains incarcerated forever.

Each prisoner can see the colors of all hats before him, but not his or of those behind
him. Everyone can hear the answer called out by each prisoner. No other communication
is allowed between the prisoners during the game. They are permitted, however, to come
up with a strategy before the game starts. The distribution of hat color combinations is
assumed to be random and uniform, i.e., all 2n combinations are equally likely. The goal
of the team is to devise a strategy that maximizes the number of correct answers in the
worst case.

This is a well known puzzle and also goes by the name “Single-File Hat Execution”
(see [1, 6]). A variation of this problem asks for the solution for an arbitrary, say m > 1,
number of colors. An optimal strategy for the general m color hat problem is well-known
and we discuss it in Section 2.1. The strategy combines the back-to-front ordering, see-
all-in-front and hear-all features using the modulus operator to save all but one prisoner.

It is now natural to consider variants of the original problem where some of these
features are not fully permitted. In Section 3, we consider a scenario where the seeing
radius and/or the hearing radius are limited. We prove an upper bound on the number of
correct guesses in this new model and show that it is tight by demonstrating a strategy
that matches the same.

Some interesting situations arise when the prisoners don’t follow a back-to-front order
in calling out their hat colors. In Section 4, we consider two versions of an ordering game
between X , the set of prisoners, and W, the warden. In the first version X chooses a
value k between 0 and n while W chooses a front-to-back ordering for the first k and
last n − k members of X . We derive bounds on the number of correct calls under this
ordering. In the second version, W chooses k while X chooses the ordering for one of
the two parts while W chooses the ordering for the other part. We estimate k and the
number of correct guesses under this scenario. We use these results to show that finding
the optimal strategy is equivalent to determining codes of minimal covering radius.

1.1 Related Work

To the best of our knowledge, the variants of Hats-on-a-line studied in this paper are new
and have never been studied before. Our discovery of the strong correlation between the
best strategies for some of these variants and covering codes is not surprising though. In
[7], Lenstra and Seroussi study another popular hat puzzle [2, 8] where they too show
that the best strategies are related in a natural way to covering codes. Their game is as
follows:

A team of n players enter a game room, and each player is fitted with a hat, which is
either black or white. A player can see the other players hat colors, but not his own. Each
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player is then asked to make a declaration, which must be one of the statements “my hat
is black”, “my hat is white”, or “I pass”. All the players must declare simultaneously,
and no communication is allowed between them during the game. They are permitted,
however, to hold a strategy coordination meeting before the game starts. The team wins
if at least one player declares his hat color correctly, and no player declares an incorrect
color. The distribution of hat color combinations is assumed to be random and uniform,
i.e., all 2n combinations are equally likely. The goal of the team is to devise a strategy
that maximizes the winning probability.

Lenstra and Seroussi show an equivalence between binary covering codes of radius one
and playing strategies for the case of two hat colors in [7]. Observing that this linkage
is not sufficient for the case of m > 2 hat colors, they introduce the more appropriate
notion of a strong covering, and also show efficient constructions of these coverings, which
achieve winning probabilities approaching unity.

2 Preliminaries

Let m be the number of hat colors. We assume that the colors are represented by the set
M = {0, 1, . . . , m− 1}. Let X = {x1, . . . , xn} be the set of n prisoners where xi is the ith

prisoner from the back. Let yi represent xi’s hat color and define Yi = (
∑n

j=i yj) mod m.
Let W represent the warden.

The seeing radius of x ∈ X is the maximum number of people that x can see ahead
of him. We assume that this is the same for all members of X . Hence we refer to this
value as the seeing radius of X . Similarly, we define the hearing radius of x ∈ X as the
maximum number of people ahead of x that can hear him. Again this value is assumed
to be the same for all members of X and we refer to this as the hearing radius of X .

We develop a uniform notation to cover situations where the seeing radius and/or the
hearing radius is restricted. Let HATS (n, m, s, h) refer to the hat problem with s as the
seeing radius, and h as the hearing radius. Thus the original problem under this notation
would be HATS (n, m, n − 1, n − 1).

An ordering on X is a permutation xi1 , . . . , xin of X such that the members of X call
out their hat colors in the order xi1 , . . . , xin . Define hat(S) to be the minimum number
of correct calls under an ordering S using any optimal strategy.

Let X[i, j] denote the (partial) ordering xi, xi+1, . . . , xj if i ≤ j (this is called a back-
to-front ordering) and xi, xi−1, . . . , xj (called a front-to-back ordering) if i > j.

Given X ⊆ X , a back-to-front ordering is the most advantageous ordering for X since
each announcer has the maximum possible information on which to base his color. A front-
to-back ordering is the least advantageous for X as each announcer has no information
that he can use to determine his color and cannot convey any information about the colors
he sees as they have already been announced. Thus, whenever possible, X will choose a
back-to-front ordering for itself while W will choose a front-to-back ordering for X.

We follow the notation from [4] for covering codes. A code C is any non-empty subset
of Mn. It’s elements are called codewords. The size of C is the number of codewords in
C. The distance between two codewords is the number of co-ordinates they differ in. n is
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the length of the code. We say that C t-covers Mn if every element of Mn is at a distance
at most t from C. The covering radius of C is the smallest t such that C t-covers Mn and
is denoted t(C).

An (n, K, m) code is an m-ary code of length n and size K. Let t(n, K, m) be the
smallest covering radius among all (n, K, m) codes.

An [n, k] code is a binary linear code of length n and dimension k while an [n, k]d code
is a binary linear code of length n, dimension k and covering radius d.

We denote by V (n, d), the size of the ball of radius d among binary words of length
n. Specifically, V (n, d) =

∑d
i=0

(
n
i

)
.

By logr(s) we mean the logarithm of s to base r. When r is not indicated, it’s assumed
to be 2.

2.1 The Modulo Scheme

The solution to the original problem HATS (n, m, n−1, n−1) is straightforward. x1 calls
out the value Y2 = (

∑n
i=2 yi) mod m. For each i > 1, xi

◦ can see the values yi+1, . . . , yn

◦ has heard the values Y2 and y2, . . . , yi−1

and therefore uses the expression for Y2 to solve for yi. This results in (n − 1) members
calling out their colors correctly.

We refer to the above procedure as the modulo scheme. Using the modulo scheme,
one sees that any set of j members of X under a back-to-front ordering can call (j − 1)
of their hat colors correctly.

3 Limited Sight and Limited Volume

Theorem 1 For HATS (n, m, r, h),

hat(X[1, n]) = n −
⌈

n

min(r, h) + 1

⌉
.

Proof: Let’s fix any optimal strategy H for the HATS (n, m, r, h). Let Y = {y1, . . . , yn}
be the hat colors for which H achieves the minimum hat(X[1, n]) number of survivors.

Note that we are concerned with the deterministic strategies wherein every prisoner
uses the audio-visual inputs to uniquely determine the color that he calls out. But unlike
the game in [7], this one is necessarily an asymmetric game, i.e., every prisoner would have
possibly a different function to compute his answer. This is natural since each of them
has got a different view of the situation. Thus the prisoners will have to play different
roles that depend on their individual functions although these roles have to be fixed in
advance as a part of the strategy. Therefore we base our proof on the following axioms:
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I. In H, some of the prisoners are designated to act as information providers. An
information provider is a sacrificial lamb who may or may not know his hat color,
but, by calling out a color, he provides some information for those ahead of him.
The rest are called information users.

II. If any information user, say xi, calls out his hat color correctly, he is necessarily
preceded by an information provider who can see xi and whom xi can hear.

We assume that the choice of Y is such that the calls of information providers turn
out to be incorrect when everybody follows the strategy H.

Let z = min(r, h). Now consider any set of z + 1 contiguous people in the line, say,
X[i, i + z]. For xi+z, the answers given by x1, . . . , xi−1 are irrelevant since either

◦ they cannot see his hat (if r ≤ h), or

◦ he cannot hear them (if h ≤ r), or

◦ both.

Suppose that none of the xi, xi+1, . . . , xi+z−1 is an information provider. Then xi+z

must either be

◦ an information provider, or

◦ an information user who incorrectly announces his hat color since he is not preceded
by any information provider whom he can hear and trust, thus not fulfilling the
axiom II.

Therefore, in any set of z + 1 contiguous people, there is at least 1 prisoner who is an
incorrect caller given Y .

Note that x1 is necessarily an incorrect caller for Y . Otherwise we could change y1

and get Y ′ which has lesser number of survivors than Y – a contradiction. Moreover,
by above analysis, there is at least one incorrect caller in X[x(j−1)z+j+1, xjz+j+1] for j =
1, 2, . . . , bn−1

z+1
c. Thus, there are at least 1 + bn−1

z+1
c = d n

z+1
e incorrect callers.

Since the number of survivors is equal to the total minus the number of incorrect
callers, we have

hat(X[1, n]) ≤ n −
⌈

n

z + 1

⌉
. (1)

In fact, by making xjz+j+1 for j = 0, 1, 2, . . . , bn−1
z+1

c as information providers, and
repeating the modulo scheme for each such X[xjz+j+1, x(j+1)z+j+1], we can ensure that
n − d n

z+1
e number of prisoners correctly announce their hat colors. Therefore, in light of

inequality (1), we get

hat(X[1, n]) = n −
⌈

n

min(r, h) + 1

⌉
. �
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4 An Ordering Game

W realizing that almost all members of X will get their hat colors right in a back-to-front
ordering decides to choose his own ordering. The prisoners protest as W might choose a
front-to-back ordering in which case no member of X may guess their color.

Suppose W relents and lets a member of X call out his color, before choosing his
(front-to-back) ordering. Then X will simply have x1 call out the majority color of all
the hats in front of him. This will guarantee at least d(n − 1)/me correct guesses. The
prisoners realize that they can actually do better! So, they propose the following scheme
to W .

4.1 Partition Chosen by X
In the first setting, X chooses a number k and W chooses the front-to-back ordering for
the last k and the first n− k members of X . In other words, the members of X announce
their hat colors in the order

Sk := X[k, 1], X[n, k + 1].

Here X chooses k so as to maximize hat(Sk). Our goal is to derive bounds for hat(Sk).

For each k, consider the code Ck in Mn−k of size mk and minimum covering radius
d(k) := t(n − k, mk, m). The result below determines hat(Sk) in terms of n, k and d(k).

Claim 2
hat(Sk) = n − k − d(k)

Proof: The colors announced by x1, . . . , xk define a codeword in Ck within distance
d(k) of (yk+1, . . . , yn). This codeword is announced as the hat color by the members
xk+1, . . . , xn. Thus, utmost d(k) of {xk+1, . . . , xn} would get their colors wrong. This
implies hat(Sk) ≥ n − k − d(k).

On the other hand, the mk possible announcements by {x1, . . . , xk} map to a collection
of mk answers by {xk+1, . . . , xn} that we may interpret as forming a code C ⊆ Mn−k. With
the goal of maximizing the number of correct guesses, the members {xk+1, . . . , xn} will
always choose a codeword in C such that the number of incorrect guesses is ≤ k + t(C).
Choosing a configuration of hat colors where the upper bound (for incorrect guesses) is
achieved, the number of correct guesses is n − k − t(C) ≤ n − k − d(k) since t(C) ≥
t(n − k, m, mk). This proves the result. �

It follows from Claim 2 that X will choose k to maximize n − k − d(k). The bounds
derived in this section are in terms of the two quantities

αm :=
log(m)

log(m2 − m + 1)

βm :=
log(m2/(2m − 1))

log(m3/(2m − 1))
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We first determine an upper bound on the number of correct guesses under Sk.

Theorem 3 Let θ1 be the number of correct guesses under an optimal choice of k chosen
by X , i.e. θ1 = max

0<k<n
hat(Sk). Then

θ1 ≤ αmn

Proof: We assume the setting described above, i.e. the members x1, . . . , xk define a code
Ck of covering radius d(k). By the sphere covering bound,

mk
d∑

i=0

(
n − k

i

)
(m − 1)i ≥ mn−k.

Let u = k/n, v = d/n, u, v ≥ 0. By Claim 2, hat(Sk) = n−k−d(k) = n(1−u−v). Since
hat(Sn/2) = n/2 and we are maximizing hat(Sk), we will assume u + v ≤ 1/2. Then the
above inequality yields

mn−2k ≤
d(k)∑
i=0

(
n − k

i

)
(m − 1)i ≤ (m − 1)d(k)2(n−k)H(d(k)/(n−k))

where H(x) = −(x log(x) + (1− x) log(1− x)) is the Shannon’s entropy function [9]. The
last inequality follows because d(k) ≤ (n − k)/2 (see [10] for a proof).

Taking logs and simplifying, our optimization problem becomes

min h(u, v) := (u + v) s.t.

g(u, v) := H(
v

1 − u
) − (1 − 2u)L1 − vL2

1 − u
= 0

where L1 = log(m) and L2 = log(m − 1). Note that we have replaced g(u, v) ≥ 0 by
g(u, v) = 0 as the minimum will occur at the boundary of g.

To find the minimum value, we use the method of Lagrange multipliers. Thus we get

∂h/∂u + λ∂g/∂u = 1 + λ

(
v

(1 − u)2
H ′(

v

1 − u
) +

L1 + L2v

(1 − u)2

)
= 0

∂h/∂v + λ∂g/∂v = 1 + λ

(
1

(1 − u)
H ′(

v

1 − u
) +

L2

1 − u

)
= 0

where λ is the multiplier and H ′(x) = log (1−x
x

). Solving these gives λ = (1 − u)(u + v −
1)/L1, u = 1−m2αm/(m2−m+1) and v = (m−1)αm/(m2−m+1) so that 1−u−v = αm.
This implies u+v < 1/2 and therefore a minimum since (1/2, 0) is also a feasible solution
to the optimization problem. This proves the result. �
We observe that αm approaches 0.5 as m → ∞. So, as m gets large, the simple scheme
of choosing k = n/2 and having xi call out yi+n/2 is close to optimal. For smaller values
of m, considering specific codes will give better than 50% success.
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Lower Bound on θ1:

For m = 2, it is possible for X to realize the upper bound of α2 = 1/ log 3. Specifically, we
set u and v to the values achieving the upper bound in Theorem 3, i.e. u = 1−4/(3 log 3)
and v = 1/(3 log 3). Set k = bunc and d = bvnc and consider a [n − k, k]d code. By
Theorem 12.3.2 of [3], such a code exists (for a sufficiently large n) because for u and v
specified as above, we have

u = (1 − u) − (1 − u)H(
v

1− u
)

so that
k ≤ dn − k − log V (n − k, d) + log(n − k) + log(ln 2)e.

By the choice of u and v, the number of correct guessers is n(1 − u − v) = α2n.

A Generalization to Multiple Partitions:

The above setting can be extended as follows. Instead of k, X now chooses r numbers
0 < k1 < · · · < kr ≤ n while W chooses the front-to-back ordering X[ki, ki−1 + 1] for each
i. Let Kr = {k1, . . . , kr}. The final ordering is SKr

:= X[k1, 1]X[k2, k1+1] · · ·X[n, kr +1].
X will choose Kr so as to maximize hat(SKr

). Let θr be this maximum value. We observe
that

I. 0.5n ≤ θ1 ≤ · · · ≤ θn−1 = n− 1. The first inequality was shown in Section 4.1 while
the last one follows from Section 2.1.

II. Let ar = bn/(r + 1)c. Then θr ≥ rar. To see this, choose ki = iar for i = 1, . . . , r.
Then, for i = 1, . . . , ar, the members xi, xi+ar , . . . , xi+rar use the modulo scheme
ensuring that r of them call out correctly. This gives a total of rar correct guesses.

III. For the 2-color case, we observe that θ1 is achieved using a purely covering code
scheme while θn−1 is achieved using a purely modulo scheme. It would be interesting
to see how the transition between these schemes occur.

Geometric Analogues of the Two Schemes:

The two strategies used by the prisoners, namely the modulus scheme and the covering
code scheme, turn out to have natural geometric interpretations.

I. A modulus scheme under the ordering X[1, n] defines a hyperplane
n∑

i=2

(zi − yi) = 0

in R
n−1 with coordinates z2, . . . , zn. The point (y2, . . . , yn) lies on this hyperplane.

The coefficient Y2 = (
∑n

i=2 yi) mod m is announced by x1 and enables x2, . . . , xn to
determine their colors.

II. A covering code scheme under the ordering X[k, 1]X[n, k + 1] defines a point in
z ∈ R

n−k that is near (yk+1, . . . , yn). The members x1, . . . , xk identify z and the
members xk+1, . . . , xn identify the coordinates of z as their colors.
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4.2 Partition Chosen by W
An alternative to the previous setting is one where W first chooses a k and X chooses the
ordering of one of the two parts, while W chooses the ordering of the other. Of course,
if X is allowed to choose the ordering of both parts, then it will choose back-to-front for
both parts ensuring that n − 1 members guess correctly.

In this case, W chooses a k so as to minimize the number of correct guesses. The final
ordering is either Rk := X[1, k], X[n, k + 1] or Tk := X[k, 1], X[k + 1, n] which we may
assume is chosen by X to maximize the number of correct guesses. The goal here is to
determine the range for k and the number of correct guesses in this setting.

Since W will not choose k = 0, we assume k > 0. For the ordering Tk, xk will call
out the value Yk+1. The members xk+1, . . . , xn now follow the modulo scheme resulting
in hat(Tk) = n − k.

To estimate the optimal k as chosen by W , we first show that hat(Rk) is monotonic.

Claim 4 For 0 < k < n,
hat(Rk+1) ≥ hat(Rk)

Proof: For Rk, each xi, i > k determines his hat color based only on the answers given
by x1, . . . , xk. Under the ordering Rk+1, the members xk+1, . . . , xn are still preceded by
x1, . . . , xk. Thus they can potentially use the same scheme as in Rk to determine their
hat colors. This proves the claim. �
Next we derive a bound for hat(Rk).

Claim 5
hat(Rk) ≤ max

0≤k′≤k
((n − k − d) + (k − k′))

where d = t(n − k, mk′
, m).

Proof: Under Rk, the members xk+1, . . . , xn determine their colors based on the infor-
mation provided by x1, . . . , xk. If, in any particular instance of the optimal strategy, xi

is an information provider then clearly his answer is not fixed by x1, . . . , xi−1 and thus
xi cannot be counted as a correct guesser. If k′ of the first k members are information
providers, then the number of correct guesses among xk+1, . . . , xn is utmost n−k−d and
the total number of correct guesses utmost (k − k′) + (n− k − d). As k′ can be any value
between 0 and k, this proves the result. �

As hat(Rk) (resp. hat(Tk)) increases (resp. decreases) with k, the quantity max(hat(Rk),
hat(Tk)) is minimized when hat(Rk) = hat(Tk). Let κ be the value of k at which this
happens.

The following result bounds κ from below.

Theorem 6
κ ≥ βmn
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Proof: By Claim 5,

hat(Rk) ≤ max
0≤k′≤k

((n − k − d) + (k − k′)) (2)

where, as in the claim, the first k′ ≤ k members x1, . . . , xk′ opt to define a code of
minimum covering radius d = t(n − k, mk′

, m) in Mn−k while the members xk′+1, . . . , xk

choose the modulo scheme.

Let u = k′/(n − k), v = d/(n − k). To estimate hat(Rk), we use the sphere covering
bound,

mk′
d∑

i=0

(
n − k

i

)
(m − 1)i ≥ mn−k

which implies

mn−k−k′ ≤ (m − 1)d
d∑

i=0

(
n − k

i

)
≤ (m − 1)d2(n−k)I(v)

where

I(v) =

{
H(v) v ≤ 0.5,

1 v > 0.5

Taking logs and simplifying, we get

(1 − u)L1 − vL2 ≤ I(v) (3)

where L1 = log m and L2 = log(m − 1). From (2),

hat(Rk) ≤ max
0≤k′≤k

n − d − k′ = max
0≤u≤k/(n−k)

n − (n − k)(u + v).

From (3),
u + v ≥ 1 + (1 − L2/L1)v − I(v)/L1.

When 0.5 ≤ v ≤ 1, the right hand side attains a minimum at v = 0.5. So we can
assume v ≤ 0.5 and replace I(v) by H(v) above. Taking derivatives, the right hand side
is minimized when v = v̄ := (m − 1)/(2m − 1). Substituting κ for k, we have

(n − κ) = hat(Tκ) = hat(Rκ) ≤ n − (n − κ)(L1 + (L1 − L2)v̄ − H(v̄))/L1.

Solving this gives κ ≥ βmn. �

For an upper bound on κ we consider specific codes. We consider only the 2-color case. A
bound of n/3 for κ is seen from the following argument. For Rk, X can have x2, . . . , xk+1

choose the modulo scheme while x1 can call out the majority color among yk+2, . . . , yn.
This shows

n − κ = hat(Rκ) ≥ (κ − 1) + (n − κ − 1)/2 = (n + κ − 3)/2
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Thus κ ≤ (n/3 + 1).

A small improvement to this bound can be obtained through first order Reed-Muller
codes. These are RM(z) := [2z, z + 1] codes (for some integer z) with covering radius
ρ(z) < 2z−1 − 2(z−2)/2 when z is odd; see [4, section 7.1] for more details. In particular,
when z = 9, we have a RM(9) = [512, 10] code with covering radius ≤ 244. For a given k,
we take a direct sum of RM(9) codes to form a code of length 512b(n − k)/512c and size
210b(n − k)/512c. The remaining k − 10b(n − k)/512c members use the modulo scheme.
Thus we have

n − κ = hat(Rκ) ≥ (512 − 244)b(n − κ)/512c + (κ − 10b(n − κ)/512c − 1)

Solving this, we get κ ≤ 127n/383 + c for some constant c.

Summarizing,

Remark 7 For the 2-color case, W will choose a value k such that log(4/3)n/ log(8/3) ≤
k ≤ 127n/383. The number of correct guesses, n − k lies between 256n

383
and n

log(8/3)
. �

5 Conclusion

We studied the standard Hats-on-a-line problem and its extensions to cases where the
seeing radius and/or the hearing radius were limited. We also considered different order-
ings under which the prisoners call out their colors and showed how these orderings relate
to covering codes and defines a new optimization problem on the covering radius.
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