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Abstract

We introduce a permutation analogue of the celebrated Szemerédi Regularity
Lemma, and derive a number of consequences. This tool allows us to provide a
structural description of permutations which avoid a specified pattern, a result that
permutations which scatter small intervals contain all possible patterns of a given
size, a proof that every permutation avoiding a specified pattern has a nearly mono-
tone linear-sized subset, and a “thin deletion” result. We also show how one can
count sub-patterns of a permutation with an integral, and relate our results to per-
mutation quasirandomness in a manner analogous to the graph-theoretic setting.

1 Introduction

The Szemerédi Regularity Lemma, a tool developed in the early 1970’s in service of the
combinatorial milestone now known as the Szemerédi Theorem, has turned out to be one
of the most useful tools in graph theory ever discovered. In essence, it says that any
graph can be approximated by a small collection of random-like graphs. This powerful
structural characterization allows one to answer questions about graphs by taking such
a “Szemerédi partition” and then addressing the question by using known facts about
random graphs. A number of variants of the Regularity Lemma (or Uniformity Lemma,
as it is sometimes called) have emerged since the publication of the original. Versions of
it giving structural decompositions of hypergraphs have been used in many contexts, and
a few results have addressed the difficult case of sparse graph regularity. The reader is
encouraged to read the excellent surveys of Komlós and Simonovits [9] and Kohayakawa
and Rödl [8] to learn about how and where the Lemma is used, how it is proved, and
what its limitations are.
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An idea intimately related to regularity – quasirandomness – was introduced by Chung,
Graham, and Wilson in [2]. They show that a surprisingly large collection of random-like
properties of graphs are in fact equivalent. Then, in a series of remarkable papers, Chung
and Graham applied similar analyses to hypergraphs, subsets of Zn, tournaments, and
other combinatorial objects. The following decade witnessed a flurry of generalizations
and elaborations appearing in the literature, with much of the work exploring the con-
nections between regularity and quasirandomness. In particular, Simonovits and Sós [11]
showed how quasirandomness is equivalent to the property of having a Szemerédi partition
into pieces whose regular pairs have density 1/2.

The author defined quasirandom permutations in [3] and proved that several classes
of simple arithmetic functions almost always give rise to quasirandom permutations ([4]).
The central paradigm is the same: a large collection of natural, random-like properties
are mutually equivalent. However, the connections with regularity break down in this
realm, as it has not been possible so far to bridge the worlds of graph quasirandomness
and permutation quasirandomness.

In the present paper, we remedy this situation by proving a regularity lemma for per-
mutations and analogizing the basic results used alongside the graph Regularity Lemma.
The main result (Theorem 2) says that the ground set of any permutation may be decom-
posed into a small exceptional set and a bounded number of intervals in the remaining
points so that the action of the permutation is randomlike on each such interval. Our hope
is that this tool will help address the nascent realm of “extremal permutation” problems
and lead to other work analogous to that of Extremal Graph Theory.

Examples of extremal permutation problems include:

1. For any permutation τ , give a structural description of the permutation that avoids
τ , i.e., σ|I is not order-isomorphic to τ for any index set I. The problem of showing
that the number of such σ is at most exponential in the number of symbols is
commonly known as the “Stanley-Wilf Conjecture”, and was recently solved by
Marcus and Tardos [10].

2. For a given permutation τ , which permutation σ has the maximum number of
“copies” of τ , in the above sense? We write the number of such copies as Λτ (σ).
This question has seen a number of advances in the past ten years, following Herb
Wilf’s address at the 1992 SIAM Conference on Discrete Math. One particularly
nice addition to the recent literature in this realm is [7].

3. Given permutations τ and τ ′, what is the expected value of Λτ ′
(σ) in the space of

permutations σ chosen uniformly among those permutations on n symbols which
avoid τ? What is the maximum value of Λτ ′

(σ) among all those permutations σ
which avoid τ?

4. Call a sequence of permutations {σi}∞i=1, σi a permutation of ni symbols with ni →
∞, asymptotically k-symmetric if, for each τ , a permutation on k symbols, Λτ (σi) =
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(
ni

k

)
(1 + o(1))/k!. Does there exist, for all k, a sequence which is asymptotically

k-symmetric but not asymptotically (k + 1)-symmetric? This question of R. L.
Graham appears in [3] and is open except for k = 1, 2, 3.

The rest of the paper is as follows. In the next section, we define regularity and
uniformity for permutations and prove the existence of a regular/uniform partition. Then,
in Section 3, we address Problem 1 above with structural results about permutations which
avoid a given pattern. These results are used in Section 4 to show that only a small number
of pairs of points need be deleted to destroy all copies of a pattern in a permutation which
has few of them to begin with. Section 5 provides a connection between permutation
quasirandomness and regularity, and a proof of a new characterization of permutation
quasirandomness. The following section contains a discussion of the (asymptotic) pattern
counts one can compute given a regular partition of any permutation, and the final section
contains a full proof of the permutation regularity lemma.

2 Regularity

We provide two versions of a permutation regularity result, the latter of which appears
to be the more interesting and applicable, and we distinguish the two settings through
the use of the terms “regular” and “uniform.” The first result, concerning regularity, we
state below but relegate the proof – which is quite standard – to Section 7.

We consider permutations to be elements of Sn, the set of bijective maps from Zn to
itself. For a permutation σ ∈ Sn and subsets S, T ⊂ Zn, we write p(S, T ) = |{(s, t) ∈
S × T : σ(s) < t}|, and d(S, T ) = p(S, T )/|S||T |. Throughout the rest of this paper, we
consider only partitions in which each Ci, i ≥ 1, is an interval. Though it is something
of an abuse, we will often speak of a “partition of σ” instead of a partition of Zn. For
integers s and t and an ε > 0, say that the pair (Cs, Ct) is ε-regular if, for all intervals
I ⊂ Cs and J ⊂ Ct with |I| ≥ ε|Cs| and |J | ≥ ε|Ct|, we have

|d(I, J) − d(Cs, Ct)| ≤ ε.

Then we call P an ε-regular partition into k parts if |Cs| = |Ct| for all 1 ≤ s, t ≤ k,
|C0| ≤ εn, and (Cs, Ct) is an ε-regular pair for all but εk2 pairs (s, t). (If P has only this
first property, it is called equitable.)

Our first theorem is the following.

Theorem 1 (Permutation Regularity). Given m ∈ N
+ and ε > 0, there exist M =

M(ε, m) and N = N(ε, m) so that any σ : Zn → Zn has an ε-regular partition into k
(nonexceptional) intervals with m ≤ k ≤ M if n ≥ N .

Note that this statement is very similar to the one gotten by taking applying the
“standard” Regularity Lemma for graphs to the bipartite graph whose color classes are
two copies of Zn, and so that there is an edge from s to t if σ(s) < t. The difference lies
primarily in that the blocks of the partition must be intervals, and the two partitions of
the color classes are actually the same.
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We now prove a reformulation of this result which will be easier to use for some
applications. Let L(S, α), for a set S ⊂ Zn and α ∈ [0, 1], denote the fraction of elements
of S whose image is less than αn, i.e., |σ(S) ∩ [0, αn)|/|S|. We say that two functions
f, g : [0, 1] → [0, 1] are ε-near if, for each α ∈ [0, 1], g(α − ε) − ε ≤ f(α) ≤ g(α + ε) + ε.
(We employ the convention that g(α) = g(0) for α < 0 and g(α) = g(1) for α > 1.) It is
easy to see that this definition is symmetric in f and g.

Now, we say that a partition {Cj}k
j=0 of σ is (ε,F)-uniform, where F = {fs}k

s=1, if
it is equitable, |C0| ≤ εn, and, for each s ∈ {1, . . . , k} and every interval I ⊂ Cs with
|I| ≥ ε|Cs|, L(I, ·) is ε-near fs.

The following theorem, which we consider to be the main one of this paper, says es-
sentially that permutations are, up to small deviations, concatenations of “deterministic”
maps (ones which send all points into just a few small intervals) and “random” maps
(ones which resemble the original map on each subinterval). Note the absence of any
“exceptionality” other than the exceptional set itself, in contrast to the Graph Regularity
Lemma, where exceptional pairs are unavoidable.

Theorem 2 (Permutation Uniformity). Given m ∈ N
+ and 0 < ε < 1, there exists

M = M(ε, m) and N = N(ε, m) so that, if n ≥ N , σ : Zn → Zn has an (ε,F)-uniform
partition {Cj}k

j=0, with m ≤ k ≤ M , where F is a collection of k nondecreasing C∞

functions fj : [0, 1] → [0, 1].

Proof. Without loss of generality, we may assume that ε < 1/2. Apply Theorem 1,
and take an ε2/4-regular partition of σ so that each Cj, j ≥ 1, has cardinality ≤ εn/4.
(We may always do so by choosing a partition with even higher regularity if necessary.)
Note that there can be at most εk/2 indices s ∈ [k] so that there are more than εk/2
indices t with (s, t) being ε-irregular. Call all other s “good”, and add each “bad” Cj

to C0 to create a new partition of σ. Then the new exceptional set has size at most
ε2n/4 + (εk/2)(n/k) ≤ εn.

Fix a good s, and let A be any subset of Zn. Now, suppose x, y ∈ Zn have the property
that there is some Ct ⊂ [x, y). Then

|Ct|−1|{(s, t) ∈ A × Ct : σ(s) < t}| ≥ |σ(A) ∩ [0, x)|,
so d(A, Ct) ≥ L(A, x/n). Similarly, d(A, Ct) ≤ L(A, y/n). In order to guarantee that
there is such a Ct and that (s, t) is regular, it suffices to ensure that the gap between x
and y is at least

(εk/2 + 1)|C1| + ε2n/4 ≤ εn/2 + εn/4 + ε2n/4 < εn,

since it should be the length of εk/2 + 1 Cj ’s plus all the points of C0. Therefore, if we
set y = (α + ε)n, x = αn, we have

L(X, α) ≤ d(X, Ct) ≤ L(X, α + ε).

On the other hand, we may take z = (α − ε)n, and there will be a Ct′ ⊂ [z, x), so that

L(X, α − ε) ≤ d(X, Ct′) ≤ L(X, α) ≤ d(X, Ct) ≤ L(X, α + ε). (1)
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If we take X = I, an interval of Cs of length at least ε|Cs|, then we may apply (1) to get

d(I, Ct′) ≤ L(I, α) ≤ d(I, Ct).

Then, using the regularity of the partition, we see that

d(Cs, Ct′) − ε ≤ L(I, α) ≤ d(Cs, Ct) + ε.

Applying (1) once more, this time with X = Cs,

L(Cs, α − ε) − ε ≤ L(I, α) ≤ L(Cs, α + ε) + ε.

Since this analysis works for any α ∈ [ε, 1−ε), and the conclusion holds trivially otherwise,
we may take fs(α) = L(Cs, α).

Note that L(Cs, α + 1/n) − L(Cs, α) ≤ |Cs|−1 < 2kn−1. It is easy to see, then, that
by choosing n large enough we may assume that all of the fs are C∞ and monotone.

3 Pattern Avoidance

Define Λτ (σ) for τ ∈ Sm and σ ∈ Sn to be the number of occurrences of the pattern τ
in σ, i.e., the number of “index sets” {x0 < . . . < xm−1} ⊂ Zn such that σ(xi) < σ(xj) iff
τ(i) < τ(j).

Suppose that σ ∈ Sn has a uniform partition P , and τ ∈ Sm. If it is known that
Λτ (σ) = o(nm), what can be said about the fs? In fact, something quite strong: that it
concentrates almost all the mass of σ(Cs) in at most m − 1 very small intervals.

Theorem 3. Suppose σ ∈ Sn, τ ∈ Sm, 0 < ε ≤ (2m)−1, and n is sufficiently large.
Choose {Cj}k

j=0, an (ε,F)-uniform partition of σ. If Λτ (σ) < (εn/2km)m, then, for each
1 ≤ s ≤ k, there is a collection I of at most m − 1 disjoint intervals in [0, 1), each of
length at most 6ε, so that |σ(Cs) ∩ (n ·⋃I)| ≥ |Cs|(1 − 7mε).

Proof. Write F = {fs}k
s=1. First we prove a claim: if J0, . . . , Jm−1 are disjoint intervals

of [0, 1) which are separated from each other by at least 4ε, then, for some t, we have

fs(sup Jt) − fs(inf Jt) ≤ 5ε.

To see this, suppose the contrary, i.e., that there are m such intervals for which fs(sup Jt)−
fs(inf Jt) ≥ 5ε. Then split Cs into m intervals C0

s , . . . , C
m−1
s whose sizes differ by at

most 1, and denote their density functions by f q
s (·) = L(Cq

s , ·). Writing xt = inf Jt and
yt = sup Jt, we have

f q
s (yt + 2ε) − f q

s (xt − 2ε) ≥ (L(Cs, yt + ε) − ε) − (L(Cs, xt − ε) + ε)

≥ (fs(yt) − ε) − (fs(xt) + ε) − 2ε

= fs(yt) − fs(xt) − 4ε ≥ ε,
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since |Cq
s |/|Cs| ≥ ε. Define x′

t = max{0, xt − 2ε} and y′
t = min{1, yt + 2ε}, and note that

the intervals {J ′
t = [x′

t, y
′
t)} are disjoint, by the separation property of the Jt. Then the

fact that f q
s (y′

t)−f q
s (x′

t) ≥ ε for each q and t implies that |σ(Cq
s )∩J ′

τ(q)| ≥ ε|Cq
s | ≥ εn/2km.

If we take any zq ∈ Cq
s ∩ σ−1(J ′

τ(q)), then z0, . . . , zm−1 is a τ -pattern in σ, so we have at

least (εn/2km)m such patterns, a contradiction.
Now, consider the following process: begin at 0, and find the first r so that fs(r) = 5ε

(or r = 1 if such a point does not exist). This is possible because fs is monotone and
continuous and fs(1) = 1. Define I0 = [0, r). Then, let I ′

0 = [r, r + 4ε). Now, begin
at r + 4ε, find the first r′ so that fs(r

′) − fs(r + 4ε) = 5ε (or r′ = 1, again, if this is
not possible), and define I1 = [r + 4ε, r′) and I ′

1 = [r′, r′ + 4ε). Then define r′′, I2, and
I ′
2 similarly, and so on. This process must terminate in no more than d1/(5ε)e steps, at

which point the right-endpoint of the last interval defined is 1. In fact, it must terminate
even sooner, by the claim above: if we have reached I ′

m, then I0, . . . , Im−1 provide a
contradiction. Then the I ′

l number at most m − 1 and each has length at most 4ε. Now,
define I ′′

l to be the interval with left endpoint x′′
l = min{inf Il + ε, 1} and right endpoint

y′′
l = max{sup Il − ε, 0}. Then

L(Cs, y
′′
l ) −L(Cs, x

′′
l ) ≤ (fs(sup Il) + ε) − (fs(inf Il) − ε) ≤ 7ε.

Therefore, the intervals which comprise the complement of
⋃

l I
′′
l , each of which contains

some I ′
l , satisfy the conclusions of the theorem.

Define a permutation σ ∈ Sn to be m-universal if Λτ (σ) > 0 for each τ ∈ Sm. Now,
we say that a permutation σ has the (δ, ε, γ)-property if, for every interval I with |I| ≥ δn
and every interval J with |J | ≤ εn, we have |σ(I) ∩ J | ≤ γ|I|. That is, no sufficiently
large interval is mapped too densely into any small interval. Our next result says that,
for the appropriate parameters, this property implies universality. Note that, if we had
instead stated that |σ(I) ∩ J | ≥ γ|I| when |J | ≥ εn, this would be immediate. With the
reverse inequalities, however, it is far from obvious. On the other hand, if δγ ≥ ε, the
statement would be vacuous. Therefore, in particular, it has content whenever δ < ε.

Proposition 4. For each m ≥ 2 and ε > 0, there is a positive δ < ε so that, for n
sufficiently large, if σ ∈ Sn has the (δ, ε, m−1)-property, then σ is m-universal.

Proof. Suppose the contrary, so that there is some τ ∈ Sm with Λτ(σ) = 0. Take
ε′ = min{ε/6, m−2/8}, and choose an (ε′,F)-uniform partition {Cj}k

j=0. Let Cs be any
block of the partition. Then, by Theorem 3, at least |Cs|(1 − 7mε′)/(m − 1) points of
I = Cs are mapped by σ into some interval J of length at most εn. However, if we take
δ = 1/k and γ = 1/(m − 1), then the fact that σ has the (δ, ε, γ)-property provides a
contradiction, since |I| ≥ δn, J ≤ εn, and

|σ(I) ∩ J |
|I| ≥ 1 − 7mε

m − 1
>

1

m
.
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Now, we show that any permutation which avoids a given τ has a linear sized subpat-
tern which is “nearly monotone”. (Compare to the Erdős-Szekeres Theorem, which says
that any permutation on n symbols has a

√
n-sized truly monotone subpattern.) Define a

permutation ρ ∈ Sr to be δ-pseudomonotone if either Λ(01)(ρ) ≤ δ
(

r
2

)
or Λ(10)(ρ) ≤ δ

(
r
2

)
.

Then we have the following.

Proposition 5. For every δ > 0 and τ ∈ Sm, there is a c > 0 so that, for any permutation
σ ∈ Sn which avoids τ , with n sufficiently large, there is a set I ⊂ Zn with |I| ≥ cn so
that σ|I is δ-pseudomonotone.

Proof. We may assume m ≥ 2, and fix ε = η/14m with η ≤ 1. By Theorem 3, σ has an
(ε,F)-uniform partition so that, for each 1 ≤ s ≤ k, there is an interval Is of length at
most 6ε so that |σ(Cs) ∩ (n · Is)| ≥ |Cs|(1 − 7mε)/(m − 1). Order the Cs left-to-right.
Suppose that T of the Is intersect some fixed It. At least

T · 1 − 7mε

m − 1
· |Cs| ≥ T (1 − 7mε)(1 − ε)n

k(m − 1)

points are mapped by σ into an interval of length at most 18εn. Therefore,

T ≤ 18εk(m − 1)

(1 − 7mε)(1 − ε)
< 6ηk.

Hence, we may iteratively pick s1, . . . , sdη−1/6e so that the Isj
are mutually disjoint. By

the Erdős-Szekeres Theorem, there is a subset s′1 < · · · < s′R of these sj of size at least

dη−1/6e1/2
which is monotone with respect to the obvious ordering on the Isj

. Let X be
the union of the σ−1(Is′j ) ∩ Cs′j . The only pairs of elements of X which possibly display
the opposite ordering to that of the intervals Is′j are contained within a single set of the

form σ−1(Is′j) ∩ Cs′j . The fraction of pairs in X of this type is at most

R
(|Cs|

2

)
(

R|Cs|/2(m−1)
2

) ≤ 4(m − 1)2

R
≤ 10η1/2(m − 1)2.

If we let η = δ2(m − 1)−4/100, then the set X is δ-pseudomonotone and has cardinality
at least n · (20(m− 1)/δk).

4 Destroying Patterns

With the graph regularity lemma, one can prove that, if a graph G contains at most o(nm)
copies of some m-vertex graph, then we may remove o(n2) edges to destroy all copies. Is
there any hope of proving something analogous for permutations?

The first observation to make is that this is certainly not possible if one wishes to
delete elements of the ground set. Consider the permutation

σ = (1, 0, 3, 2, 5, 4, . . . , n − 1, n − 2)
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for n even. It is clear that, even though this permutation has Λ10(σ) = O(n) = o(n2), one
must remove Ω(n) points to destroy all copies. Furthermore, the generalization of this
construction to other patterns is a simple matter.

Clearly, deleting points of the ground set is not the proper analogue of removing edges.
Let us instead attempt to “delete” pairs of points. We wish to choose a subset S ⊂ (Zn

2

)
so that every copy of τ in σ contains (in its index set) both points of some element of S.
To state it another way: if we do not count index sets in which pairs from S appear, there
are no copies of the pattern τ . Any copy of τ containing such a pair we say is destroyed
by the deletion of S. The main result of this section says that, using o(n2) such deletions,
we may destroy all copies of τ in a permutation σ which has Λτ (σ) = o(nm).

Proposition 6. Suppose that σ ∈ Sn, τ ∈ Sm, and Λτ(σ) = o(nm). Then we may delete
at most o(n2) index pairs to destroy all copies of τ .

Proof. Take an (ε,F)-uniform partition {Cj}k
j=0, ε < (2m)−1, and choose n large enough

that Λτ (σ) < (εn/2km)m. By Theorem 3, for each 1 ≤ s ≤ k, there is a collection
Is of at most m − 1 disjoint intervals {Ij

s} in [0, 1), each of length at most 6ε, so that
|σ(Cs)∩ (n ·⋃ Is)| ≥ |Cs|(1− 7mε). We create a new collection of families I ′

s of intervals
as follows. Begin with the Is. If an interval n · Is receives fewer than ε|Cs| points of Cs

under the action of σ, we remove it from the collection. Then each I ′
s has at most m− 1

elements and |σ(Cs) ∩ (n ·⋃I ′
s)| ≥ |Cs|(1 − 8mε).

Now, delete all pairs which contain at least one point of C0 or a point whose image does
not fall into any of the n · I ′

s. There are most (8m + 1)εn2 of these. Then, delete all pairs
which contain two points from any one of the sets Cs. This uses at most k

(|Cs|
2

) ≤ n2/2k
pairs. Finally, delete all pairs whose elements are mapped to points within 12εn of each
other by σ. There are at most 12εn2 of these. Hence, letting ε → 0 and k → ∞, the
result follows if we can show that the chosen deletion indeed destroys all copies of τ .

Suppose not. Then the index set on which τ appears, i0 < . . . < im−1 must have the
following properties:

1. For each r = 0, . . . , m − 1, σ(ir) ∈ n · Ij
s for some s and j.

2. For each q = 0, . . . , m − 2, σ(iτ−1(q)) < σ(iτ−1(q+1)) − 12εn.

3. If σ(ir) ∈ n · Ij
s and σ(ir′) ∈ n · Ij′

s′ , then s 6= s′.

Since each of the Ij
s have diameter at most 6ε, the first two properties imply that the n ·Ij

s

must be disjoint. Order these (dilated) intervals by increasing s, i.e., s0 < · · · < sm−1, and
call them J0, . . . , Jm−1. Because they are disjoint and σ(ir) ∈ Jr for each r, the intervals
themselves are ordered like a copy of τ . Therefore, since the indices s are distinct, for any
set of m indices drawn one from each of σ−1(J0)∩Cs0, · · · , σ−1(Jm−1)∩Csm−1, σ restricted
to this set is a copy of τ . This ensures that

Λτ (σ) ≥ (ε|Cs|)m ≥ (εn/2k)m,

a contradiction.
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5 Quasirandomness

In [3], the author proves that a number of random-like properties of permutations are
equivalent to one another. In order to state the main result of that paper, a few definitions
are necessary. Fix a permutation σ ∈ Sn. For any S, T ⊂ Zn we define the discrepancy
of S in T as

DT (S) =

∣∣∣∣|S ∩ T | − |S||T |
n

∣∣∣∣ ,
and we define the discrepancy of a permutation σ by

D(σ) = max
I,J

DJ(σ(I)),

where I and J vary over all intervals of Zn. Also, define

D∗(σ) = max
I,J

DJ(σ(I)),

where I and J vary only over “initial” intervals, i.e., intervals of the form [0, x).
We say that a sequence {σi}∞i=1 of permutations of Zn1 , Zn2 , . . . is quasirandom if

D(σi) = o(ni). Often the indices are suppressed, and we simply say that D(σ) = o(n).
By e(x), we mean e2πix. We also use the convention that the name of a set and its

characteristic function are the same. The following is a portion of the main theorem in [3].

Theorem 7. For any sequence of permutations σ ∈ Sn, integer m ≥ 2, and real α > 0,
the following are equivalent:

[UB] (Uniform Balance) D(σ) = o(n).

[UB*] (Uniform Star-Balance) D∗(σ) = o(n).

[SP] (Separability) For any intervals I, J, K, K ′ ⊂ Zn,∣∣∣∣∣∣
∑

x∈K∩σ−1(K ′)

I(x)J(σ(x)) − 1

n

∑
x∈K,y∈K ′

I(x)J(y)

∣∣∣∣∣∣ = o(n).

[mS] (m-Subsequences) For any permutation τ ∈ Sm and intervals I, J ⊂ Zn

with |I| ≥ n/2 and |J | ≥ n/2, we have |I ∩ σ−1(J)| ≥ n/4 + o(n) and

Λτ (σ|I∩σ−1(J)) =
1

m!

(|σ(I) ∩ J |
m

)
+ o(nm).

[2S] (2-Subsequences) For any intervals I, J ⊂ Zn with |I| ≥ n/2 and |J | ≥
n/2, we have |I ∩ σ−1(J)| ≥ n/4 + o(n) and

Λ(01)(σ|I∩σ−1(J)) − Λ(10)(σ|I∩σ−1(J)) = o(n2).
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[E(α)] (Eigenvalue Bound α) For all nonzero k ∈ Zn and any interval I,∑
s∈σ(I)

e(−ks/n) = o(n|k|α).

[T] (Translation) For any intervals I, J ,

∑
k∈Zn

(
|σ(I) ∩ (J + k)| − |I||J |

n

)2

= o(n3).

Furthermore, for any implication between a pair of properties above, there exists a
constant K so that the error term ε2n

k of the consequent is bounded by the error term
ε1n

l of the antecedent in the sense that ε2 = O(εK
1 ).

In [11], the authors connect graph quasirandomness and regularity by showing that,
essentially, a sequence of graphs is quasirandom if and only if they possess density 1/2
regular partitions with arbitrarily small ε. Here, we prove an analogous result for permu-
tations. Let O1(x) denote some real number whose absolute value is at most x.

Proposition 8. A sequence of permutations σi ∈ Sni
, i ≥ 1, ni → ∞, is quasirandom if

and only if, for each ε > 0, given any (ε, {fs})-uniform partition of σi with i sufficiently
large, fs(x) is 2ε-near id(x) = x for each s.

Proof. Suppose that σ is quasirandom, and let P be an (ε,F)-uniform partition. For any
interval Cs, [UB] implies that

L(Cs, α) = α + o(1).

Therefore, if we choose ni large enough, we may ensure that |L(Cs, α) − α| ≤ ε for all
α ∈ [0, 1], which immediately implies that fs is 2ε-near id for each s.

On the other hand, suppose σi has an (ε, {fs})-uniform partition P = {Cj}k
j=0 for all

sufficiently large i, where fs is 2ε-near id for each s. It is easy to see that this implies
(by sub-additivity) that P is (3ε, {id})-uniform. We may assume that the Cj are ordered
left-to-right. Choose [0, x], [0, y) ⊂ Zni

. If, for some s, Cj ⊂ [0, x) for all 1 ≤ j ≤ s, choose
the largest such s, and let X = [0, x)∩Cs+1 (or ∅ if s = k). Otherwise, let X = [0, x) and
s = 0. Then

[0, x) =

( ⋃
1≤j≤s

Cj

)
∪ X ∪ E

for some E ⊂ C0. Therefore, s|C1| + |X| = x + O1(εni). We may write

∣∣∣∣σ([0, x)
) ∩ [0, y)

∣∣∣∣ =
∣∣∣∣∣
⋃

1≤j≤s

σ(Cj) ∩ [0, y)

∣∣∣∣∣+ |σ(X) ∩ [0, y)| + |σ(E) ∩ [0, y)|.
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Clearly,
∣∣σ(E) ∩ [0, y)

∣∣ = O1(εni). Define β = y/ni. Applying uniformity, then,∣∣∣∣σ([0, x)
) ∩ [0, y)

∣∣∣∣ = ∑
1≤j≤s

|C1|L(Cj, β) + |X|L(X, β) + O1(εni)

=
∑

1≤j≤s

|C1|(β + O1(3ε)) + |X|(β + O1(3ε)) + O1(εni)

= (s|C1| + |X|)β + O1(4εni),

so we may conclude that ∣∣∣∣∣∣σ([0, x)
) ∩ [0, y)

∣∣− xy

ni

∣∣∣∣ ≤ 5εni.

If we take ε → 0, then σi is quasirandom, by [UB*].

6 Counting Subpatterns

We wish to count how many occurrences of the pattern τ ∈ Sm appear in a permutation
σ of Zn with a given (ε,F)-uniform partition {Cj}k

j=0. Unfortunately, we have no control
over the structure of the exceptional set C0, so it is not possible to get an “exact” count
this way. Nonetheless, if we write X =

⋃
j Cj , it is easy to see that, for n ≥ ε−1 ≥ 2,∣∣∣∣

(
n

m

)
−
(|X|

m

)∣∣∣∣ ≤ 2εnm/(m − 1)! (2)

so that a count of the τ -patterns on X is going to be close to the same count on all of
Zn. Note that we may also ignore all but the set of occurrences of τ all of whose symbols
occur in different Cj’s, since the number of these is

(
k
m

)|Cs|m, which is off from
(

n
m

)
by at

most ∣∣∣∣
(

n

m

)
−
(

k

m

)
|Cs|m

∣∣∣∣ ≤ 2εnm/(m − 1)! (3)

for n sufficiently large.
There is an additional obstruction to counting patterns that is more subtle than these

two issues. Suppose the mass of σ(Cs), for some s, were very tightly concentrated in some
interval. If we use fs as an estimate of its density function, then, since the condition of
ε-nearness can “dislocate” the entire mass of σ(Cs) by up to ε, the counts could be off by
a significant amount. On the other hand, only index sets whose images have two points
close to one another can be affected in this way. Since there are few of these, with some
work, we are able to ignore them in the total count.

One way ensure that the counts are accurate is simply to posit that fs does not
concentrate its mass too tightly. Therefore, define fs to be (B, ε)-Lipschitz if, for each x,
|fs(x + ε)− fs(x)| ≤ Bε. For example, if we have a (quasi-)random permutation, we may
take fs(x) = x for each s, a function which is (1, ε)-Lipschitz for each ε.
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The following lemma makes this idea rigorous. Define

Dr(β) = {x = (x1, . . . , xr) ∈ [0, β)r : ∀i, 1 ≤ i < r, xi < xi+1}.
Lemma 9. Let fj , gj, j = 1, . . . , r, be cumulative distribution functions on [0, a], a > 0,
and suppose that for each j, fj is ε-near gj. If gj is (B, ε)-Lipschitz for each j, then∣∣∣∣

∫
Dr(β)

α(x1) dFr −
∫
Dr(β)

α(x1) dGr

∣∣∣∣ ≤ r(a + 1)(B + 1)ε.

for any 0 ≤ β ≤ a, where dFr = df1(x1) · · · dfr(xr), dGr = dg1(x1) · · ·dgr(xr), and
α : [0, a] → [0, 1] is any nondecreasing function.

Proof. We prove the result by induction, by repeated application of integration by parts.
First, we check that it is true for r = 1. Note that, since fj is ε-near gj ,

fj(β) = g1(β) + O1((B + 1)ε)

by the Lipschitz property, and we have∫
D1(β)

α(x1)df1(x1) =

∫ β

0

α(x1)df1(x1)

= α(β)f1(β) −
∫ β

0

f1(x1)dα(x1)

= α(β)g1(β) + O1((B + 1)ε)

−
∫ β

0

[g1(x1) + O1((B + 1)ε)]dα(x1)

=

∫ β

0

α(x1)dg1(x1) + O1((a + 1)(B + 1)ε).

Now, suppose the result holds for r − 1, with r > 1. Then∫
Dr(β)

dFr =

∫ β

0

∫
Dr−1(xr)

α(x1) dFr−1 dfr(xr)

=

∫ β

0

(∫
Dr−1(xr)

α(x1)dGr−1 + O1((r − 1)(a + 1)(B + 1)ε)

)
dfr(xr)

=

∫ β

0

∫
Dr−1(xr)

α(x1) dGr−1 dfr(xr) + O1((r − 1)(a + 1)(B + 1)ε).

The function α1(xr) =
∫
Dr−1(xr)

α(x1) dGr−1 is nondecreasing, nonnegative, and bounded

by 1, so we may apply the r = 1 case to get∫
Dr(β)

dFr =

∫
Dr(β)

dGr + O1(r(a + 1)(B + 1)ε).
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We wish to be able to count subpatterns in permutations which do not necessarily
have the Lipschitz property, however. In order to be able to use this result, we have the
following Lemma which says that convolving the c.d.f. of a permutation with a uniform
distribution on a short interval preserves nearness and gives us a Lipschitz property.
Therefore, fix δ > 0 and, given a c.d.f. f on [0, 1], define f̃(t) = δ−1

∫ 0

−δ
f(t+ s)ds, a c.d.f.

on [0, 1 + δ].

Lemma 10. If f and g, c.d.f.’s on [0, 1], are ε-near, then f̃ and g̃ are ε-near. Furthermore,
f̃ is (2εδ−1, ε)-Lipschitz.

Proof. To see the first claim, we write

g̃(t + ε) − f̃(t) = δ−1

∫ t

t−δ

g(s + ε) − f(s) ds ≤ ε.

For the second claim,

f̃(t + ε) − f̃(t) = δ−1

(∫ t+ε

t+ε−δ

f(s) ds −
∫ t

t−δ

f(s) ds

)

= δ−1

(∫ t+ε

t

f(s) ds −
∫ t+ε−δ

t−δ

f(s) ds

)
≤ 2εδ−1.

Now, fix a permutation τ ∈ Sm. Write D for Dm(1), D′ for Dm(1 + δ), and define a
differential form dωf on [0, 1)m as follows:

dωf = |C1|m
∑

1≤s0<...<sm−1≤k

m−1∧
j=0

dfsτ−1(j)
(xj)

We define dωg, etc., analogously. Then we have the following.

Theorem 11. Suppose dωf is defined as above, ε ≤ 1/2, and n is sufficiently large. Then∣∣∣∣Λτ(σ) −
∫
D

dωf

∣∣∣∣ < (20ε1/2m2 + 4/k)nm/(m − 1)!

Proof. Define gj(x) = L(Cj, x). Suppose that m elements xi ∈ Zn are chosen uniformly at
random, xi ∈ Cji

, for some sequence j0 < . . . < jm−1. Writing j′r = jτ−1(r), the probability
that their images under σ form a τ is precisely∫

D

dgj′0(x1) · · · dgj′m−1
(xm)
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because dgj represents the distribution of the images σ(xi) for xi chosen at random from
Cj, and we wish to compute the probability that

σ(xj′0) < · · · < σ(xj′m−1
).

Multiplying by the number |C1|m of m-tuples, adding over all subsets {ji}, and accounting
for (2) and (3) yields

|Λτ(σ) −
∫
D

dωg| ≤ 4εnm/(m − 1)! . (4)

By Lemma 9 and Lemma 10 with δ = ε1/2, the quantity∣∣∣∣
∫
D′

dg̃j′0(x1) · · ·dg̃j′m−1
(xm)−

∫
D′

df̃j′0(x1) · · ·df̃j′m−1
(xm)

∣∣∣∣
is bounded by m(2 + ε1/2)(2ε1/2 + 1)ε ≤ 9mε. Summing up again, we find∣∣∣∣

∫
D′

dωf̃ −
∫
D′

dωg̃

∣∣∣∣ ≤ 9εnm/(m − 1)! . (5)

Now, let dG = k−1
∑k

j=1 dgj and dG̃ = k−1
∑k

j=1 dg̃j. If we choose an m-tuple of points
from each of these distributions, the distributions of their orderings with respect to in-
creasing j coincide so long as each point is at least δ away from all the others, since we
may view dG̃ as a random draw from the distribution dG followed by a random “jump”
forward uniformly distributed in [0, δ]. The probability that such an m-tuple has two
points at most δ apart is bounded by the probability that some pair of its points are that
close, i.e.,

≤
(

m

2

)
max

x

∫ x+δ

x−δ

dG

=

(
m

2

)
max

x

1

k

k∑
j=1

∫ x+δ

x−δ

dgj

=

(
m

2

)
max

x

1

k

k∑
j=1

(L(Cj, x + δ) − L(Cj, x − δ))

=

(
m

2

)
max

x

|⋃j σ(Cj) ∩ [(x − δ)n, (x + δ)n)|
k|C1|

≤ m2

2
· 2δn

k|C1| ≤ m2δ(1 − ε)−1 ≤ 2m2δ.

Since dωg (or dωg̃) is the same as the distribution of an unordered m-tuple drawn from
dG (resp., dG̃) minus the event that two points are drawn from the same Cj,∣∣∣∣

∫
D

dωg −
∫
D′

dωg̃

∣∣∣∣ ≤ (2ε1/2m2 + 2/k)nm/m! , (6)
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where the second summand follows from the fact that

1 −
(

k

m

)
· m!

km
≤ 1 − (1 − m − 1

k
)m < 1/k.

Similarly, if we define dF = k−1
∑k

j=1 dfj, dF̃ = k−1
∑s

j=1 df̃j, F (x) =
∫ x

0
dF , and G(x) =∫ x

0
dG, the difference of the two integrals in question is bounded by

(
m
2

)(
n
m

)
times the

probability that two points chosen from dF are within δ, or

≤
(

m

2

)
max

x

∫ x+δ

x−δ

dF

=

(
m

2

)
max

x
(F (x + δ) − F (x − δ))

≤
(

m

2

)
(max

x
(G(x + δ + ε) − G(x − δ − ε)) + 2ε)

≤ m2(δ + 2ε)(1 − ε)−1 ≤ 6ε1/2m2

and so, ∣∣∣∣
∫
D

dωf −
∫
D′

dωf̃

∣∣∣∣ ≤ (6ε1/2m2 + 2/k)nm/m! (7)

Putting together (4), (5), (6), and (7), we have∣∣∣∣Λτ (σ) −
∫
D

dωf

∣∣∣∣ < (20ε1/2m2 + 4/k)nm/m! .

7 The Proof of Theorem 1

For the proof of Theorem 1 below, we are heavily indebted to [5], which we find to have
the most comprehensible – if not the shortest – proof of the Regularity Lemma in the
literature.

For disjoint sets X, Y ⊂ Zn, define the “index”

q(X, Y ) = |X||Y |d2(X, Y )/n2.

Then extend this definition to a pair of partitions X of X and Y of Y by q(X ,Y) =∑
X′∈X ,Y ′∈Y q(X ′, Y ′). For a partition P = {Cj}k

j=1 of Zn, we write q(P) =
∑

i,j q(Ci, Cj).
If one set in the partition, C0, has been designated as an exceptional set, then we treat
C0 as a collection of singletons in this sum. That is, we write P̃ for the partition which
refines P by splitting C0 into singletons, then q(P) = q(P̃, P̃). First of all, note that

q(P) =
∑
i,j

|Ci||Cj|
n2

d2(Ci, Cj) ≤ n−2
∑
i,j

|Ci||Cj| = 1.

Now, we have the following simple lemma, which says that refinement can only increase
the index of a partition.
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Lemma 12.

1. Let C, D ⊂ Zn (not necessarily disjoint). If C is a partition of C and D is a partition
of D, then q(C,D) ≥ q(C, D).

2. If P,P ′ are partitions of Zn and P ′ refines P, then q(P ′) ≥ q(P).

Proof.

1. Let C = {C1, . . . , Ck} and D = {D1, . . . , Dl}. Then

q(C,D) =
1

n2

∑
i,j

p(Ci, Dj)
2

|Ci||Dj|

≥ 1

n2

(
∑

i,j p(Ci, Dj))
2∑

i,j |Ci||Dj|

=
1

n2

p(C, D)2

(
∑

i |Ci|)(
∑

j |Dj|)
= q(C, D),

where the inequality follows from Cauchy-Schwarz.

2. Let P = {C1, . . . , Ck}, and for 1 ≤ i ≤ k, let Ci be the partition of Ci induced by
P ′. Then

q(P) =
∑
i,j

q(Ci, Cj) ≤
∑
i,j

q(Ci, Cj) = q(P ′),

where the inequality follows from part (1).

The next lemma says that we may exploit irregular pairs to increase the index some-
what.

Lemma 13. Let ε > 0, and let C, D ⊂ Zn be intervals. If (C, D) is not ε-regular with
respect to σ, then there are partitions C and D of C and D, respectively, so that

q(C,D) ≥ q(C, D) + ε4 |C||D|
n2

.

Proof. Suppose (C, D) is not ε-regular, and choose intervals C1 ⊂ C and D1 ⊂ D with
|C1| > ε|C| and |D1| > ε|D| so that |η| > ε, where η = d(C1, D1) − d(C, D). Let
C = {C1, C2, C3} and D = {D1, D2, D3}, where C2 is the “left half” of C \ C1; C3 is the
“right half”; and D2 and D3 are defined similarly. (That is, C1 splits the interval C into
three pieces: C1 itself, one interval of points less than those of C1 and one interval of
points greater than those of C1. Either, but not both, of these may be empty.)
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For ease of notation, write ci = |Ci|, di = |Di|, eij = p(Ci, Dj), c = |C|, d = |D|, and
e = p(C, D). Then, applying Cauchy-Schwarz again, we see

q(C,D) =
1

n2

∑
i,j

e2
ij

cidj
=

1

n2


 e2

11

c1d1
+

∑
(i,j)6=(1,1)

e2
ij

cidj




≥ 1

n2

(
e2
11

c1d1
+

(e − e11)
2

cd − c1d1

)
.

Since e11 = c1d1e/cd + ηc1d1, we have

n2q(C,D) ≥ 1

c1d1

(
c1d1e

cd
+ ηc1d1

)2

+
1

cd − c1d1

(
cd − c1d1

cd
e − ηc1d1

)2

=
e2

cd
+

η2c1d1cd

cd − c1d1

≥ e2

cd
+ ε4cd

since c1 ≥ εc, d1 ≥ εd, and η2 > ε2.

The following lemma is the crux of the proof of Theorem 1.

Lemma 14. Let 0 < ε ≤ 1/4 and k ∈ N, let σ be a permutation of Zn, and let P be an
equitable partition of Zn into {Cj}k

j=0 with |C0| ≤ εn and |Cj| ≥ 81k for j > 0. If P is
not ε-regular, then there is an equitable partition P ′ = {C ′

j}l
j=0 of Zn with exceptional set

C ′
0, where k ≤ l ≤ k81k, such that |C ′

0| ≤ |C0| + n/9k and

q(P ′) ≥ q(P) + ε5/2.

Proof. Let c = |C1|. For all 1 ≤ i, j ≤ k, define a partition C1
ij of Ci and a partition C2

ji of
Cj as follows. If the pair (Ci, Cj) is ε-regular, then let C1

ij = {Ci} and C2
ji = {Cj}. If not,

then by the previous lemma, there are tripartitions C1
ij and C2

ji of Ci and Cj, respectively,
so that

q(C1
ij , C2

ji) ≥ q(Ci, Cj) +
ε4c2

n2
.

For each i = 1, . . . , k, let Ci be the partition of Ci that is the common refinement of every
partition Cr

ij . Note that |Ci| ≤ 9k. Now, consider the partition

C = {C0} ∪
k⋃

i=1

Ci,

with C0 as exceptional set. Then C refines P and k ≤ |C| ≤ k9k.
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Let C0 = {{x} : x ∈ C0}. If P is not ε-regular, then for more than εk2 of the pairs
(Ci, Cj), the partitions C1

ij and C2
ji are nontrivial. Hence, by Lemma 12,

q(C) =
∑
i,j≥1

q(Ci, Cj) +
∑
i≥0

q(C0, Ci)

≥
∑
i,j≥1

q(C1
ij, C2

ji) +
∑
i≥1

q(C0, {Ci}) + q(C0)

≥
∑
i,j≥1

q(Ci, Cj) + εk2 ε4c2

n2
+
∑
i≥1

q(C0, {Ci}) + q(C0)

= q(P) + ε5

(
kc

n

)2

≥ q(P) + ε5/2,

since kc ≥ 3n/4.
Now, C satisfies the conclusions of the theorem, except that it may not be equitable.

To fix the situation, cut each non-exceptional block of C into a maximal collection of
disjoint intervals of size d =

⌊
c/81k

⌋
. Call the resulting set of intervals {C ′

j}l
j=1, and let

C ′
0 = Zn \⋃C ′

j. This new partition P ′ refines C, so

q(P ′) ≥ q(C) ≥ q(P) + ε5/2.

Since each set C ′
j, j > 0, is contained in one of the sets Ci, but not more than 81k sets can

lie inside the same Cj , we also have k ≤ l ≤ k81k. On the other hand, the sets C ′
1, . . . , C

′
l

use all but at most d points from each nonexceptional block of C. Therefore,

|C ′
0| ≤ |C0| + d|C|
≤ |C0| + c

81k
k9k

= |C0| + ck9−k

≤ |C0| + n9−k.

Now, since q(P) ≤ 1, this lemma cannot be applied ad infinitum. Indeed, we may now
complete the proof of Theorem 1.

Proof of Theorem 1. Let ε > 0 and m ≥ 1. Without loss of generality, ε ≤ 1/4. Let
s = d2/ε5e. If we apply Lemma 14 s times, we end up with a partition of σ which is
ε-regular.

However, we need to choose the “starting” partition so that the exceptional set ends up
with cardinality ≤ εn and the Cj are sufficiently large at each stage. With each iteration
of the lemma, the size of the exceptional set can grow by at most n/9k. Therefore, we
wish to choose k large enough so that s increments of n/9k add up to at most εn/2, and
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n large enough so that |C0| < k implies |C0| ≤ εn/2. (We can guarantee |C0| < k if we
begin with an equitable k-partition.) So let k ≥ m be large enough so that 9k ≥ 2s/ε.
Then s/9k ≤ ε/2, and hence

k +
s

9k
n ≤ εn

whenever n ≥ 2k/ε.
Now, define f(x) = x81x. We may take M = max{f s(k), 2k/ε}. To deal with the

second condition – that the blocks be sufficiently large at each stage – note that, after
s steps, the nonexceptional blocks sizes are at least n/(2M)s. Therefore, choosing N =
max{2M/ε, 81M(2M)s} suffices, and the proof is complete.

8 Concluding Remarks

The discussion of Section 3 is largely “local”, i.e., the analysis is concerned with the
internal structure of individual blocks of the uniform partition. Section 6 consists of a
“global” analysis – it does not take into account the internal structure of the blocks, only
their relationships with one another. On the other hand, the proofs of the main results
of Sections 4 and 5, as well as that of Proposition 5, are both. It is here, in the interplay
between local and global, that we believe the most interesting behavior resides. We suspect
that such dual analysis may lead to a better understanding of extremal permutations in
the senses of Problem 2 and 3 of the Introduction, perhaps using the results of Section
6. Theorem 11, in theory, gives a translation of these problems from combinatorial to
analytic. We are hopeful that Theorem 11 can find application in algorithmic settings,
e.g., in the vein of [6], or in other contexts where a “counting lemma” has been useful,
such as the hypergraph-theoretic proof of the Szemerédi Theorem.
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